用户名: 密码: 验证码:
碱减量印染废水剩余污泥减量化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以某地综合印染废水为调查对象,较详细的了解了碱减量印染废水的水质,研究了兼氧、接触氧化法处理特征污染物TA的技术,对其产生的大量污泥如何减量进行了工艺和理论分析,揭示了一些特征与本质问题。
     与传统印染废水相比,碱减量印染废水具有高得多的有机污染物浓度、色度、pH,含有较高浓度的特征污染物——TA。废水COD为648~2265mg/L,BOD为325~1346mg/L,月平均B/C值为0.35~0.49,pH>10的废水占75%,色度250~600;废水中COD:N:P=100:0.58:0.24,从生物处理角度而言,N、P含量明显偏低;TA浓度为286~1279mg/L。
     在静态兼氧条件下考察了温度、微生物浓度、搅拌强度对模拟废水生物处理的影响,确定了生物处理的上限45℃~50℃左右,温度在35~40℃之间较适宜生物生长;随着污泥浓度的提高,可以提高水解的效率,污泥浓度过大对水力混合的影响不利;在试验叶轮直径下应当控制搅拌速度为30r/min,才能很好地完成对污泥的减量。
     在连续式两级兼氧—好氧生化系统中考察了COD负荷、水力停留时间、污泥回流对生物处理的影响。确定了最佳COD负荷为2.4kgCOD/m~3·d;单反应器水力停留时间为10~12h;对有剩余污泥回流和无污泥回流情况下废水处理过程中的COD、色度、氨氮、SS、pH等水质指标进行全面探讨,从而确定了剩余污泥回流减量的可行性。结果表明,在剩余污泥全部回流减量的情况下,系统仍能够保持良好的印染废水处理效果,保证出水COD的去除率为91.3%、BOD_5的去除率为97%、SS的去除率为62%、色度的去除率为96%。剩余污泥的回流还可以有效补充系统内微生物正常生命活动所需的氮和磷,并有助于系统对于印染废水的脱色,降低出水色度37.5%。
     在进行剩余污泥全回流的情况下,各反应器的污泥浓度都有所增加,好氧反应器的污泥排放量增加了约30%,由于好氧反应器产生的剩余污泥全部回流入系统成功进行了减量,从整体上看,有污泥回流的情况下污泥的排放量比无污泥回流的情况减少了4.48g/d,由于时间所限,在试验条件下缩减率达到100%。因此,该工艺可有效实现了剩余污泥零排放。
     碱减量印染废水中的TA在好氧状态下,属于易降解有机物,HRT为12~16h,去除率在96%以上;在兼氧状态下,属于难降解有机物,HRT210h,其去除率只有η_(TA)15.3%。TA占碱减量印染废水COD的40~78%,平均为55%,TA的可好氧生物降解性决定了碱减量印染废水处理工艺有必要以好氧生物法为核心。
     建立了剩余污泥水解酸化减量的模型和TA生物降解动力学模型。对TA降解动力学模型参数拟合的方差分析表明实验数据与模型的拟合是良好的。动力学分析表明,易降解有机质存在对TA降解有抑制,在一定程度的抑制范围内,分段运行可保持各反应器的正常运行。
In this paper, comprehensive dyeing printing industrial wastewater, which was made up most by alkali-minimization dyeing printing industrial wastewater from somewhere, was subjected to be investigated. From researching biological process treated with facultative-contact oxidation to remove the diagnostic pollutant terephthalic acid (TA), technical and theoretic analyzed how to reduce the enormous excess sludge. Opened out some intrinsical and diagnostic problem.
    Compared with traditional dyeing printing industrial wastewater, alkali-minimization dyeing printing wastewater which was characterized with TA as the principal pollutant, had much higher organic concentration, color and pH. It usually had a high COD concentration of 648-2265 mg/L, BOD 325-1346mg/L, color 250~600(dilution ratio), TA 286-1279mg/L,month average B/C 0.35 ~ 0.49.Wastewater in which pH>10 took up 75% of total wastewater around a year. The ratio of COD:N:P was 100:0.58:0.24, which indicated the nutrient of N and P for microbe of bio-treatment were far less than the necessary.
    Some important factors affecting wastewater biological treatment, such as temperature, MLSS (Mixed Liquor Suspended Solid), stir intensity were researched in the facultative static state. The result showed that the limit temperature should be controlled below 45℃~50℃, temperature between 35~40℃ suit the microorganism growing. Along with the increasing of concentration of MLSS, the rate of hydrolysis also increased, but too high concentration MLSS blocked the hydraulic blending. To reduce excess sludge well, at the experimental stirrer impeller diameter, the stir rate should be control at 30r/min.
