用户名: 密码: 验证码:
电流变阀的特性分析及其数控高压电源的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电流变流体应用于液压技术的研究当中,对电流变阀工作特性的分析大多是基于旋转剪切型测量所得的信息来进行,以电流变流体为工作介质,在实际的大流量状态下对其工作特性进行分析的研究报道较为少见。而对电流变阀中的高压控制电源,可能是由于电流变阀还不具备实用价值,其有关的研究工作更很少报道。本文针对上述存在的问题,对电流变阀在实际应用状态下的工作特性进行了分析,并对其高压控制电源进行了研究。
     本文首先介绍了电流变技术的发展动态、电流变效应的机理及工程应用的原理,详细介绍了电流变流体在液压技术中的应用。
     对电流变阀的工作机理和控制方法进行了探讨,建立了电流变阀的反馈控制模型。在实际工作状态下对电流变阀的工作特性进行了研究,通过仿真和实验分析得出:使用电流变阀作为流体控制元件,能提高系统的响应速度,简化控制方法,对执行元件具有较好的可控性,验证了电流变技术用于液压控制系统的可行性。
     针对电流变阀对高压控制电源要求的快速通断及智能控制和体积小的特点,采用单片机技术与高频开关电源技术,设计制作了一台用于电流变阀控制的数控高压电源装置
During the research on ERF (electrorheological fluids) applied to hydraulic technology, the working performance analysis of ER-valve is mostly based on the information that is got from rotary shear measurements. There are few reports about ER-valve analysis under practical large flow model using ERF as actuating medium. And maybe because the ER-valve has not practicality at present, reports about control signal source of ER-valve-high-voltage power-are fewer. Aim at problems of above-mentioned, the work performances of ER valve under practical application state are analyzed and its high-voltage control power source is studied in this dissertation.
    The development trends of ER technology, theory of ER effect and principle of engineering application is presented. The application of ER technology in hydraulic technology is introduced in detail.
    The working mechanism and control method of ER valve were discussed, and its feedback control model was set up. Through analysis to the performance of ER valve under real work state using simulation and experiment, we can conclude that using ER valve as fluid control-unit would improve the response speed of system, simplify the control method and have a better controllability to actuators. Then the feasibility of ER technology applied to hydraulic control system is proved.
    In order to resolve the problem of fast switching on or off, intellectual control and smaller bulk of high voltage power required in ER valve, a NC high-voltage power source is designed and made using singlechip technology and high frequency switch power technology,
引文
[1] Winslow W.M., Method and means for translating electrical impulses into mechanical forces, US Patent 2417850, 1947.
    [2] Block H., Kelly J.P., US Patent 4687589, 1987.
    [3] 朱石沙,电流变流体在液压技术中的应用,北京理工大学博士学位论文,2001.
    [4] Proceedings of 7th international conference on ER fluids, MR suspensions and their applications, edited by Tao R. and Shaw S., World Scientific, Singapore, 1999.
    [5] 黄宜坚,朱石沙等,电流变学,长沙:湖南师范大学出版社,1996.
    [6] 李天剑,电流变液体的计算机模拟及电流变减振器的研究,北京理工大学博士学位论文,1997.
    [7] 魏宸官,电流变流体及电流变技术,兵工学报,2(1995),45~64.
    [8] 张建华,陶德华,周健等,电控流变智能材料的研究进展及其设计,机械工程材料,25(3)(2001),7~9.
    [9] 魏宸官,一门有发展前景的高新技术——电流变技术,中国工程科学,2(1)(2000),18~23.
    [10] HalseyT. C., ER Fluids, Science, 258 (10) (1992), 761~776.
    [11] Whittle M., Bullough W. A., The Structure of Smart Fluids, Nature, 358 (6) (1992), 373.
    [12] 魏宸官,电流变技术,北京理工大学出版社,北京,2000.
    [13] Hartscck D.L., et al., J. Rheol. 35(7)(1991).
    [14] Katysuya A., et al., Jpn. Kokai Tokyo Koho JP 03144715 (1991).
    [15] Goossens J., et al., Deutsches Patent 3536834 AI (1987).
    [16] Wendt E., Klaus K. W., A new type of hydraulic actuator
    
