用户名: 密码: 验证码:
乙酸甲酯水解萃取精馏与催化精馏耦合工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在乙酸甲酯水解催化精馏工艺成功工业应用的基础上提出新的水解工艺,将原工艺流程的萃取精馏塔与催化精馏塔结合起来,实现萃取精馏过程与催化精馏过程的耦合操作,开发了乙酸甲酯水解萃取精馏与催化精馏耦合工艺(简称耦合工艺)。通过耦合技术达到过程强化、流程精简的目的,以期进一步提高乙酸甲酯的水解转化率,降低回收过程能耗和投资。
    本文结合小试实验和过程模拟系统地考察了耦合工艺水解过程的影响因素和规律,在此基础上完成了工艺全流程的计算机模拟,为中试放大和工业化设计提供依据。研究的主要内容如下:
    1.考察比较了3种(捆扎包型、催化剂与填料交替混装型和新开发的管型)不同的催化剂装填方式,确定出“管式”装填方式具有装卸方便、效率较高的优点。
    2.以新开发的“管式”催化剂装填方式为基础,直接以乙酸甲酯和甲醇的恒沸物为原料,在直径为35mm的小试塔上进行实验,结果表明:进料水酯摩尔比是过程影响最显著因素,随着水酯比增加水解转化率明显提高;同时得出水解转化率随空速提高而下降;回流进料比增大能促进水解反应的进行,但增大到一定程度后对水解率的影响趋于平缓,适宜回流进料比一般不高于4。
    3.考察了进料位置、提馏段高度和反应段高度对水解率的影响,结果表明:耦合塔中部进料对空速较高情况有利;提馏段的增加能有效的提高过程效率;催化剂管径对过程的影响不大,反应段高度的增加对过程有一定的强化作用。
    4.以大量的实验数据为训练样本,应用改进BP算法的人工神经网络模型对耦合水解塔进行过程模拟,可获得满意的模拟结果。
    5.建立了偶合塔的数学模型,开发出相应的计算方法。通过模拟计算进一步验证了实验的结论,乙酸甲酯水解转化率和塔釜酸水重量比随各操作条件的模拟变化趋势与实验的结果基本一致,为小试过程提供有效的指导,也为中试放大提供了依据。
    6.在小试实验和耦合塔过程模拟的基础上,应用HYSYS流程模拟软件进行了乙酸甲酯水解工艺的全流程模拟,分别模拟比较了固定床水解工艺、催化精馏水解工艺
    
    和耦合水解工艺,基于能耗最低的原则,通过对流程模拟体系的过程综合,初步提出了耦合水解工艺的中试方案:控制水酯摩尔比在4.5左右,回流进料比约为3,水解转化率大于90%,耦合塔塔釜酸水重量比>0.7,配合电渗析提浓乙酸,节能可达到原固定床工艺的20.7%。
A new technology of methyl acetate (MeOAc) hydrolysis was studied in this paper, which was put forward on the basis of the catalytic distillation (CD) technology which has been successfully applied in the industrial hydrolyzation of MeOAc.The new technology was developed with combining extractive distillation tower and catalytic distillation tower to achieve coupling operation, so called "Coupling Technology of Extractive Distillation and Catalytic Distillation in Hydrolyzation of Methyl Acetate" (Short for Coupling Tech.).It will realize the purpose to strengthen the process effect, simplify the flowsheet and improve the hydrolytic conversion of MeOAc.What is more, energy consumption and investment will be greatly saved.
    The process of Coupling Tech. was systematically studied in this paper by the experiments in laboratory and process simulations.Further more, a computer simulation of the technology flowsheet was finished in order to prepare for future application in industrial process.The main works are as follows:
    1.Three types of catalyst packing mode were investigated in detail including bales packing mode, alternate catalyst filling packing mode as well as its improvements and the newly developed tube packing mode.It is indicated that the "tube" packing mode is more efficient and more convenient for loading or unloading catalyst.
    2.Using azeotrope of MeOAc and methanol (Short for azeotrope) as feed, the experiments were carried out in a column of 35 mm diameter in which catalyst was packed in the "tube" mode.The experimental results demonstrate that the mole ratio of water to MeOAc (H2O/MeOAc) in the feed is the most important factor.The conversion of MeOAc (Conv.) increases remarkably as H2O/MeOAc increases.It is also indicated that the Conv. will be decreasing while increasing the space velocity (S), and that, the higher volume ratio of reflux to feed (L/F) will be helpful to the process of hydrolysis.Because of negative influence, the eligible L/F is proved to be less than 4.
