用户名: 密码: 验证码:
多环芳烃类污染物在黄土中的迁移转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,随着西部黄土地区石油工业的迅速发展和事实上的粗放型经营方式,尤其是原油采炼业的大规模开发与兴建,对自然环境带来的污染日趋严重,已经导致了地表土壤、水体大面积石油污染,而石油组分中毒性最强的是芳烃类物质,尤其是以双环和三环为代表的多环芳烃毒性更大。目前,国内外对此类化合物在土壤中的迁移转化规律的研究十分重视,以期为预测多环芳烃对土壤及地下水的污染和治理这一课题提供一个理论依据。在研究这一迁移转化规律时,土壤对多环芳烃类化合物的吸附有着不可忽视的重要作用,吸附过程受诸多因素的影响,掌握其进入土壤后的归趋,就有可能通过强化或控制其某些过程,避免或减小其危害。西部黄土地区的自然环境已不同程度地遭到多环芳烃的污染,而且在今后相当长的一个时期内还有可能遭到更大的污染。因此不论是从治理已被多环芳烃污染的土壤和河流的角度,还是从保护未被污染的土壤和水资源的角度,进行多环芳烃类污染物在土壤中的迁移转化规律的研究都有助于为黄土地区的环境保护和治理提供科学依据。
     第一章 多环芳烃类污染物在黄土中的迁移转化研究进展
     文中较系统地评述了多环芳烃类污染物在土壤中的迁移转化研究进展,其中包括多环芳烃的形成机理和分布、迁移转化的研究现状、在土壤中的吸附和解吸,以及研究意义。引用文献68篇。
     第二章 GC-MS分析玉门矿区石油污染物
     玉门油田是我国开采较早的大型油田之一,经过近四十年的开发利用,在原油开采及石油化工生产过程中存在着直接或间接地向环境排放有害有机物的可能性。尤其是在采油矿区内,原油在储存、运输和装卸过程中,泄漏的固液态有毒有机物质,易对污染矿区及周边地区土壤产生持久性的影响,并随时间的推移在土壤中累积或其存在形式发生转化。利用GC-MS法对玉门矿区的管道原油、落地原油、以及被石油污染的土壤和污染地区不同地点的水样进行了有机污染物的分析。结果表明都含有美国EPA规定的优先污染物。
    
    屠忌…类}多环芳径美污袭匆注声士功时迁参君钻
    第三章蔡和菲在黄土上的吸附动力学
     以蔡和菲为研究对象,对比研究了天然黄土和十六烷基三甲基澳化钱(H DTMAB)
    改性的黄土对蔡和菲的吸附动力学行为。蔡和菲在阳离子表面活性剂改性黄土上吸附速
    率比在天然黄土上的快至少3倍,同时吸附数据都能很好的符合一级动力学方程;吸附
    速率与起始浓度、温度及黄土本身的性质有关;蔡和菲的吸附速率常数k与温度T成负
    相关。蔡和菲在天然黄土和阳离子改性黄土上的吸附速率由膜扩散和孔扩散过程控制
    膜扩散是快速吸附过程,而孔扩散是慢速达到平衡过程,实验数据可以用扩散动力学方
    程拟合。
    第四章蔡和菲在黄土上的吸附热力学
     以蔡和菲作为代表物质,探讨了其在黄土上的吸附特征,即吸附等温线和吸附热力
    学,同时还研究了阳离子表面活性剂改性黄土对蔡和菲的吸附规律。比较分析了常用的
    平衡吸附模型:Linear方程、Freundhch方程和1朋gmuir方程描述蔡和菲在黄土上吸附
    等温线的准确性,并从热力学的角度探讨了蔡和菲在黄土上的吸附热和标准自由能的变
    化,吸附是一个放热过程,标准自由能的变小是蔡和菲在黄土上吸附的推动力。
    第五章玉门矿区污染黄土中原油的解吸研究
     用振荡平衡法研究了玉门矿区原油污染黄土中原油的解吸行为,测得了解吸常数,
    绘出了解吸等温线。利用Freundhch方程可较好地描述黄土中原油的解吸状况;黄土中
    原油的解吸行为受温度、溶液的pH值和表面活性剂的影响;温度和PIl值越高,原油的
    解吸量越大;阴离子表面活性剂的加入有助于原油的解吸,在相同条件下使解吸率提高
    了5倍,阳离子和非离子表面活性剂的加入不利于原油解吸,但是阳离子表面活性剂的
    加入有利于原油在土壤中的截留以及回收再利用。
    第六章同步荧光法同时测定黄土中的菲和蔡
    由于一些多环芳烃的性质相似,其混合物中各自含量的常规分析法繁琐费时。采用
    硕士研究生:展惠英;专业:分析化学;研究方向:环境化学
    导师:陈慧教授
    
