用户名: 密码: 验证码:
滑坡可视化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡学是研究滑坡的综合性学科,在滑坡研究中,会涉及大量与三维空间及位置有关的信息,如地质信息、位置信息等,而在以往研究技术中很难把握这些信息,并无法实现在三维空间进行虚拟工程设计、布置和施工等进而分析其效果。随着可视化技术在滑坡研究中的应用,这些问题将能够得到满意的解决。滑坡可视化技术是快速、适时地再现滑坡体三维信息及综合分析的有效途径,它将极大地促进滑坡研究的发展,为社会、经济和生态系统带来显著利益。
     本文的研究分为两个部分。第一部分是在总结滑坡研究和可视化技术发展的基础上,对滑坡可视化技术研究做出了总体探讨和预测,给出了滑坡可视化技术研究的总体构架,并对各研究部分做出了详细分析,使滑坡可视化技术研究形成了一个整体和系统,为滑坡可视化的系统、深入研究奠定了可靠的基础。
     第二部分以三峡库区榨坊坪滑坡体为例,详细阐述了滑坡体地面模型和滑动面模型的数据采集和处理、模型的构建与可视化显示及分析方法。利用可视化软件IDL中的TRIANGULATE函数和TRIGRID函数相结合,建立了基于Delaunay三角网的榨坊坪滑坡体规则格网地面模型和浅层、深层滑动面三维可视化模型,实现了该滑坡体的三维模拟与再现,使滑动面由“隐性”变为了“显性”,且获得了众多不同角度的三维立体图、等高线地形图和地面模型与等高线地形图的组合图等,并对各可视化模型进行了详细地分析与比较。分析得出:滑坡体三维可视化地面模型不仅完全体现了该滑坡体的地面特征和剖面特征,且能够从总体上进行分析和把握地面特征;由于浅层滑动面与深层滑动面整体坡度相近,且比深层滑动面平坦、简单,故浅层滑动面稳定性较差,且由于深层滑动面各部分形状存在较大差别而导致稳定性不同,其中中间部分稳定性最差,故在防治设计时应重点治理浅层滑动且治理方案应布置于深层滑动面的中间部位处。
Landslide is a comprehensive discipline. In the landslide study, it involve a large amount of information related to three-dimensional space and position, for instance geological information, position information, etc. But it is difficult to grasp any information in the past technology of studying, and it is unable to carry on fictitious engineering design, assign and construct and then analyse the result in three-dimensional space. With the application of landslide visualization technology, the above problems can receive satisfied settlement. Landslide visualization is one of the most effective methods to reproduce and analysis synthetically the three-dimensional information of landslide body in real time. The application of visualization on landslide will greatly prompt the development of landslide and bring to the enormous benefits for the society, the economy and ecosystem system.
    The research of the paper can be divided into two parts. In the first part, on the basis of summarizing landslide study and visual technical development, landslide visual technical is probed into and predicted, the total frame of landslide visual technical research is gived, and every part is analysed in detail. It will make landslide visual technical form a whole and system and establish the reliable foundation for system and further research on landslide visual technical.
    In the second part, taking Zhafangping Landslide in Reservoir area of Three Gorges as an example, the data gathering, data dealing with, design and visualization of digital terrain model and 3-D sliding surface model are presented in detail. Using latest visual software IDL (Interactive Data Language) and combining TRIGRID function with TRIANGULATE function in IDL, Regular Network terrain model and 3-D shallow and deep sliding surface model of Zhafangping Landslide body based on Delaunay triangular network is set up. It makes the sliding surface turn from " recessiveness " into " dominance ", and gets numerous
    
    
    different three- dimensional cubic chart, contour topographic map, the combine model of terrain model and contour topo-graphic map . And every visual model has analysed and compared in detail. The analyse shows: the three-dimension visual terrain model of the landslide body not only embodies totally its terrain characteristic and sectional characteristic, but also can make the ground characteristic analysed and hold on whole; Compared to the deep sliding surface, the shallow sliding surface has the similar whole slope and is more smooth and simple, so it is worse in the stability. And the parts of the deep sliding surface have great difference, it causes the different stability, Among them the stability of the midst part is the worst. So the shallow sliding should be controlled importantly, and the controlling scheme should be assigned in the midst part of the deep sliding surface in the controlling design.
