用户名: 密码: 验证码:
利用PEARL模型评价农药渗透对地下水的污染
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药在现代农业生产中具有重要作用,但农民为了防治病虫害,常常频繁大量地施用高毒、高残留的农药。这样施用农药会带来诸多问题。而农民只是认识到农药在作物中的残留和农药对地表水的污染问题,关心的是怎么样提高产量。但在国内,很多农民都是直接饮用井水(地下水),所以研究农药污染地下水也是很重要的。国际上,特别是美国和欧洲国家,早就开展了对农药污染地下水的研究,并提出了许多控制措施。而在国内,这方面的研究仅限于监测方面,且监测的范围很小,研究的机构也不多。本研究旨在通过运用荷兰开发的PEARL(Pesticide Emission Assessment of Regional and Local area)模型模拟农药在作物一土壤中的运动情况,并评价在不同的浓度标准要求下哪些农药会对地下水造成威胁,哪些对地下水是安全的。
     PEARL模型是一个一维的、动力学的,多层次的模型。它描述了农药及其相关转化产物在土壤一作物系统中的去向。它与SWAP(Soil Water Atmosphere Plant)模型相联系。SWAP模型描述的是水在土壤-作物系统中的行为,而PEARL模型则加入了农药,它描述了农药溶液在该系统中的行为。因此,SWAP模型是它的基础。从2000年开始PEARL模型成为荷兰农药注册程序的新官方工具。
     农药可以通过直接施用或大气沉降进入土壤-作物系统。PEARL和SWAP描述了以下过程:瞬态水流,潜在蒸发蒸腾,拦截水,作物根系吸水,土壤表面水蒸发,横向排出水,热流,农药施用,冠层农药的消失,农药在液体中的对流、分散运输,气态、液态下农药的扩散,平衡吸附和非平衡吸附,一级转化动力学,作物根系对农药的吸收,土壤表层农药的挥发。
     实验区选在四川省彭州市胜利村和西北村,由于PEARL模型是首次应用于中国,需要很多当地的基础数据,因此本研究用了1年时间收集相关数据。包括:作物数据(作物移栽、作物长到最大及收获时的根长、株高、覆盖度);气象数据(湿度、蒸发量、降雨量、风速、最低最高温度,包括1997-2001年每天的数据);地下水位数据(在2个村共选9口井,每月测一次);土壤数据(对不同类型土壤挖剖面,分层测定土壤机械组成、厚度、有机质含量、容重,从田间取得);农药数据(施用时间、初始土壤环境、迁移范围、在土壤中的扩散、在大气中的扩散)。
     把所得数据输入PEARL模型,通过运算可以得到多个方面的结论。本研究选择了两个方面进行分析:KOM-DT50图(可以知道在一定标准下,哪些农药对地下水是安全的,哪些是有潜在威胁的)和渗出液中农药的浓度变化(分为灌溉条件下和不灌溉条件下两种)。
     KOM-DT50(KOM:土壤对农药的吸附能力:DT50:农药的半衰期)图的原理是,农药进入土壤系统后,它向土壤深层运动的时候浓度会逐渐减小,在特定的气候、土壤和作物系统条件下,主要有两个因子影响其浓度变化:一个是土壤颗粒对农药的吸附能力(吸附力越
    
    西南农业大学硕士学位论文
    摘要
    大,农药的移动速度越慢);另一个是农药自身的半衰期(半衰期越短,农药的浓度减小得越
    快)。如果一种农药,土壤对它的吸附能力越大,其半衰期越短,那么对地下水的危险性就越
    小,因为它还没有渗透到地下水层大部分就被降解、吸附转化掉了:相反,如果一种农药,
    土壤对它的吸附能力越小,其半衰期越长,那么它在土体内的移动速度就越快,对地下水的
    危险性就越大。
     本文选择最常见的11种农药进行KOM一DT50图分析。在荷兰,地下水中农药浓度
    呈0.lm留耐时,才被视为是安全的,达到这个标准的农药才允许注册,并投放市场。如果以
    这个标准,本研究中在KOM一DT50图中分析的最常用的农药里,只有三哇磷这一种农药在三
    种土壤上施用都是安全的。因此选择lom留m,为安全底线进行分析:
     油沙田一大蒜:渗出土体时浓度小于lom留m,的农药〔氢氧化铜,乐果,敌克松,蚜虱
    净,辛硫磷,硫酸链霉素,三哇磷,敌百虫)对地下水是安全的,而大于lom留m3的农药(雷
    多米尔,多菌灵,杀毒矾)则要对地下水造成威胁。
     泥田一大蒜:渗出土体时浓度小于lom以m,的农药(氢氧化铜,乐果,敌克松,蚜虱净,
    辛硫磷,硫酸链霉素,三哇磷,敌百虫,雷多米尔)对地下水是安全的,而大于10m留扩的
    农药〔多菌灵,杀毒矾)则要对地下水造成威胁。
     沙田一大蒜:渗出土体时浓度小于1 omg/m3的农药〔氢氧化铜,辛硫磷,硫酸链霉素,
    三哇磷)对地下水是安全的,而大于10m留耐.的农药(乐果,敌克松,敌百虫,雷多米尔,
    蚜虱净,毒菌灵,杀毒矾)则要对地下水造成威胁。
     分析KOM一DT50图可以得出如下结论:农药的半衰期越短,土壤对其吸附力越强,农药
    对地下水的威胁就越小;不同类型土壤对同种农药向地下水渗透影响很大,其中在沙田上施
    用农药对地下水的威胁最大,在油沙田上次之,在泥田上的威胁则最小。
     渗出液中农药的浓度变化:本文选择2种有代表性的农药三哇磷〔最安全的)和杀毒矾
     (最不安全的)分析渗出液中农药的浓度变化。分析时间从模拟之初(1997年)到模拟之末
     (2001年)。可以得出:降雨量和灌溉会极大地影响农药向地下水的渗透。
     根据以上的研究结果,可以看出?