    Some technique and parameter such as COD loading, HRT (Hydraulic Retention Time), sludge refluence, which affecting biological treatment, were optimized in the dynamic two-step facultative and contact oxidation bio-treatment system. The result showed that the COD loading should be 2.4kgCOD/m3 d, HRT of single reactor should be 10~12h. Comprehensive probed into wastewater quality parameter such as COD, color, NH3-N, SS, pH on both excess sludge refluence and no excess sludge refluence, consequently considered excess sludge refluence was feasible. The results showed that all the excess sludge can be reduced in the container, and can be got a good effluent quality. Ensured a removal efficiency of 91.3% CODCr, 97% BOD5, 62% SS, and 96% COL under experiment condition. And sludge cycled back to AI can be benefit to get rid of the color from wastewater and recruit nutrition and phosphor to the system, result showed that sludge cycled back can reduce 37.5% COL compared with no sludge refluence.
    The concentration of MLSS in every container arise when the excess sludge full back to AI, the MLSS concentration of 0 (Oxidation) container arise about 30%, but the excess sludge reducing is successfully from integer. The quantity of excess sludge discharge reduced 4.48g/d compared with no excess sludge recycling. Within experimental time, under the condition of experiment, the excess sludge reducing rate is 100%, so use this process can get the result of no excess sludge discharge.
    TA could be removed quickly from wastewater in aerobic condition, the removal rate of TA can be above 96% within 12~16h of HRT. By contrast, facultative system could only degraded 15.3% within 210h of HRT. TA made up 40-78% of the total COD of alkali-minimization dyeing printing wastewater, the mean is 55%. The biodegradation characteristic of TA illustrated that aerobic biological system should be in charge of this kind of wastewater treatment.
    
    
    
    The modeling of excess sludge reducing by hydrolysis and the modeling of TA biodegraded kinetic were set up; the experimental data verification for model equation is satisfactory. According to the model analysis, easily biodegradable substrates co-existence is a inhibitors for TA biodegradation. Within the limit of range, a two-step facultative and contact oxidation bio-treatment system, dealing with this kind of wastewater is suggested.
引文
[1]奚旦立.环境与可持续发展[M] 北京:高等教育出版社,1999。
    [2]杨书铭,黄长盾.纺织印染工业废水治理技术[M].北京:化学工业出版社,2002。
    [3]戴日成等.印染废水水质特征及处理技术综述.[J]给水排水 2000,26(10):33-37。
    [4]王国庆等.仿真丝生产中碱减量及染整废水的治理.[J]污染防治技术 1998,(2):21-23。
    [5]牛樱,陈季华。剩余污泥处理技术进展.[J]工业用水与废水,2000,31(5):4-6。
    [6]顾国维.水污染治理研究.[M] 上海:同济大学出版社,1997。
    [7]吴健波,刘振鸿,陈季华.剩余污泥处置的减量化发展方向.[J]中国给水排水2001,17(11):24-26。
    [8]姚刚.德国污泥利用和处置(Ⅰ).[J]城市环境和城市生态2002,13(1):43-47。
    [9]薛栋森.美国污水污泥的研究和利用概况.[J]国外农业环境保护1991,31(1):31-33。
    [10]黄长盾,杨西昆,汪凯民.印染废水处理[M].北京:纺织工业出版社,1987,1-10.