    展潇奥飞多万芳密类污袭匆座!煮士功必迁参羚常
    了固定波长同步荧光法研究了菲和蔡同时快速分析的可能性,建立了相应的测试方案,
    用于测定菲和蔡混合液在黄土中吸附行为,样品无需过滤,操作简便。
Loess soils topographically cover the vast land in northwest China where oil fields are widely exploited in the recent four decades, and resulted in the severe petroleum contamination of soils and water resources through various ways including spillage of crude oil nearby the drilling wells, leakage from storage tanks and pipelines. As a class of petroleum compounds, polycyclic aromatic hydrocarbons (PAHs) present a group of compounds with two or more fused aromatic rings that are mutagenic, carcinogenic and teratogenic, and PAHs are included in the CERLA Priority List of Hazardous Substances. At present it was specially regarded to study the transfer and transform of PAHs in domestic and international, and was expected to forecast contamination rule of PAHs in soil and grouderwater and to provide a theoretical basis of studying contamination control and remediation. At studying the rule of transfer and transform, soil sorption to the compound of PAHs have a very important function. The sorption process was
    influenced with many factors. If these factors can be predominated, we can avoid or lessen contamination of PAHs to soil and groundwater through intensifying or controlling some factors of sorption process. The natural environment of western region was contaminated with PAHs, and it was potential to be contaminated seriously in a very long period. Studying the transfer and transform of PAHs in the soils, it can help to provided a scientific basis to protect environment and manage contamination without reference to manage the soils and water resources contaminated with PAHs or to protect the soils and water resources uncontaminated with PAHs.
    Chapter 1.
    Advances in the Research on the Transfer and Transform of Polycyclic
    Aromatic Hydrocarbons in Loess Soils
    A review is reported with 68 references about the formation mechanism and distribution of polycyclic aromatic hydrocarbons, the transfer and transform study and sorption and desorption, meantime reviewing the research significance on the transfer and transform of polycyclic aromatic hydrocarbons in soils.
    Chapter 2.
    
    
    