引文
[1] 牟会宠.滑坡.北京:地震出版社,1987.9
    [2] 晏同珍,骆培云.滑坡灾害与滑坡学科略论.中国地质灾害与防治学报,1996.7:20~26
    [3] McKean J, Buechel S. Gaydos L. Remote sensing and landslide hazard assessment.Photogrammetric Engineering and Remote Sensing, 1991. 57(9): 1185~1193
    [4] 彭少民.国内外滑坡防治与研究现状综述.地质勘探安全,2000.3:16~19
    [5] 黄润秋,许强等.地质灾害过程模拟和过程控制研究.北京:科学出版社,2002.11
    [6] 周翠英,晏同珍等.滑坡灾害系统非线性动力学研究.长春地质学院学报,1995.25(3):310~316
    [7] 郑磊,蔡荣等.工程地质模型可视化探讨.连云港化工高等专科学校学报.2001.14(3):47~49
    [8] 陈昌彦,张菊明等.边坡工程地质信息的三维可视化及其在三峡船闸边坡工程中的应用.岩土工程学报,1998.7.20(4):1~6
    [9] 李志林,朱庆著.数字高程模型.武汉:武汉大学出版社,2001.7
    [10] 石教英,蔡文立.科学计算可视化算法与系统.北京:科学出版社,1996.9
    [11] 李晓梅,黄朝晖等.并行与分布式可视化技术及应用.北京:国防工业出版社,2001.4
    [12] 唐泽圣等。三维数据场可视化.北京:清华大学出版社,1999.12
    [13] McCormick B H, Defanti T A, Brown M D. Visualization in Scientific Computing. Computer Graphics, 1987. 21(6): 12~15
    [14] Brodlie, K; Wood J. Recent advances in volume visualization. Computer Graphics Forum; 20(2)Jun 2001: 125~48
    [15] 王建江,刘国华等.土木工程优化中的可视化研究与应用.OPTIMIZATION OF CAPITAL CONSTRUCTION,1996.16(1):12~14
    [16] 白世伟,王笑海等.岩土工程的信息化与可视化.岩土论坛,2000.4(5):16~17
    [17] 闫殿武.IDL可视化工具入门与提高.北京:机械工业出版社.2003.5
    [18] R. Marschallinger. Three-dimensional reconstruction and visualization of geological materials with IDL--examples and source code. Computers & geosciences, 2001. 27(4): 419~426
    
    
    [19] Hongjie Xie, Nigel Hicks, G. Randy Keller, etc.. An IDL/ENVI implementation of the FFT-based algorithm for automatic image registration. Comprters & Geosciences, 2003. 29: 1045~1055
    [20] 陈自生.论滑坡学.山地研究,1996.14(2):96~102
    [21] 殷坤龙,朝再生等.国际滑坡研究的新进展.水文地质工程地质,2000.5:1~4
    [22] 申杰,刘浩吾等.一种新的滑坡可视化方法.岩石力学与工程学报,2002.9.21(9):1364~1367
    [23] 杨化超,杨国东.三维地面模型的可视化研究.世界地质,2001.12.20(4):8~10
    [24] 孙国庆,施木俊等.三维工程地质模型与可视化研究.工程勘察,2001.5:26~30
    [25] 柴贺军,黄地龙等.岩体结构三维可视化及其工程应用研究.地球科学进展,2001.2.16(1):218~220
    [26] Sun Guangzhong. Rock Mass Structure Mechanics. Beijing: Science Press,1988.8
    [27] Roland Pusch. Practical visualization of rock structure. Engineering geological, 1998. 49: 231~236
    [28] 曹代勇,李青元等.地质构造三维可视化模型探讨.地质与勘探,2001.37(4):60~62
    [29] Burton, A.; Arkell, T. J.. Field variability of landslide model parameters,Environmental Geology, 1998, 35(2-3): 100~114
    [30] Е·Π.叶米里扬诺娃.滑坡作用的基本规律.重庆:重庆出版社,1986.5:16~17
    [31] Popescu M E. Landslide causes to landslide remediation. Landslide. Senneset(ed). Rotterdam Balkema, 1996.6
    [32] 侯恩科,吴立新.三维地学模拟几个方面的研究现状与发展趋势.煤田地质与防保,2000.12.28(6):5~7
    [33] 李先华,管群等.数字地形图上滑坡动态方向稳定性系数的计算与滑坡滑动方向的确定.岩石力学与工程学报,1999.6.18(3):308~311
    [34] 殷跃平.中国滑坡防治工程理论与实践.水文地质工程地质,1998.1:5~9
    [35] 张倬元.滑坡防治工程的现状与发展展望.地制灾害与环境保护,2000.6.11(2):89~97
    [36] Borga, M.; Dalla Fontana. Shallow landslide hazard assessment using a physically based model and digital elevation data. Environmental Geology,1998. 35(2-3): 81~88
    [37] 黄杏元,汤勤.地理信息系统教程.北京:高等教育出版社,1987.2
    
    
    [38] Turner A K, ed. Three Dimensional Modeling With Geoscientific Information Systems. Dordrcht, Netherlands: Kluwer Academic Publisher, 1992.3
    [39] 李梅,朱红旗等.可视化与地理信息系统.东北测绘,2001.24(4):3~4
    [40] M. Breunig. An approach to the integration of spatial data and systems for a 3D geo-information system. Comprters & Geosciences, 2003. 25: 39-48
    [41] Hans E. ten. Velden and Max van Lingen. Geographical information system and visualization. Geographical Information System for Urban and Regional Planning (edited by Henk J. Schotlten and John C.H. Kluwer). Academic Publishers,1990: 23~27
    [42] Juèrgen Doèllner, Klaus Hinrichs. An object-oriented approach for integrating 3D visualization systems and GIS. Comprters & Geosciences, 2003. 26: 67-76
    [43] 王旭春,蒋宇静等.滑坡GIS可视化研究与应用.岩石力学与工程学报,2002.21(增2):2511~2514.