    using electrorheological fluids, International J. Modern Physics B, 13(14) (1999), 2176~2182.
    [17] Wereley N.M.,et al., Analysis of semi-active ER and MR dampers, Smart Mater Struct., 7 (1998), 732~743.
    [18] 靳争团,高跃飞,任建亭等,电流变阻尼器的抗冲击性能研究,化学物理学报,14(5)(2001),620~624.
    [19] 扬智春,刘红军,张开达,电流变阻尼器设计及在结构减振上的应用,机械科学与技术,17(11)(1998),27~29.
    [20] Shoshi Hidaka, et al, Adaptive vibration control by a variable-damping dynamic absorber using ER fluid, Transactions of the ASME, Journal of Vibration and Acoustics, 121 (7) (1999), 373~378.
    [21] 王茂华,于骏—张永亮,电流变技术在机床颤振控制中应用的研究,机械工程学报,11(2000),94~97.
    [22] 于骏一,刘述芳,电流变效应在抑制车削振动中的应用,制造技术与机床,6(2000),8~10.
    [23] 朱石沙,黄宜坚,刘湘辰,电流变离合器,机械制造,3(1995),15~16.
    [24] 黄宜坚,汪海波,扬进民等,电流变力矩放大器,化学物理学报,14(5)(2001),613~619.
    [25] 王安民,吴慧,电流变流体(ERF)换向阀的设计,机床与液压,4(1999),18~20.
    [26] 朱石沙,王启新,魏克湘等,电流变流体动力传输的可控性,机床与液压,6(2001),86~87.
    [27] Peel D. J., et al., Prediction of ER valve performance in steady flow, J. Mechanical Engineering Science (C), 208(C4) (1994), 253~266.
    [28] 李铁军,岳宏,蔡鹤皋,半有源机器人柔顺指端的研究,中国机械工程,9(1)(1998),10~12.
    [29] 戴士杰,岳宏等,具有应变式触觉传感器的机器人柔顺指端,机
    
    械设计,4(2001),20~23.
    [30] 刘璇,王小北,基于相变材料的柔性夹具,机械设计与制造工程,29(5)(2000),53~54.
    [31] 翟伟廉,袁润章,项海巩,ER智能材料-减震结构体系的研究,振动工程学报,12(2)(1999),193~201.
    [32] Jinsong Leng, et al., Vibration control of smart composite beams with embedded optical fiber sensor and ER fluid, Transactions of the ASME, Journal of Vibration and Acoustics, Vol. 121 (1999), 508~509.
    [33] 许素娟,王彪,电流变体作用机理的研究,材料导报,12(6)(1998),6~8.
    [34] 张正勇,张耀华,孙怡宁,高分子材料电流变流体的特性研究,功能材料与器件学报,7(2)(2001),147~151
    [35] 董鹏,王春慧,赵锁奇,高性能石油焦颗粒电流变流体的研究,化学物理学报,14(5)(2001),555~558.
    [36] 丁文,范志康等,金属核心/高聚物膜复合悬浮相电流变流体材料,物理化学学报,17(6)(2001),496~500.
    [37] 肖革文,魏宸官,电流变流体及其潜在的工程应用,北京理工大学学报,8(5)(1998),573~576.
    [38] 刘湘辰,黄宜坚,王安民等,电流变效应的功能原理,机床与液压,3(1997),38~41.
    [39] Klass D.L., et al., Coll. Polym. Sci, 255 (6) (1977), 566~584.
    [40] Stangroom J.E., Phys. Technol., 14 (1983), 290.
    [41] Mukund P., et al., Mater Sci. Eng R, 17 (1996), 57
    [42] 扬俊刚,电流变颗粒相介电性能测试方法与微型高压电源制作,西北工业大学硕士论文,2001,46.
    [43] 陈义男,吴聪能等,多极板电流变阀应用于避震器之研究,化学物理学报,14(5)(2001),633~636.
    [44] 中野正身,ER流体用可变振動制御新展開,
    