    Analysis of Petroleum Pollutants in Yumen's Mining Areas by Gas Chromatography and Mass Chromatography
    The oil-field of Yumen is the one of the large oil-fields exploited more early in our country. Through exploiting and using in the recent four decades, it resulted in the severe petroleum contamination of soils and water resources including spillage of crude oil nearby the drilling wells, leakage from storage tanks and pipelines. Petroleum is a kind of complex mixture containing hydrocarbon and non-hydrocarbon compounds with various physical and chemical properties. Gas chromatography and mass spectrometry were used to analysis crude oil in pipline and bulk, and water samples comprising petroleum contaminants at separate sites in Yumen's mining areas. The results show that there were priority pollutants that were published by Environmental Protection Agency in the United States. More information of petroleum compounds were obtained by using gas chromatography and mass spectrometry than by traditional methods.
    Chapter 3.
    Sorption Kinetics of Naphthalene and Phenanthrene in Loess Soils
    Naphthalene and phenanthrene were chosen as organic contaminant indicators in loess soil modified by the cation surfactant hexadecyltrimethylammonium (HDTMA) bromide. The kinetic behavior of sorption during transport in both natural and modified loess soil was studied. The results indicated that sorption rate in the cation surfactant modified loess soils was at least 3 times faster than that of the natural soil. A first-order kinetics model fitted the sorption data well for both soils. The sorption rates of the two organic compounds were related to their primary residuai quantity on the soils. The rate constants, however, displayed negative correlation with increasing temperature. Sorption rates of naphthalene and phenanthrene on loess soils and and the modified loess soils with a cation surfactant hexadecyltrimethylammonium (HDTMA) bromid
引文
[1] 王连生.环境健康化学[M].北京:科学出版社,1994.
    [2] Callahan M A, Slimakc M W, Gabelc N W, May L P, Freed J R, Jermings P, Durfee R L,Whitmore F C, Maestri B, Mabey W R, Holt B R, Gould C. Water-related environmental fate of 129 priority pollutants. US environmental protection agency, Washington, DC. 1979. EPA-440/4-79-029.
    [3] Miton L L. Analytical chemistry of polycyclic aromatic compounds[M]. Academic press.INC, 1981:17-40.
    [4] Freeman D J, and Cattell F C R. Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol, 1990,24:1581-1585.
    [5] Benner, Bruce A, Nelson P Bryner, Stephen A Wise, George W Mulholland, Robert C Lao, and Mervin F Fingas. Polycyclic aromatic hydrocarbon emissions from the combustion of crude oil on water. Environ Sci Technol, 1990,24(9):1418-1438.
    [6] Mcveety B D, Hites R A. The distribution and accumulation of PAHs in environment.Atomospheric Environment, 1988,22(1):511-536.
    [7]] T Saeed et al. Assessment of levels of hydrocarbons in the oil from Kuwait Lakes. Achieves of Environ, Contamination and Toxicity, 1995,29(1):45-51.
    [8] Sims R C & Overcash M R. Fate of polynuclear aromatic compounds in soil-plant systems. Residue Reviews, 1983,88:1-68.
    [9] 莫里林,博亦德,有机化学:(下册).复旦大学有机化学教研室译.北京:科学出版
    
    社,1992,1084-1085.
    [10] 刘淑琴,王鹏.环境中的多环芳烃与致癌性.山东师大学报(自然科学版),1995,10(4):435-440.
    [11] 阎吉昌,徐书绅,张兰英.环境分析[M].北京:化学工业出版社,2002,47-136.
    [12] Weissenfels W D, Klewer H J, Langhoff J. Adsorption of polycyclic aromatic hydrocarbons by soil particles: Influence on biodegradability and biotoxicity. Appl Microbial Biotechnol, 1992,36:689-696.
    [13] Yael L, Peter F S, Walter J F. The effect of sorption on phenanthrene bioavailability. J Biotechnol, 1996,51:227-234.
    [14] Bellin C A, Connor G A. Plant uptake of pentachlorophenol. J Environ Qual, 1990,19:598-602.
    [15] Grimmer G, Hildebraudt A. Kohlenwasserstoffe in der umgebung des menschen II. Mit Z Krebsforsch, 1965,67:272-277.
    [16] Jiang X, Qu Z-Q, Ying P-F et al. Transfortation and transformation of ~(14-)C-phenanthrene in closed chamber (plant-lava-nutrient solution-air) system. Chin J Appl Ecol, 2001,12(3):451-454.
    [17] Torben M, Perben K. Effects of bacterial inoculation and non-ionic surfactants on degradation of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem, 1997,16:631-637.
    [18] William T S, Michael D A. Competitive metabolism of naphthalene, methyl-naphthalenes and fluorine by phenanthrene-degrading pseudomonads. Appl Environ Microbial,1995,61(1):357-362.
    [19] Van Genuchten M T,Wagenet R J. Two-site/two region models for pesticide transport and degradation: theoretical development and analytical solutions. Soil Sci Soc Am J, 1989(53): 1303-1310.
    [20] Kindred Scott J, Cellia Michael A. Contaminant transport and biodegradation 2: Conceptual model and test simulations.Water Resour Res,1989,25(6):1149-1159.
    [21] Homberger George M, Mills Aaron L, Herman Janet S. Bacterial transport in pours media: evaluation of a model using laboratory observations. Water Resour Res, 1992,28(3):925-938.
    