    
    
    3.According to the changes of catalyst tube diameter and column setting, the experiments were carried out on three column structures.The results are as follows: feeding the azeotrope at the bottom of reaction zone is better than at the top for higher S; increasing the stripping section and the reaction zone will enhance the hydrolyzation process.
    4.The model of artificial neural network with modified back-propagated algorithm (BP) was applied to the process simulation of MeOAc hydrolysis.Based on a great quantity of experimental data, the simulation results are satisfactory.
    5.A mathematical model and its corresponding calculation method were established to simulate the hydrolyzation column.The calculated results of Conv. and the weight ratio of acetic acid to water (HAc/H2O) in the product of hydrolysis are in fair coincidence with the experimental data, proving that the simulation results are credible.
    6.The HYSYS emluator was applied to the flowsheeting simulations including the fixed-bed hydrolyzation technology, the CD technology and the Coupling Tech..Based upon the least energy consumption, the suitable conditions for pilotscale experiment were put forward.That is, H2O/MeOAc is about 4.5, L/F about 3, so as to reach Conv. larger than 90% and HAc/H2O larger than 0.7.Concentrating the HAc by distillation together with electrodialysis, the energy consumption is less than the fixed-bed technology by about 20.7%.
引文
[1] 黄水源,韩社教,梁五更,等.反应工程中的过程耦合研究现状及前景[J].石油炼制与化工,1995,26(11)::24-29.
    [2] 刘雪暖,李玉秋.反应精馏技术的研究现状及其应用[J].化学工业与工程,2000,17(3)164-168.
    [3] 傅吉全.特殊体系的相平衡和精馏模拟计算[M].北京:中国石化出版社,2002.
    [4] 许锡恩,李家玲,刘铁涌.催化精馏进展[J].石油化工,1989,18(9):642-649.
    [5] 傅和清,杨水彬,张心亚,等.催化精馏技术及应用[J].黄冈师范学院学报,1999,19(6):36-39.
    [6] Bacchans A A.US Pat 1400849,1400850,1400851(1921),1403224,1403225,1425624,1425625(1922),1454462,1454463(1923).
    [7] Sennewald K,Gehrmann K,Schafer S.US.Oat 3579309(1972).
    [8] 王龙延.催化蒸馏技术[J].现代化工,1990,10(2):43-47.
    [9] 陈进富,李秀花.分离过程中的化学效应[J].石油与天然气化工,1994,23(2):93-99.
    [10] 吴燕翔.醋酸甲酯水解催化精馏工艺中试过程研究[D].杭州:浙江大学,博士学位论文,1999.
    [11] 盖旭东,孙锦昌.反应精馏过程模拟研究进展[J].化学工程,1996,24(1):8-14.
    [12] 戴维钧.新型传质分离技术[M].北京:化学工业出版社,1992.
    [13] 刘劲松,朱思强,白鹏,等.催化精馏塔装填方式的研究进展[J].化工机械,2001,28(5):299-302.
    [14] 肖剑.醋酸甲酯水解催化精馏工艺的研究[D].天津:天津大学,硕士学位论文,1996.
    [15] 肖剑,刘家祺.催化精馏塔催化剂装填技术研究进展[J].化工进展,1999,18(2):8-11.
    [16] X-R Hao,J-S Wang,Z-R Yang,et al.Novel catafractionation technology for the production of methyl tert-butyl ether.The Chemical Engineering Journal,1995(56):11-18.
    [17] 韩社教,金涌,俞芷青,等.醋酸甲酯水解的新工艺[J].化学反应工程与工艺,1997,13(1):81-85.
    [18] 盖旭东,金涌,汪展文.新型催化精馏塔流体力学特性研究[J].化学工程,1999,27(1):6-10.
    [19] 韩明汉,林鸿飞,汪展文,等.催化精馏反应器的新型内构件的研究Ⅰ内构件的性能[J].石油化工,2000,29(9):674-677.
    [20] 刘红茹,张吉瑞.催化精馏塔内装填方式的研究[J].北京服装学院学报(自然科学版),2002,22(1):10-14.
    [21] 千真轮,清水博,等.日本:公开特许公报.昭57-7259(1982).
    [22] 浏上吉男.日本:公开特许公报.昭59-12749(1984).
    [23] Fujigami Y. Hydrolysis of methyl acetate in distillation column packed with reactive packing of ion exchange resin.J Chem Eng Jpn,1990,23(3):354-358.
    
    
    [24] Kim,Ki-Joo,et al.WO96/20912.
    [25] Smith L A Jr,Hearn D,Parker K.Proceedings Intersociety Energy Conversion Engineering Conference 19th,Vol2.San Francisco:The American Nuclear Society,1984:998-1002.
