用户名: 密码: 验证码:
贵州500kV鸭福输电线路雷电过电压研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对贵州500kV鸭福输电线路雷击事故频繁的情况,对其耐雷性能进行了深入研究。首先利用规程法对线路的耐雷性能进行计算、分析,并与现场数据比较;同时结合目前对杆塔波阻抗的研究方法,提出一种更合理的杆塔波阻抗计算模型—杆塔分布参数模型,并利用EMTP进行仿真计算和验证。并从电磁场角度出发,对击距系数进行研究,提出改进的电气几何模型。通过对鸭福500kV输电线路耐雷性能的研究,得到以下结论:规程法计算结果表明该线路跳闸率在0.32次/年.60雷电日以内;用分布参数模型来分析杆塔波阻抗,其仿真值与实测值的相对误差在10%以内;利用杆塔分布参数模型计算鸭福500kV输电线路故障杆塔的反击跳闸率结果比利用规程法计算的结果大25%左右;在高杆塔情况下,击距系数不再等于1,随着杆塔高度的增加,击距系数呈线性下降,雷电流值对击距系数没有影响;利用传统电气几何模型计算结果表明该线路不会发生闪络,与实际运行情况差别较大;利用改进的电气几何模型计算的结果表明绕击跳闸率为0.884265次/年·60雷电日,与实际运行情况比较吻合;影响500kV鸭福输电线路耐雷性能的主要因素有接地电阻、线路绝缘强度、杆塔高度、地面倾角、沿线地形、杆塔类型等,并结合现场数据,提出较为合理的防护措施,论文研究结果将为提高鸭福500kV输电线路耐雷水平提供理论依据和数据,并为同类型线路提供参考。
According to the condition that the lightning accidents are taken frequently for 500kV Yafu transmission line, the paper studied on the lightning protection performance deeply. Used regulations method calculating, analyzing and comparing the lightning protection performance with field data for the line firstly,. Then Put forward more reasonable model (distributing parameter model) to calculate the surge impedance of tower combining the existing model and validate by EMTP, furthermore studied the striking distance factor based on electromagnetism. Conclusion are drought as follow by studying the lightning protection performance for 500kV Yafu transmission line: the outage rates is in 0.32 flashes/year by regulations method. Using distributing parameter analyzing the surge impedance of tower, the simulation value of tower surge impedance is close to the test value and the relative error between is in ten percent. The value of the outage rate with distributing parameter model is larger twenty five percent than
    with regulations method. The striking distance factor is not equal to but smaller than 1 for higher tower, the value of lightning current is not influence in the striking distance factor. The different between the result by traditional EGM with the field data is large. The outage rates is 0.884265 flashes/100km/year by improved EGM and tallies with the field data. The main factor that influence the lightning protection performance are grounding resistance, the strength of insulators, the height of tower, ground obliquity, terrain along the line and so on. By combining with the field data, this paper also bring forward some more reasonable methods of lightning protection. The results of this paper will provide gist to the protection of YaFu 500kV transmission line and the same type transmission lines.
引文
[1] IEEE Working Group on Estimating Lightning Performance of Transmission Lines. A Simplified Method for Estimating lightning Performance of Transmission Lines. IEEE Trans. Vol. PAS-104, No.4, April 1985, pp.919~932.
    [2] IEEE Working Group on Estimating Lightning Performance of Transmission Lines. Estimating lightning Performance of Transmission Lines II-Updates to Analytical Models [J].IEEE Trans. 1993, PWRD-8(3):1254~1267.
    [3] 李培国,国外对特高压输电线路雷击跳闸原因的一个观点,电网技术,2000.7:63~65.
    [4] 钱冠军,等.500kV线路直击雷典型事故调查研究.高电压技术,1997,23(2):73~75
    [5] 维列夏金,俄罗斯超高压和特高压输电线路防雷运行经验分析,高电压技术,1998.25(2):76~78
    [6] 周泽存.高压和超高压输屯线路防雷保护的现状和发展.高电压技术,1980,No.3:33~37
    [7] 舒先民,敖德胜,尹正来.湖北省超高压输电线路故障跳闸统计分析.高电压技术,1999,
    [8] 孙萍,有关输电线路防雷计算中几个参数取值的建议,电网技术,1998.8:75~78.
    [9] 交流电气装置的过电压保护和绝缘配合[S],中华人民共和国电力行业标准,中华人民共和国电力工业部,1997,pp:36~45
    [10] 张纬钹,高玉明,电力系统过电压与绝缘配合[M],北京:清华大学出版社,1988,pp:29~155
    [11] 王秉钧,数理统计在高电压技术中的应用,北京,水利电力出版社,第一版,1990.10.
    [12] 张重诚.运用《故障树》法分析观察超高压山区线路的防雷性能.过电压学术讨论会论文集1997年
    [13] ATP程序用户使用手册,电力科学研究院高压所,1994版
    [14] AJ.Eriksson. An Improved Electrogeometfic Model for Transmission Line Shielding Analysis. IEEETPWRD, 1987, 2(3): 859~970
    [15] Rizk F A M. Modeling Of Transmission Line Exposure To Direct Lightning Strokes. IEEE TPWRD, 1990, 5(4): 1983~1997
    [16] L.Dellera, E.Garbagnati. Lightning Strokes Simulation By Means Of The Leader Progression Model. IEEETPWRD,1990, No. 5:2009~2030
    [17] 王晓瑜.雷电屏蔽性能的模拟试验和分析模型的研究.高电压技术,1994,20(2):48~53
    [18] Golde RH.雷电,北京,水利电力出版社,第一版,1983.