    [11]张志峰.印染/生活混合污水集中处理工艺的运试研究(D)[硕士学位论文],浙江大学环境工程系,2001年,9-12。
    [12]王菊思,许坤,徐良才.对苯二甲酸生产废水的治理研究[J].环境科学.1988,9(4):46-52
    [13]郑容泉.美国AMOCO公司对苯二甲酸废水处理技术浅析[J].化工环保.1991,11(3):152-156
    [14]王国庆,金月祥,沈寅松.仿真丝绸生产中碱减量及染整废水的治理[J].环境保护.1988,2:21-23
    [15]李刚,申立贤,.精对苯二甲酸生产废水处理技术[J].中国沼气.1995,13(4):1-6
    [16]许坤,徐良才等,絮凝沉淀法处理碱性对苯二甲酸废水的研究[J].环境化学.1987,6(2):33-38
    [17]乌锡康,有机化工废水治理技术[M].北京:化学工业出版社,1999,122
    [18]Martin Alexander, B K Lustigman. Effect of chemical structure on microbial degradation of substituted benzenes [J] Agricultural and Food Chemistry ,1996, 14 (4): 1-6
    [19]Cheng, Sheng-shung, Ho Chiou-yuan, Wu Jor-horng. Pilot study of UASB process treating PTA manufacturing wastewater [J] Water Science and Technology, 1997, 36 (6-7): 75-82
    [20]包志成,王相明等,向阳污水厂COD超标问题研究[J] 环境化学.1985(专辑):88-95
    [21]彭建国,丘昌强,对苯二甲酸在水环境中的归势研究.见:徐晓百等编.有毒有机物环境行为和生态毒理论文集[M].北京:中国科技出版社.1990,158-163
    [22]Kleerebezem R, Pol L W H. Lettinga G. Anaerobic biodegradability of phthalic acid isomers and related compounds [J] Biodegradation, 1999, 10 (1) : 63-73
    [23]Guyot J P, Macarie H, Noyola A. Anaerobic digestion of a petrochemical wastewater from a terephthalic acid plant [J] Water Science and Technology, 1992, 25(7): 223-235
    [24]Xin L M, Chen Y X, Zeng X D. The anaerobic biological treatment of high strength
    
    petrochemical wastewater by hybrid reactor. Proc. Int.Conf. Pet [C] Beijing: Refine Petrochem. Press. 1991, 120-126
    [25]Kleerebezem R, Ivalo M, Pol L W H, Lettinga G. High rate treatment of terephthalate in anaerobic hybrid reactors [J]. Biotechnology Progress, 1999, 15(3): 347-357
    [26]孙国华,无污泥化的生物接触氧化池运行小结[J]工业水处理,1986,6(1):38-40
    [27]蔡则成,周芬芬,生物接触氧化法处理涤纶废水[J]合成纤维,1989,6(6):29-32
    [28]周海峰,詹伯君,兼氧生物膜法SBR工艺在碱减量废水处理中的应用[J].环境工程.1999,17(6):18-20
    [29]马汉译,谢可蓉等,涤纶仿真丝印染废水治理技术的研究及其应用[J].环境工程.1999,17(2):22-24
    [30]陈杭飞,史惠祥等,杭州拱宸桥纺织联片污水治理工程[J].环境工程.1997,17(2):13-15
    [31]Davis.R.D.The impact of EU and UK environmental pressures on future of sludge treatment and disposal. [J]Water Environ Manage.1996, 10 (2): 65-69.
    [32]薛文源.城市污水污泥处理与处置的途径 [J]中国给水排水,1992,1(8):41-46。
    [33]魏源送等.堆肥技术及进展 [J]环境科学进展,1999,7(3):11-23。
    [34]郭眉兰.城市污泥和污泥与垃圾堆肥的农田适用对土壤性质的影响 [J]农业环境保护,1994,13(5):204-209。
    [35]张增强等.污泥堆肥对几种花卉的生长响应研究 [J]环境污染与控制,1996,18(5):1-4。
    [36]张天红等.西安市污水污泥林业使用效果的研究 [J]西安农业大学学报,1994,22(4):67。
    [37]Onaka T. Sewage can make Portland cement: a new technology for ultimate reuse of sewage sludge[J]Wat Sci Tech, 2000, 41 (8): 93~98.
    [38]高骏侠译.关于净水污泥剂的有效利用 [J]环境保护科学,1990,16(3):74-81。
    [39]W.F.Hu, H.Chua and P.H.F.Yu. Synthesis of Poly (3-hydroxybutyrate-co-hudroxyvalereate) from Activated Sludge. [J] Biotechnology Letters, 1997, 19 (7): 695- 698,
    [40]周春生等.剩余污泥好氧消化的生物降解性研究 [J]重庆环境科学,1995,17(1):27-30。
    [41]刘庆余.污水污泥的厌氧消化研究 [J]农业环境保护,1995,14(5):231-234。
    [42]J. FITZPATRICK. Sludge processing by anaerobic digestion and superheated steam drying [J]. Water Research, 1998, 32 (10): 2897- 2902.
    [43]J. CIWEM. Development in the thermal drying of sewage sludge J. Inst [J]. Water Environment Management, 1995, 9 (3): 306-316.