Pesticide is very important in agriculture production. But excessive use of high toxin pesticide will induce many environment problems. At present the primary concern of farmers is how to increase their income, but they don't care about the pollution of the pesticides; in the other hand, many farmers drink groundwater and use groundwater to cook, so to study the groundwater pollution from pesticides is very important. In the international case, especially in America and Europe, ground water pollution from pesticide leaching has been studied for many years and advanced kinds of measures. But in China, further concern is needed. This article uses PEARL(Pesticide Emission Assessment of Regional and Local area) model to simulate the fate of a pesticide in the soil-plant system. And the results conclude which pesticide is safe to the groundwater, which one is dangerous.
    PEARL is a one-dimensional, dynamic, multi-layer model that describes the fate of a pesticide and relevant transformation products in the soil-plant system. The model is linked with SWAP (Soil Water Atmosphere Plant) model. They are combined into same software package. SWAP model describes the process of water, whereas PEARL is pesticide added. So SWAP is the basis. From 2000 PEARL becomes the new official tool in Dutch pesticide registration procedures.
    Pesticides can enter the system by direct application or by atmospheric deposition. PEARL and SWAP describe the following processes: Transient state soil water flow, potential evapotranspiration, interception of water, water uptake by plant roots, evaporation of water from the soil surface, lateral discharge, heat flow, pesticide application, dissipation of pesticide from the crop canopy, convective and dispersive transport of pesticide in the liquid phase, diffusion of pesticide through the gas and liquid phases, equilibrium sorption and non-equilibrium sorption, first-order transformation kinetics, uptake of pesticide by plant roots, and volatilization of pesticide at the soil surface.
    The two research sites are located in Shengli and Xibei village of Sichuan province. It took one year to collect basic data because this is the first time of PEARL implicated in China. The following data were concluded: crop (root depth, plant cover and plant high at the transplant, biggest, and harvest time), daily weather information(humidity, evaporation, precipitation, wind speed, min and max temperature from 1997 to 2001), groundwater level (chose 9 wells in the two village), soil (soil texture at different soil type), pesticide (application time, original soil environment, transference range, diffusion in soil and atmosphere).
    
    
    
    Input all data in PEARL model. KOM-DT50 graphs and substance concentration in the percolate are selected to analyze.
    The theory of KOM-DT50 graph(KOM: the pesticide absorbability of soil; DT50: half-life of pesticide)is: if a pesticide has high KOM and short DT50,it is safe to the groundwater; if a pesticide with low KOM and long DT50, it is dangerous to the groundwater. If we know KOM and DT50 of pesticides, we can judge is it safe or dangerous from KOM-DT50 graph.