    [26] DeGarmo J L,Parulekar V N,Pinjala V.Consider Reactive Distillation.Chem Eng Prog,1992,88(3):43-50.
    [27] L G?tze,O Bailer,P Moritz,et al.Reactive distillation with KATAPAK.Catalysis Today,2001(69):201-208.
    [28] Andrzej Kolodziej,Mieczyslaw Jaroszyn′ski,Achim Hoffmann,et al.Determination of catalytic packing characteristics for reactive distillation.Catalysis Today,2001(69):75-85.
    [29] 吴如春,童张法,龙云飞,等.醋酸甲酯水解的催化精馏研究[J].广西大学学报,2000,25(3):216-228.
    [30] 夏建军,刘庆林,吴有庭,等.催化反应精馏研究中的若干问题——(1)过程的主要影响因素和操作工艺[J].南京大学学报(自然科学),1999,35(4):472-477.
    [31] 陈海波,吴巍,祁立超,等.乙酸甲酯水解工艺与催化剂[J].化学工业与工程技术,2002,23(2):15-19.
    [32] 王成习,钱栋英,陈伟,等.用催化精馏技术水解乙酸甲酯的实验研究[J].化学反应工程与工艺,1998,14(2):179-184.
    [33] 王成习,沈庆扬.树脂环催化剂在乙酸甲酯催化水解精馏中的应用[J].化学反应工程与工艺,2000,16(2):136-141.
    [34] Savkovic Srevanovic,J.Misic Bukovic,M.Slavrjkov,A.Tvisovic,B.Bincic CaricicG.Proceedings of World CongressⅢog Chemicial Engineering,Vol2.Tokyo,1986,672-675.
    [35] 方永成,江桂秀,万爱嫒,等.MTBE催化蒸馏数学模型的研究[J].石油炼制,1989,2:22-29.
    [36] 鲍杰,严国祥,邬晓风.合成MTBE非均相催化精馏过程数学模拟[J].化学工程,1994,22(5):6-12.
    [37] 旷戈,赵之山,王良恩,等.醋酸甲酯催化精馏水解塔的模拟[J].福州大学学报,1998,26(2):91-95.
    [38] 董新法,华贲.精馏塔模拟计算的新方法—改进三对角矩阵法[J].华南理工大学学报,1999,27(4):98-103.
    [39] 吴燕翔,王良恩,邱挺.二对角矩阵法及其在催化精馏塔模拟计算中的应用[J].福州大学学报(自然科学版),2000,28(1):82-86.
    [40] 方和良,沈庆扬,吕德伟.汽—液两相反应精馏过程的反应—扩散模型与模拟计算(1)反应—扩散模型[J].化学反应工程与工艺,1991,7(3):246-253.
    [41] 方和良,陈建信,沈庆扬.汽—液两相反应精馏过程的反应—扩散模型与模拟计算(2)模拟计算[J].化学反应工程与工艺,1992,8(1):81-89.
    [42] 郑宇翔.催化精馏过程研究[D].天津:天津大学,博士学位论文,1992.
    [43] 许锡恩,郑宇翔,董为毅,等.催化蒸馏合成乙二醇乙醚的过程模拟[J].化工学报,1993,
    
    44(3):269-275.
    [44] 王成习.催化精馏技术在醋酸甲酯水解过程中的应用研究[D].杭州:浙江大学,博士学位论文,1997.
    [45] 吴燕翔,邱挺,王良恩,等.非平衡级速率模型用于催化精馏过程的模拟计算[J].化工冶金,1999,20(4):347-354.
    [46] 吴燕翔,谭天恩,王良恩,等.醋酸甲酯水解催化精馏过程的模拟计算[J].化工冶金,2000,21(1):24-29.
    [47] 张瑞生,韩英,U Hoffmann.非均相催化精馏过程的模拟计算[J].化工学报,1989,40(6):693-702.
    [48] 韩英,张瑞生.全回流催化精馏塔的模拟计算[J].华东化工学院学报,1989,15(3):331-338.
    [49] 刘训峰,张瑞生,袁渭康.伴有平衡反应的分离过程的数学模拟(Ⅱ)催化精馏塔的模拟计算[J].化学反应工程与工艺,1993,9(4):444-450.
    [50] 张国昌.醋酸甲酯催化精馏水解工艺研究(一)[D].福州:福州大学,硕士学位论文,1996.
    [51] 赵之山,黄木旺,王良恩,等.微分模型用于醋酸甲酯催化精馏水解中试过程的模拟计算[J].福州大学学报,1999,27(6):102-106.
    [52] 郭继志,李秀冰,关海若.反应精馏的通用化模拟结构程序设计[J].辽宁教育学院学报,1996,5:97-99.