    [44]孙德志主编.环境工程中的高级氧化技术[M]北京:化学工业出版社,2002。
    [45]顾军,赵建夫.湿式氧化处理城市污水厂活性污泥的研究 [J]同济大学学报,1998,
    
    26(3):345-348。
    [46]杨琦等.湿式氧化处理城市污泥厂污泥的研究.[J]中国给水排水,1999,15(7):4-8。
    [47]Y. KHAN.G.K.ANDERSON. Wet oxidation ofactivated sludge.[J].Water Research,1999,33(7): 1681-1687.
    [48]Nimish Dhuldhoya. Cost-effective treatment of organic sludge in a high rate bioreactor[J]. Environmental Progress, 1996, 15 (2): 135-140.
    [49]李军等.等离子体技术处理生化污泥能源化研究.[J]上海环境科学,2000,19(8):382-384。
    [50]. Harrison S.L. Bacterial cell disruption: a key unit operation in the recovery of intracellular products[J]. Biotechnol.Adv.1991, (9): 217- 240.
    [51]Uwe Neis. Ultrasound in water, wastewater and sludge treatment [J]. Water 21, 2000, (4): 36-39.
    [52]曹秀芹等.超声波技术在污泥处理中的研究及发展.[J]环境工程,2002,20(4):23-25。
    [53]顾国维等编著.膜生物反应器在污水处理中的研究和应用 北京:化学工业出版社,2002。
    [54]杨造燕等.膜生物反应器无剩余污泥排放的研究 [J]城市环境与城市生态 1999,12(1):16-18。
    [55]李红兵等 中空纤维膜生物反应器处理生活污水的特性 [J]环境科学 1999,20(2):53-56。
    [56]E. B MVLIER. Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration [J]. Water Research, 1995, 29 (4): 1179- 1189.
    [57]殷峻等 中空纤维膜生物反应器处理生活污水的特性 [J]环境科学 1999,20(2):53-56。
    [58]Ghyoot W, Verstraete W Reduced sludge production in a two-stage membrane-assisted bioreactor [J] Water Research, 2000, 34 (1): 205- 215.
    [59]Janssen P M J, Rulkens W H, Riesenk J H, and Van der Roest H F The Potential for Metazoa in Biological Wastewater Treatment WQI, 1998, (9~10): 25-27.
    [60]魏源送等 污泥减量技术的研究及其应用 [J]中国给水排水 2001,20(7):23-26。
    [61]B Z Wang, et al A study on simultaneous organic and nitrogen removal by extended aeration submerged biofilm process. [J]Wat. Sci.Tech, 1991, 24 (5): 197-214.
    [62]B.S.Luxmy, et al Sludge reduction potential of metazoa in membrane bioreactors. [J]Wat. Sci.Tech, 2001, 44 (10): 197-202.
    [63]Russel J B, Cook G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions[J]. Microbiol Rev, 1995, 59 (1): 48-62.
    [64]Lapara T M, et al. Thermophilic aerobic biological wastewater treatment [J] .Water Research, 1999, 33 (4): 895-908.
    [65]Strand S E, et al. Activated-sludge yield reduction using chemical uncouplers[J]. Water
    
    Environment Research, 1999, 71 (4): 454-458.
    [66] Dawson R M C, Elliot W H and Jones K M .Data for Biochemical Research. 3rd Edition. UK: Oxford science Publishers. 1986, 117-129.
    [67] Biocope, Inc. Municipal Wastewater Treatment with Biocope Multi-Enzyme Product. Company Literature, 1998.
    [68] Kady International Biosolids Technical Bulletin Company Literature, 1998.
    [69] Lee N M and Welander T. Reducing sludge production in aerobic wastewater treatment through manipulation of the ecosystem[J]. Water Research, 1996, 30 (8): 1781-1790.
    [70] M.Rocher et al. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment [J]. Water Science and Technology, 2001, 44 (2-3): 437-444.
    [71] Clark P B and Nujjoo I. Ultrasonic sludge Pre-treatment for Enhanced Sludge Digestion. Company Literature, 1998.
    [72] H. Yasui and M. Shibata. An innovative approach to reduce excess sludge production in the activated sludge process [J] .Water Science Technology, 1994, 30 (9): 11-20.