    11 most frequently used pesticides are selected to analyze in the KOM-DT50 graph:
    Youshatian-garlic: The curve of 10mg/m3 is chose to analyze. Copper Hyrdoxide, Dimethoate, Fenaminosulf. Imidachloprid, Phoxim, Streptomycin sulfate, Triazophos and Trichlorfon are safe; Metalaxyl, Carbendazim and Oxadixyl are dangerous.
    Nitian-garlic: The curve of 10mg/m3 is chose to analyze, copper Hyrdoxide, Dimethoate, Fenaminosulf, Imidachloprid, Phoxim, Streptomycin sulfate, Triazophos, Trichlorfon and Metalaxyl are safe; Carbendazim and Oxadixyl are dangerous.
    Shatian-garlic: The curve of 10mg/m3 is chose to analyze, copper Hyrdoxide, Phoxim, Streptomycin sulfate and Triazophos are safe; Dimethoate, Fenaminosulf, Trichlorfon, Metalaxyl, Imidachloprid, Carbendazim and Oxadixyl are dangerous.
    The conclusion is: soil type influences the pesticides leaching strongly. Shatian is the most dangerous soil type, Youshat
引文
[1] 籍传茂,王兆馨.地下水资源的可持续利用[M].北京地质出版社,1999:58;
    [2] 李勇,徐瑞薇,安琼等.农药在土壤中迁移的区域差异研究[J].土壤学报,1998,35(2):172;
    [3] Manual of FOCUS PEARL version 1.1.1[M],2000年:3-54;
    [4] 朱忠林.合理使用农药,防止对地下水的污染[J].农药科学与管理,1994(3):34-35;
    [5] Troiano-J, Nordmark-C, Barry-T, et.al. Profiling areas of ground water contamination by pesticides in California: phase Ⅱ-evaluation and modification of a statistical model[J]. Environmental-Monitoring-and-Assessment. 1997, 45:3,301-318;
    [6] Kloos-H. 1,2 dibromo-3-chloropropane (DBCP) and ethylene dibromide (EDB) in well water in the Fresno/Clovis metropolitan area, California[J]. Archives-of-Environmental-Health. 1996, 51: 4, 291-299;
    [7] Spalding-RF, Exner-ME, Snow-DD, et.al. Herbicides in ground water beneath Nebraska's Management Systems Evaluation Area[J]. Journal-of-Environmental-Quality. 2003, 32: 1, 92-99;
    [8] Barrett,-MR, Williams,-WM. The occurrence of atrazine in ground water as a result of agricultural use[J]. Proceedings, 12th Asian-Pacific Weed Science Society Conference. 1989, No. 1, 219-234;
    [9] Ritter,-WF. Pesticide contamination of ground water in the United States-a review[J]. Journal-of-Environmental-Science-and-Health.-Part-B,-Pesticides,-Food-Contaminants,-and-Ag ricultural-Wastes. 1990, 25: 1, 1-29;
    [10] Spalding,-RF, Burbach,-ME,Exner,-ME. Pesticides in Nebraska's ground water[J]. Ground-Water-Monitoring-Review. 1989, 9: 4, 126-133;
    [11] Cavalier,-TC, Lavy,-TL,Mattice,-JD. Assessing Arkansas ground water for pesticides: methodology and findings[J]. Ground-Water-Monitoring-Review. 1989, 9: 4, 159-166;
    [12] Hebb-EA,Wheeler-WB. Bromacil in lakeland soil ground water[J]. Journal-of-Environmental-Quality. 1978, 7: 4, 598-601;
    [13] Smith-CN,Payne-WR Jr, Pope-JD Jr..et.al. A field study to compare performance of stainless steel research monitoring wells with existing on-farm drinking water wells in measuring pesticide and nitrate concentrations[J]. Chemosphere. 1999, 38: 4, 875-889;
    [14] Sorenson-BA, Koskinen-WC, Buhler-DD. Formation and movement of 14C-atrazine degradation products in a clay loam soil in the field[J]. Weed-Science. 1994, 42: 4, 618-624;
    [15] Koskinen-WC, Reynolds-KM, Buhler-DD. Persistence and movement of sethoxydim residues in
    
    three Minnesota soils[J]. Weed-Science. 1993, 41: 4, 634-640;