    [19] 黄炜纲,对线路防雷计算中绝缘闪络判据的研讨,中国电力,1999.11:59~63.
    [20] 张志劲,500kV同杆双回线路耐雷性能研究,重庆大学工学硕士论文,2002.5
    
    
    [21] Jordan C A, Lightning computation for transmission line with overhead ground wires. Gen. Elec. Rev., 1934, vol.37: 130~137.
    [22] Wanger C F, Hileman A R, A new approach to the calculation of lightning performance of transmission line, AIEE Trans. 1960, vol.79:589~603.
    [23] Sargent M A, Tower surge impedance, IEEE Transactions on power apparatus and system, vol.88, No.5, 1969:680~687
    [24] 国家电力公司武汉高压研究所等,三峡500kV双回同杆新技术研究[R],2001.1:174~183.
    [25] Sargent M A, Darveniza M, Lightning Performance of Double-Circuit Transmission lines, IEEE Transactions on power apparatus and system, vol.89, No.5/6, 1970: 913~924.
    [26] 牧原,曾楚英,杆塔波阻抗的研究,高电压技术,1992.6,No.2:9~13.
    [27] 冯慈璋,电磁场,北京:高等教育出版社,第二板,1997.7
    [28] Chisholm W A, Chow Y L, Lightning Surge response of transmission towers, IEEE Transactions on power apparatus and system, vol.102, No.9, 1983: 3232~3242.
    [29] 杨保初,刘晓波,戴玉松,高电压技术[M],重庆:重庆大学出版社,2002,pp:96~160
    [30] 孙万忠,计算线路绕击临界保护角的方法[J],四川电力技术,1999,pp:2~34
    [31] H.W.Dommel著,李永庄译,电力系统电磁暂态计算理论[M],北京:水利电力出版社,1986,pp:1~80
    [32] 解广润,电力系统过电压[M],北京:水利电力出版社,1985,pp:178—204
    [33] 冯慈璋,马西奎,工程电磁场导论[M],北京:高等教育出版社,2000,pp:1~46
    [34] 谢文义,滇西电网输电线路防雷措施分析[C],送电线路防雷、接地技术文集,全国电力系 统送电专业运行工作网,2002,pp:63~67
    [35] 曾广实,柳州电网线路雷电故障统计分析与防雷措施[C],电线路防雷、接地技术文集,全国电力系统送电专业运行工作网,2002,pp:92~95
    [36] 胡汉清,综合防雷装置在云南高海拔地区的应用[C],电线路防雷、接地技术文集,全国电力系统送电专业运行工作网,2002,pp:97~104
    [37].黄志明.21世纪中国输电线路发展前景展望.国际电力,2000,(3):26~33
    [38] 重庆电力局.输电线路雷击统计分析,2000
    [39] H.R.Armstrong, E.R.Whitehead. Field and Analytical Studies of Transmission Line Shielding. IEEETRANS, 1968, PAS-87(1): 270~281
    [40] Tevan, Gy.D Sc. Analytical Calculation Of The Voltage On Earth Caused By Lightning. 7~(th) ISH,1991
    [41] P.Chowdhuri. Significant Parameters In Estimating The Striking Distance Of Lightning Strokes To Overhead Lines. IEEETPWRD, 1989, 4(3): 1970~1981
    [42] 钱冠军等,输电线路雷击仿真模型,中国电机工程学报,1999,19(8):40~44.
    
    
    [43] J.G.Anderson. Lightning Performance Of Transmission Lines. Chapter 12, Transmission Line Reference Book, EPRI,1982
    [44] A.J.Eriksson. The Incidence Of Lightning Strikes To Power Lines. IEEE TPWRD, 1987, 2(3): 859~870
    [45] A.M. Mousa and K.D. Srivastava,The Lightning Performance of Unshielded Steel Structure Transmission Line IEEE Trans. on PWRD,Vol.4,1989,pp.437~445.
    [46] 李福寿,电力系统过电压计算,北京,水利电力出版社,第一版,1986,12.
    [47] 王洪泽,从#23塔遭雷击谈最大击距问题,高电压技术,2001,Vol,27 N0.4 70~71.
    [48] 特高杆塔大跨越的防雷分析——华能南京大胜关大跨越防雷保护计算.中国电力科学研究院,1992.8
    [49] 钱冠军等.输电线路绕击分散性的试验研究.高电压技术,1998,No.3:17~20
    [50] 侯仁保.杆塔拉线的防雷功能.高电压技术,1997,No.4:84~86
    [51] 周浩,加装耦合地线输电线路的耐雷水平计算方法.高电压技术,1992,No.1:73~78
    [52] 郭建平.输电线路击杆率的电气几何模型研究.高电压技术,1993,No.2:86~9l
    [53] 陈先禄等.雷电放电空间的电磁场计算.重庆大学学报,1999,22(1):88~94
    [54].张重诚.山区雷电的特殊象征分析与防直接雷击.高电压技术,1998,24(1):79~80转84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700