    [73] 郑元景,沈永明,沈光范编。污水厌氧生物处理[M] 北京:中国建筑工业出版社,1988,28-43
    [74] 朱文亭,颜玲。污水的水解(酸化)—好氧生物处理工艺[J] 城市生态与城市环境,2000,13(5)43-45,48
    [75] 郑元景,沈永明,沈光范编。污水厌氧生物处理[M] 北京:中国建筑工业出版社,1988,87
    [76] S.M.斯特罗纳奇,T.拉德,J.N.莱斯特著,李敬,金增林译。工业废水处理的厌氧消化过程[M] 北京:中国环境科学出版社,1989,80-81
    [77] 王箴主编,化工辞典[M].第三版.北京:化学工业出版社,1989.214
    [78] 《化工百科》编委会.化工百科全书.第一卷.[M]..北京:化学工业出版社,1980.389
    [79] Ziogou K.Kirk P W W, Lester J N. Behavior of phthalic acid esters during batch an-aerobic digestion of sludge [J] Water Research, 1989, 23(6): 743-748.
    [80] Gibson D T . Microbial degradation of organic compounds [M] New York : Marcel Dekker. 1984.
    [81] Ribbons D W. Evans W C. Oxidative metabolism of phthalic acid by soil Pseudomonades [J] Biochemical J, 1960, 6:310-318
    [82] Englehardt G. Wallnofer P R, Rast H G, Fiedler F. Metabolism of o-phthalic acid by different gram-negative and gram-positive soil bacterial [J] Arch.Microbiology. 1976.109:109-114.
    [83] 佟宏,白毓谦.对苯二甲酸的微生物降解[J].环境科学学报.1990,10(4):464-470
    [84] Englehardt G. Wallnofer P R, Rast H G, Fiedler F. Metabolism of o-phthalic acid by different gram-negative and gram-positive soil bacterial [J] Arch.Microbiology. 1976.109:109-114.
    [85] 邹惠仙,马文漪.微生物降解对苯二甲酸的研究[J].中国环境科学.1982,2(5):43-46,56
    [86] 邹惠仙.微生物降解对苯二甲酸的动力学研究[J].科学通报.1983,28(22):1374-1377
    
    
    [87]力登榜,马文漪.微生物降解邻苯二甲酸(O-PA)的动力学[J].环境科学.1987,8(5):2-5
    [88]力登榜,彭建国等.微生物降解对苯二甲酸的动力学研究——分批培养研究.见:徐晓百等编.有毒有机物环境行为和生态毒理论文集[M].北京:中国科技出版社.1990,164-171
    [89]齐雯钰.精对苯二甲酸生产废水厌氧处理微生物特性的研究[J].中国沼气.1992,10(4):5-10
    [90]Chidambara Ral C B. Ramkumar N,et al. Biodegradation of acetic, benzoic isophthalic toluic and terephthalic acids using a mixed culture: effluents of PTA production. Process safety and environmental protection: transactions of the institution of chemical engineers. Part B 1997.75(4): 245-256
    [91]何星海,张忠祥,马世豪.对苯二甲酸(TA)的可生物降解性的研究[J].环境科学.1992,13(3):18-25
    [92]赵洪波,生物膜A/O法处理PTA废水的试验研究[J].环境科学.1994,15(6):47-50,60
    [93]Fajardo C, Guyot J P, Macarie H, Monroy O. Inhibition of anaerobic digestion by terephthalic acid and its aromatic by products [J]. Water Science and Technology. 1997, 36(6-7): 83-90
    [94]寿越穗,王近近等,化纤织物碱减量碱液的回用技术[J].环境污染与防治.1996,18(2):32-33
    [95]张自杰,周帆编,活性污泥生物学与反应动力学[M].北京:中国环境科学出版社.1989,352
    [96]赵洪波。生物膜A/O法处理PTA废水的试验研究[J] 环境科学,1994,15(6):47-50,60
    [97]顾夏声编,废水生物处理数学模式[M] 北京:清华大学出版社,1982,41-77
    [98]张自杰,周帆编,活性污泥生物学与反应动力学[M].北京:中国环境科学出版社.1989,402-408
    [99]宋兴志,顾国维。活性污泥模型ASM的生化反应动力学[J] 西南给排水,2001,23(5):12-15
    [100]杨青,甘树应,陈季华,刘振鸿。活性污泥3号模型(ASM3)简介[J]中国给水排水,2000,16(11):26-30
    [101]Andrews J F,Biotech bioeng,1968,10:707-711
    [102]李小明,含对苯二甲酸有机废水厌氧生物处理的研究[D]无锡轻工大学博士学位论文,1995
    [103]沈同,王镜岩。生物化学[M] 北京:高等教育出版社,1990,262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700