    
    [22] Kinniburgh D G. General purpose adsorption isotherms. Environ Sci Technol, 1986,20:895-904.
    [23] Scow K M, Simikns S, Alexander M. Kinetics of mineralization of organic compounds at low concentrations in soil. Appl Environ Microbial, 1986,51:1028-1035.
    [24] W Zhou, K Zhu, H Zhan, M Jiang, H Chen. Sorption behaviours of aromatic anions on loess soil modified with cationic surfactant. Journal of Hazardous Materials, 2003: 209-218.
    [25] Lee M L et al. Analytical Chemistry of Polycyclic Aromatic Compounds. Academic Press,1981,3-10.
    [26] 薛强,梁冰.土壤环境中有机污染物运移环境预测模型的研究.水利学报,2003,6:48-55.
    [27] Youn Sim, Constantions V, Chrysikopoulos. Virus transpolrt in unsaturated porous media. Water Resour Res, 2000,36(1):173-179.
    [28] Teresa B. Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates. Environ Sci Technol, 1997,31:1580-1588.
    [29] Zysset A. Modeling of reactive groundwater transport governed by biodegradation.Water Resour Res, 1994,30(8):2423-2433.
    [30] 陈华林,陈英旭.西湖底泥对多环芳烃的吸附性能.农业环境科学学报,2003,22(5):585-589.
    [31] 李咏梅,王郁.多环芳烃在天然水体中的自净机理研究—沉积物对多环芳烃的吸附过程模拟.中国环境科学,1997,17(3):208-211.
    [32] 林翠英,李凌.有机膨润土吸附水中苯酚的动力学.环境科学学报,2003,23(6):738-741.
    [33] 苏玉红,沈学优.苯蒸气在有机膨润土上的吸附动力学.环境化学,2001,20(5):455-459.
    [34] 杨志生,孙宇.动态法研究苯酚在饱水细砂土中的吸附.离子交换与吸附,1997,13(4):416-420
    [35] Joner E J, Jonansen A, Loibner A P, and Leyval C. Rhizosphere effects on miceobial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soils. Environ Sci Technol, 2001,35:2773-2781.
    [36] V A Nzengung and J M Wampler. Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals by organoclays, Environ Sci Technol, 1996,30(1): 89-96.
    [37] E J Leboeuf, and W G Weber. Mcromolecular characteristics of natural organic matter,
    
    Environ Sci Technol, 2000,34(17):3632-3640.
    [38] M Bueno, A Astruc and P Behra. Dynamic sorptive behavior of tributyltin on quartz sand at low concentation levels: Effect of pH, flow rate, and monovalent cations, Environ Sci Technol, 1998,32(24):3919-3925.
    [39] C J Daughney, and J B Fein. Sorption of 2, 4, 6-trichlorophenol by bacillus subtilis, Environ Sci Technol, 1998,32(6):749-752.
    [40] S X Pan, Q S Wang and F L Li. Relative apparent polarity of soils and its influence on adsorption of organic compound. China Environmental Science, 1994,14(2):81-84.
    [41] 占伟,吴文忠,徐盈,李植生.有机有毒污染物在土壤及底泥系统中的吸附/解吸行为研究进展.环境科学进展,1998,6(3):1-13.
    [42] Wu Shlan chee, and Gschewend Phlllp M. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ Sci Technol, 1986,20(7):717-725.
    [43] G W Bailey and J L White. Factors influencing the adsorption, desorption, and movement of pesticids in soils. Residue Rev, 1970,32:29-92.
    [44] S W Karickhoff, D S Brown And T A Scott. Sorption of hydrophobic pollutants on nature sediments. Water Res, 1979,13:241-248.
    [45] C T Chiou, L J Peters and V H Freed. A physical concept of soil-water equilibria for nonionic organic compounds. Science, 1979,206:831-832.
    [46] J C Means, S G Wood, J J Hassett et al. Sorption of polynuclear aromatic hydrocar- bons by sediments and sols. Environ Sci Technol, 1980,14:1524-1528.
    [47] C T Chiou, V H Freed et al. Partition coefficient and bioaccumulation of selected organic chemicals. Environ Sci Technol, 1977,11:475-478.
    [48] D Mackey, A Bobra el at.Relationships between aqueos solubility and octanol-watrer coefficients. Chemosphere, 1980,9:701-711.
    [49] C T Chiou, D W Schmedding, M Manes. Partition of organic compounds in octanol water systems. Environ Sci Technol, 1982,16:4-10.
    [50] M M Miller, S P Waslk et al. Relationships between octanol-water partition of partition coefficient and aqueous solubility. Environ Sci Technol, 1985,19:522-529.
    [51] Y P Chin, W J Weber, T C Voicw. Determination of partition coefficient and aqueous solbilities by revers phase chromatography. Water Res, 1986,20:1443-1450.
    