    計测制御,9(1995),707.
    [45] Gina Goldstein, Electrorheological Fluid: Application Begins to Gel., Mechanical Engineering, 112(10) (1990), 48.
    [46] 魏克湘,朱石沙,王启新,电流变材料及其工程应用,机电工程技术,31(5)(2002),19~20.
    [47] 扬俊刚,唐宏,赵晓鹏,电流变技术中的微型可控高压电源及性能,机械科学与技术,20(6)(2001),828~830.
    [48] Wendt E., Klaus K.W., A new type of hydraulic actuator using electrorheological fluids, International J. Modern Physics B, 13(14) (1999), 2176~2182.
    [49] Brooks D.A., et al, Design and development of flow based ER devices, Proc. Int. Conf., 1991, US, Word Scientific Press, 1992, 367~397.
    [50] 田中君,1名,人工筋肉驱動用ER流体答性(研究,日本機械学会論文集(C),Vol.60(579),(1994),3882~3887.
    [51] Whittle M., et al, A model for the electrical characteristic of an ER valve, J. Mod. Phys. (B),Vol. 6(15) (1993), 93~108.
    [52] 近藤丰,1名,電気粘性流体用液压制御弁,日本機械学会論文集(C),Vol,63(608)(1997),1192~1198.
    [53] Stanway R., Sproston J.L., Starkey R., on the Design of Actuactors and sensors Using Electrorheological Fluids, ACTUATOR 90, Bremen, Germany, (1990), 138~143.
    [54] 朱石沙,魏宸官等,实用新型专利:电流变流体控制元件,00252389.2,(2000).
    [55] Duclos, Theodore G., An Exponentially Tunable Hydraulic Mount which Uses Electro-Rheological Fluids, Proceedings of the 1987Noise and Vibration Conference, (1987), 131~
    
    137.
    [56] Ushijima T., Takano K., and Noguchi T., Rheological Characteristics of ER Fluids and Their Application to Anti-Vibration Devises with Control Mechanism for Automobiles, Society of Automotive Engineers, Vol. 3 (1988), 1~9.
    [57] Stangroom, James E., Electrorheological Fluids, Physics Technology, Vol. 14 (1983), 290~296.
    [58] Radcliffe C.J., Lloyd J. R., et al., State Feedback Control of Electrorheological Fluids, 1996 ASME International Congress and Exhibition, Atlanta, GA, (1996), 1~8.
    [59] Stiebel C., Janocha H., 6 kV power amplifier designed for actuators with electrorheological (ER) fluids, Actuator 2000, Proceedings 7th International Conference on New Actuators, Bremen, ASCO-Druck (2000), 135~138.
    [60] 魏克湘,朱石沙,王启新,电流变技术在流体动力传输中的应用研究,液压气动与密封,3(2002),29~30.
    [61] 魏克湘,朱石沙,王启新,电流变流体控制元件的动态仿真,机床与液压,6(2002),215~216.
    [62] 董玉振,金得闻等,微型数控高压电源的研究,高电压技术,20(4)(1994),23~25.
    [63] 扬俊刚,唐宏,赵晓鹏,电流变技术中的微型可控高压电源及性能,机械科学与技术,20(6)(2001),828~830.
    [64] Nakano, M., Minagawa, S., and Hagino, K., PWMflow control of ER valve and its application to ER actuator control, International Journal of Modern Physics B, Vol. 13 (1999), 2168~2175.
    [65] 高晶敏,魏宸官,用于电流变技术工程应用研究的可控高压电源,兵工学报,4(1998),27~30.
    [66] 余淼,廖昌荣等,磁流变阻尼器PWM快速控制,中国机械工程,
    
    13(14)(2002),1238~1240.
    [67] 扬光友等,单片微型计算机原理及接口技术,中国水利水电出版社,2002。
    [68] 扬钦波,30KV直流高压发生器设计和制作,电子测量技术,3(1999),40~41.
    [69] 胡存生,胡鹏,集成开关电源的设计制作调试与维修,北京:人民邮电出版社,1995.
    [70] 李薇,高福文,电视机原理,北京师范大学出版社,北京,1987.
    [71] 魏海明,扬兴瑶,实用电子电路500例,化学工业出版社,2000.
    [72] 张得成,直流高压发生器及其应用,电子产品维修与制作,3(1996),41~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700