    [53] 盖旭东,汪展文,金涌.催化精馏塔通用数学模型及其求解方法[J].化工学报,1998,49(5):542-548.
    [54] 肖剑,刘家祺,刘禾,等.用人工神经网络模型模拟催化精馏塔[J].化学工程,1998,26(2):29-31.
    [55] 旷戈.醋酸甲酯催化精馏水解工艺研究(二)[D].福州:福州大学,硕士学位论文,1996.
    [56] 赵之山,旷戈,刘家祺,等.BP网络培训算法的改进及其ANN在催化精馏水解塔模拟中的应用[J].化学工程,1998,26(6):44-46.
    [57] 旷戈,赵之山,王良恩,等.有选择学习人工神经网络BP算法[J].福州大学学报,1999,27(6):98-101.
    [58] 华贲.过程能量综合的研究进展与展望[J].石油化工,1996,25(1):62-69.
    [59] 华贲.工艺过程用能分析与综合[M].北京:石化工业出版社,1995.
    [60] 尹清华,华贲,刘慧珍,等.糠醛精制装置扩产的换热网络结构调优与能量综合优化[J].石油化工,1998,27(8):584-589.
    [61] 冯宝林,张北屿.应用PRO/Ⅱ软件模拟糠醛精制装置回收系统[J].润滑油,1999,14(5):46-48.
    [62] 杨尤麒.实用化工系统工程[M].北京:化学工业大学出版社,1989.
    [63] 千真轮,岩冢刚.日本:公开特许公报.昭59-231027(1984).
    [64] 李渊.催化反应蒸馏技术在醋酸甲酯水解工艺中的应用——催化精馏塔的中试及分离实验[D].杭州:浙江大学,硕士学位论文,2002.
    [65] 王成习,钱栋英,沈庆扬.乙酸甲酯的水解分离过程及工艺研究进展[J].化工生产与技术,1999,6(2):21-27.
    
    
    [66] 梁五更,汪展文.醋酸甲酯分解反应精馏的实验研究[J].维纶通讯,1994,14(2):10-14.
    [67] 王成习,钱栋英,周金汉,等,醋酸甲酯在离子交换树脂上的水解动力学[J].浙江大学学报(自然科学版),1998,32(4):411-418.
    [68] 王良恩,赵素英.醋酸甲酯-甲醇-水-醋酸四元反应体系汽液平衡[J].化工学报,1995,46(1):57-65.
    [69] 赵之山,刘家祺,王良恩,等.用离子交换树脂催化水解醋酸甲酯的反应动力学研究[J].化 学工程,1996,24(5):28-32.
    [70] 吴燕翔,谭天恩,赵之山,等,醋酸甲酯水解动力学及催化剂包效率因子的测定[J].化 工冶金,1999,20(4):241-246.
    [71] 王良恩,刘家祺,苏文瑞,等.催化精馏技术在乙酸甲酯水解工艺中的应用[J].福建化工,2001,(3):1-4.
    [72] 邱挺.醋酸甲酯催化精馏水解工艺中试及过程模拟[D].福州:福州大学,硕士学位论文,1998.
    [73] 黄木旺.醋酸甲酯催化精馏水解中试工艺及催化剂包特性研究[D].福州:福州大学,硕士学位论文,1998.
    [74] 梁川.醋酸甲酯水解催化精馏过程催化剂包内传质与效率因子研究[D].福州:福州大学,硕士学位论文,1999.
    [75] 沈建南.催化精馏技术在醋酸甲醋水解中的应用[J].维纶通讯,1999,19(3):25-28.
    [76] 苏文瑞.醋酸甲酯水解催化精馏工艺与固定床工艺的比较[J].福州大学学报,2000,28(5):98-101.
    [77] 郑学明,尚会建,蔡峻英,等.反应精馏水解醋酸甲醋工业化应用总结[J].维纶通讯,2002,22(1):15-17.
    [78] 赵志海,刘耀芳,许锡恩.催化蒸馏塔内催化剂床层径向返混的研究[J].化学工程,1999,27(6):361-364.
    [79] 朱明,王俊普,李欣荣.BP网络在复杂系统建模中的应用[J].计算机仿真,1997,14(2):19-21.
    [80] 谭皓,李立源,陈维南.基于BP网络的锅炉炉膛火焰燃烧状态自动识别[J].自动化学报,1998,24(5):667-670.
    [81] 赵军,夏宏泉,刘红歧.基于BP神经网络的油气产量历史预测[J].西南石油学院学报,1998,20(2):23-26.