    [16] Cohen-SZ. Pesticides in ground water in the United States: monitoring, modeling, and risks from the U.S. perspective[J]. Special issue on pesticide chemistry for sustainable agriculture. Journal-of-Environmental-Science-and-Health.-Part-B,-Pesticides,-Food-Contaminants,-and-A gricultural-Wastes. 1996, 31: 3, 345-352;
    [17] Dunnbier-U,Heberer-T, Reilich-C.et.al.Occurrence of bis(chlorophenyl)acetic acid (DDA) in surface and ground water in Berlin[J]. Fresenius-Environmental-Bulletin. 1997, 6: 11-12, 753-759;
    [18] Gatzweiler-EW, Feyerabend-M, Del-Re-AAM (ed.).et.al. Isoproturon-occurrence in shallow groundwater under fine-textured soils[J]. Human and environmental exposure to xenobiotics. Proceedings of the Ⅺ Symposium Pesticide Chemistry, Cremona, Italy, 11-15 September, 1999. 1999, 299-304;
    [19] Pierre-JG.Herbicides in rape and water quality[J]. OCL-Oleagineux,-Corps-Gras,-Lipides. 1995, 2: 6, 453-456;
    [20] Garrido-T, Fraile-J,Ninerola-JM.et.al.Survey of ground water pesticide pollution in rural areas of Catalonia (Spain) [J]. International-Journal-of-Environmental-Analytieal-Chemistry. 2000, 78: 1, 51-65;
    [21] Carabias-Martinez-R,Rodriguez-Gonzalo-E, Fernandez-Laespada-ME.et.aI.Evaluation of surface- and ground-water pollution due to herbicides in agricultural areas of Zamora and Salamanca (Spain). [J]23rd International Symposium on High Performance Liquid Phase Separations and Related Techniques, Part Ⅰ, Granada, Spain, 30 May-4-June 1999. Journal-of-Chromatography,-A. 2000, 869: 1-2, 471-480;
    [22] Batista-S,Silva-E,Galhardo-S. et.al.Evaluation of pesticide contamination of ground water in two agricultural areas of Portugal[J]. Proceedings of the 8th Symposium on Chemistry and Fate of Modern Pesticides, Copenhagen, Denmark, 21-24 August, 2001. International-Journal- of- Environmental-Analytical-Chemistry. 2002, 82: 8-9, 601-609;
    [23] Cerejeira-MJ,Viana-P, Batista-S.et.al.Pesticides in Portuguese surface and ground waters[J]. Water-Research-Oxford. 2003, 37: 5, 1055-1063; 41
    [24] Keizer-JP. MacQuarrie-KTB.Milburn-PH.et.al. Long-term ground water quality impacts from the use of hexazinone for the commercial production of lowbush blueberries[J]. Ground-Water-Monitoring-and-Remediation. 2001, 21: 3, 128-135;
    [25] Dabrowski-J,Drozdzynski-D, Walorczyk-S. Fate of atrazine and simazine residues in polluted groundwaters: results of monitoring investigation of Poznan voivodeship wells in 1993-1998[J]. Journal-of-Plant-Protection-Research. 2000, 40: 3-4, 253-259;
    
    
    [26] Felding,-G. Leaching of atrazine into ground water[J]. Pesticide-Science. 1992, 35: 1, 39-43;
    [27] Mohapatra-SP, Mukesh-Kumar, Gajbhiye-VT.et.al. Ground water contamination by organochlorine insecticide residues in a rural area in the Indo-Gangetic plain[J]. Environmental-Monitoring-and-Assessment. 1995, 35: 2, 155-164;
    [28] Zouzaneas-P, Sovegjarto-F, Stadlbauer-H.et.al. Determination of 35 selected pesticides in ground water from southern Styria, Austria[J]. Ernahrung. 1993, 17: 2, 77-82;
    [29] 焦淑贞,姚建仁,郑永权等.涕灭威在植物和土壤中的移动与分布.环境科学学报,1994,14(11):79-86;
    [30] 陈佳瀛,张晓红,张大弟.乐果在环境水中消解和流失特性的研究.上海农学院学报,1997,17(1):15-21;
    [31] 张晓红,张大弟,顾必文.甲胺磷的稻田流失初探[J].上海农学院学报,1995,13(3):165-169;