    
    [52] G G Briggs. A simple relationship between soils sorption of organic chemicals and their octanol-water partition coefficients. Peoceeding of the 7th British Insecticide and Fungicide Conference, 1973,11:475-478.
    [53] R P Schwarzenbach and J Westall. Transport of nonpolar organic compounds from water to groundwater, laboratory sorption atudies. Environ Sci Technol, 1981,15:1360 -1367.
    [54] Luers F, and Ten Hulscher Th E M. Temperature effect on the partitioning of polycyclic aromatic hydrocarbons between natural organic carbon and water. Chemosphere, 1996, 33(4):643-657.
    [55] S M Lambert. Functional relationship between sorption in soils and chemical structure. J Agric Frood Chem, 1967,15:572-576.
    [56] E G Lotse, D A Graetz et al. Lindane adsorption by lake sediments. Environ Sci Technol, 1968,2:353-357.
    [57] W W Choi and K Y Chen. Assoiations of chlorinated hydrocarbons with fine particles and humic substances in nearshore surficial sediments. Environ Sci Technol, 1976,10: 782-786.
    [58] C T Chiou, P E Porter et al. Partition equilibria of nonionic organic compounds between soils organic matter and water. Environ Sci Technol, 1983,17:227-231.
    [59] A Weiss. In Clays and Clay Minerals proc. Peryamon Press, New York, 1963,191-224.
    [60] M B McBride, T J Pinnavaia, M M Mortland. Fate of Polltant in the Air and Water Environment- Part Ⅰ. Wiley, Now York, 1977,145-154.
    [61] G Y Sheng, S H Xu and S A Boyd. Mechanism controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter. Environ Sci Technol, 1996,30:1553-1557.
    [62] Z H Li and R S Bowman. Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactants loading. Environ Sci Technol, 1998,32:2278-2282.
    [63] L Z Zhu, and B L Chen. Sorption Behavior of p-Nitrophenol on the interface between Anoin-Cation Organobentonite and Water. Environ Sci Technol, 2000,34(14):2997-3002.
    [64] H Chen, R Q Yang et al. Attenuating toluene mobility in loess soils modified with anion-cation surfactants. Journal of Hazardous Material. 2002,94:191-201.
    [65] Z Li, Y Shi. The solubilization and desorption of biosurfactants to bioremediation. J
    
    Biotechnology, 1996,12:238-241.
    [66] J F Lee, J R Crum and S A Boyd. Enhanced retention of organic contaminants by soills exchanged with organic cations. Environ Sci Technol, 1989, 23:1365-1372.
    [67] S A Boyd, W F Jaynes and B S Ross. Immobilization of organic contaminatants by organoclays. Organic Substances And Sediments In Water, 1991,1:181-200.
    [68] W F Jaynes and S A Boyd. Hydrophobicity of siloxane surfaces in smectite as revealed by aromatic hydrocarbon adsorption from water. Clays Miner, 1991,39:428-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700