    [82] 夏宏泉,廖明光.基于神经网络的测井评价油层污染研究[J].西南石油学院学报,1998,20(2):12-15.
    [83] 张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993.
    [84] 王伟.人工神经网络原理——入门与应用[M].北京:北京航空航天大学出版社,1995.
    [85] 徐丽娜.神经网络控制[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [86] 王汝笠,章明,周斌.第六代计算机——人工神经网络计算机[M].北京:科学技术文献出版社,1992.
    [87] Howard Demuth,Mark Beale.Neural Network Toolbox User's Guide,September 2000,Sixth printing Revised for Version 4(Release 12).
    [88] Majcer N,Rajer M,Novic M,et al.Modeling of property prediction from multicomponent
    
    analytical data using different neural networks.Anal Chem 1995,67(13):2154-2161.
    [89] Leslie Smith.An Introduction to Neural Networks.Department of Computing and Mathematics,University of Stirling.1999.
    [90] 马正飞,姚虎卿.确定人工神经网络中间层神经元数的方法——奇异值分解[J].南京化工学院学报,1994,16(增刊):21-25.
    [91] Y Zheng,C Huang,F T T Ng and G L Rempel.Simulation and Design of a Catalytic Distillation Column.Department of Chemical Engineering,University of Waterloo,Waterloo,ON,N2L 3G1,Canada.
    [92] 陈洪钫,刘家祺.化工分离过程[M].北京:化学工业出版社,1995.
    [93] 韩方煜,郑世清,荣本光.过程系统稳态模拟技术[M].北京:中国石化出版社,1999.
    [94] 朱开宏.化工过程流程模拟[M].北京:中国石化出版社,1993.
    [95] 许正宇.我国化工仿真培训器的发展历史和展望[J].化工进展,2001(10):9-12.
    [96] 刘正庚.计算机在石油化学工业发展中的应用[J].计算机与应用化学,1994,11(1):1-15.
    [97] 陈晓春,马桂荣.动态模拟技术与化学工程[J].现代化工,2002,22(3):14-17.
    [98] 王崇智,古风兰.应用HYSIM软件对聚丁二烯橡胶车间溶剂油回收装置的全流程模拟[J].弹性体,1996,6(4):13-19.
    [99] 郭广智.石油化工动态模拟软件HYSYS[J].石油化工设计,1997,14(3):29-33.
    [100] 郭广智,何中德,黄磊.用动态模拟软件HYSYS指导装置生产[J].石油化工设计,1997,14(4):53-57.
    [101] 孟荣章,梁江,高军宝.用HYSYS和PIPESYS软件判断凝析气集气管道的段塞流[J].油气储运,1999,18(6):12-14.
    [102] 刘家洪,周平.浅析HYSYS软件在三甘醇脱水工艺设计中的应用[J].天然气与石油,2000,18(1):18-20.
    [103] Gheorghe BUMBAC,Grigore BOZGA,Ilie MUJA2,et al.Catalytic Distillation Modelling and Simulation using HYSYS.ProcessTM Environment.University"POLITEHNICA"of Bucharest,Department of Chemical Engineering,2S.N.P.PETROM,INCERP Ploiesti Subsidiary.
    [104] 冯海春.HYSYS软件在分析精丙烯硫化物来源中的应用[J].炼油设计,2002,32(10):32-35.
    [105] 吉林化学工业公司设计院.聚乙烯醇生产工艺[M].北京:轻工业出版社,1975.
    [106] 福建维尼纶厂.有机回收操作规程[M].永安:福建维尼纶厂,1987.
    [107] 福建纺织化纤集团有限公司.有机厂作业指导书[M].永安:福建纺织化纤集团有限公司有机厂,2002.
    [108] Jian Xiao,Jiaqi Liu,Juntai Li,et al.Increase MeOAc conversion in PVA production by replacing the fixed bed reactor with a catalytic distillation column.Chemical Engineering Science,2001(56):6553-6562.
    [109] Peter Moritz,Hans Hasse.Fluid Dynamics in Reactive Distillation Packing Katapak-S.Chemical Engineering Science,1999(54):1367-1374.
    [110] 费维扬.化工过程强化呈现新特点[N].中国化工报,2002,5,23.
    
    
    [111] Reid R C,Prausnitz J M,Poling B E.The Properties of Gases and Liquids,4th Ed.New York:McGraw-Hill,1987.
    [112] Daubert T E.Data Compilation Tables Of Properties of Pure compounds.New Youk:AICHE,1985.
    [113] 卢焕章等.石油化工基础数据手册[M].北京,化学工业出版社,1982.
    [114] 姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985.
    [115] 金克新,赵传钧,马沛生.化工热力学[M].天津:天津大学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700