    [44] 钟登华,郑家祥等.可视化仿真技术及其应用.北京:中国水利水电出版社,2002.3
    [45] 殷坤龙,姜清浑等.新滩滑坡运动全过程的非连续变形分析与仿真模拟.岩石力学与工程学报,2002.7.21(7):959~962
    [46] 李先华,陈晓清等.QIS支持下的滑坡运动过程数字仿真.岩石力学与工程学报,2001.20(2):175~179
    [47] 杨德麟.数字地面模型.测绘通报,1998.3:37~44
    [48] 张祖勋,张剑清.数字摄影测量学.武汉:武汉大学出版社,1997.1
    [49] 徐青.地形三维可视化技术.北京:测绘出版社,1999.7
    [50] 刘学军,符锌砂.三角网数字地面模型的理论、方法现状及发展.中国公路学报,2001.6.17(2):24~31
    [51] Fox, A J; Gooch, M J. Automatic DEM generation for Antarctic terrain. Photogrammetric Record, 2001.17(98): 275~90
    [52] 姚丽,陈杰等.一种基于DEM数据的可视化数字地形绘制.北京理工大学学报,2002.22(3):339~342
    [53] 武晓波.Delaunay三角网的生成算法研究.测绘学报,1999.28(1):28~35
    [54] LEE D T, SCHACHTER B J. Two Algorithms for Constructing a Delaunay Triangulation. Int. Journal of Computer and Information science, 1980.9(3):219~242
    [55] WATSON D F. Computing the n-dimension Delaunay Tesselation with Application to Voronoi Ploytopes. Computer Journal, 1981.24(2): 167~172
    
    
    [56] TSAI VJD. Delaunay Triangulation in TIN Creation. An overview and a linear-time Algorithm. Int. J. of GIS, 1993. 7(6): 501~524
    [57] SLOAN S W. A Fast Algorithm for Constructing Delaunay Triangulation in the Plane. Advanced Engineering Software, 1987.9(1): 34~55
    [58] 陶闯.分形内插与DELAUNAY三角网结合的三维地形可视化数据模型.遥感学报,1995.8.10(3):204~210
    [59] 邱卫宁.根据等高线建立数字高程模型.武汉测绘科技大学学报,1994.19(3):199~203
    [60] Luo, W. Digital Elevation Model Resolution and Hypsometric Analysis: Implications for MOLA Gridded Topographic Data. RECON no. 20010044873. Lunar and Planetary Science ⅩⅩⅩⅡ, 2001. 7: 1070~I080
    [61] Li, Zhilin. Theoretical models of the accuracy of digital terrain models: an evaluation and some observations. Photogrammetric Record, 1993. 10.14(82): 651~60
    [62] Butler, J B; Lane, S N; Chandler, J H. Assessment of DEM quality for characterizing surface roughness using close range digital photogrammetry. Photogrammetric Record, 1998.10.16(92): 271~91.
    [63] 吕秋灵,张俊霞.三维地形可视化及其实时显示方法.河海大学学报(自然科学版),2002.30(4):85~87
    [64] Tufte, E.R. The Visual Display of Quantitative information. Graphics Press,1992: 36~38
    [65] 李培军.层状地质体的三维模拟与可视化.地学前缘(中国地质大学,北京),2000.5.7:336~337
    [66] 张剑秋.地震层位信息三维可视化.石油地球队物理勘探,1998.1:119~124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700