    [32] 单正军,朱忠林,华晓梅等.除草剂拉索对地下水影响研究[J].环境科学学报,1994,14(1):72-77;
    [33] 石利利,朱忠林,单正军等.氯唑磷政治土壤中的降解性能与移动性研究[J].环境科学学报,1994,19(4):456-458;
    [34] Aga-DS, Thurman-EM,Pomes-ML. Determination of alachlor and its sulfonic acid metabolite in water by solid-phase extraction and enzyme-linked immunosorbent assay[J]. Analytical-Chemistry-Washington. 1994, 66: 9, 1495-1499;
    [35] Tomkins-BA,Ilgner-RH. Determination of atrazine and four organophosphorus pesticides in ground water using solid phase microextraction (SPME) followed by gas chromatography with selected-ion monitoring[J]. Journal-of-Chromatography,-A. 2002, 972: 2, 183-194;
    [36] Lambropoulou-DA, Konstantinou-IK, Albanis-TA. Determination of fungicides in natural waters using solid-phase microextraction and gas chromatography coupled with electroncapture and mass spectrometric detection[J]. Joumal-of-Chromatography,-A. 2000, 893: 1, 143-156;
    [37] Lambropoulou-DA, Konstantinou-IK, Albanis-TA.et.al. Determination of herbicides in natural waters using solid phase microextraction (SPME) and gas chromatography coupled with flame thermionic and mass spectrometric detection[J]. Proceedings of the 3rd Euroconference on Environmental Analytical Chemistry, Chalkidike, Greece, 9-15 October, 1999. International-Journal-of-Environmental-Analytical-Chemistry. 2000, 78: 3-4, 223-240.
    [38] Bonato-PS, Lanchote-VL, Dreossi-SA-de-C.et.al. High performance liquid chromatographic screening and gas chromatography-mass spectrometry confirmation of tebuthiuron residues in drinking water[J]. HRC,-Journal-of-High-Resolution-Chromatography. 1999, 22: 4, 239-241;
    
    
    [39]Dabrowski-J, Walorczyk-S, Drozdzynski-D.et.al. Residue analysis of atrazine, simazine and their metabolites in Poznan voivodship ground water in 1996-1997[J]. Progress-in-Plant-Protection. 1998, 38: 2, 595-597;
    [40]Chang-SY, Liao-ChiaHung, Liao-CH. Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection[J]. Journal-of-Chromatography,-A. 2002, 959: 1-2, 309-315;
    [41]Goosens,-EC,Bunschoten,-RG, Engelen,-V.et.al. Determination of hexachlorocyclohexanes in ground water by coupled liquid-liquid extraction and capillary gas chromatography[J]. HRC,-Journal-of-High-Resolution-Chromatography. 1990, 13: 6, 438-442;
    [42]Asano-K,Inculet-Ⅱ(ed.), Tanasescu-FT (ed.).et.al. Electrostatic pesticide spraying[J]. The modern problems of electrostatics with applications in environment protection. Proceedings of the NATO Advanced Research Workshop, Bucharest, Romania, 9-12 November 1998. 1999, 363-377;
    [43]Gaber-HM, Comfort-SD, Shea-PJ.et.al. Metolachlor dechlorination by zerovalent iron during unsaturated transport[J]. Journal-of-Environmental-Quality. 2002, 31: 3, 962-969;
    [44]Celis-R, Hermosin-MC,ornejo-L.et.al. Clay-herbicide complexes to retard picloram leaching in soil. Proceedings of the 8th Symposium on Chemistry and Fate of Modern Pesticides, Copenhagen, Denmark, 21-24 August, 2001[J]. International-Journal-of-Environmental- Analytical- Chemistry. 2002, 82: 8-9, 503-517;
    [45]Larsen-L,Jorgensen-C,Aamand-J. Potential mineralization of four herbicides in a ground water-fed wetland area[J]. Journal-of-Environmental-Quality. 2001, 30: 1, 24-30;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700