用户名: 密码: 验证码:
小麦白粉菌无毒基因遗传分析及其遗传图谱的初步构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用小麦白粉菌(Blumeria gramini.f.sp tritici)一个普通菌株E17与一个白化的自然突变菌株CPW-1进行杂交并释放子囊孢子获得后代群体,对其白化性状、无毒性进行了遗传分析。利用AFLP分子标记技术对杂交后代进行了分析,初步构建了小麦白粉菌的遗传图谱,同时对色素基因进行了分子标记。
     1:对小麦白粉菌CPW-1和E17杂交释放子囊孢子得到的175个后代菌株通过表型进行遗传分析,其白化性状在F_1代分离比符合1:1,表明受一对基因控制。对其中82个后代的无毒性进行了遗传分析。结果表明:对应的抗病基因Pm3b、Pm3f无毒性和毒性分离比为1:1,表明无毒性受1对基因控制;对应的抗病基因Pm13、Pm4b、Pm22的无毒性和毒性呈现3:1的分离比例,表明无毒性受2对显性基因控制,对应的Pm4a的无毒性和毒性呈15:1的分离比例,表明无毒性受3对显性基因控制。
     2:在遗传分析的基础上,利用AFLP标记技术进行亲本与后代之间的连锁分析。所筛选的200对随机引物中,有25对引物组合在亲本间存在差异,其中引物对E17M15与白化性状相连锁,其遗传距离为28.2cM。另外有两对引物(E16M19,E21M13)可能与交配型相关,进一步的检测正在进行当中。
     3:利用筛选出来的25对在亲本间有明显差异的引物组合对杂交后代进行AFLP分析,13对引物组合共产生39个标记,作图分析结果表明,22个位点分别连锁在7个连锁群上,其中有3个连锁群有3个以上标记,每个连锁群上分别有6个,5个,3个AFLP标记;另外4组只有两个标记,这4个小连锁群的两个标记之间的距离分别为0.7cM、2.9cM、1.4cM、11.0cM和16.1cM,获得的基因组总长度为173.4cM,平均距离为7.9cM。由于用于作图的标记数目较少,有17个标记未发现连锁关系。构建的连锁图有待于进一步饱和。
     本文还就AFLP技术进行白粉菌研究的可靠性、分析时应注意的问题等进行了讨论。
A normal isolate (E17, pink) of wheat powdery mildew (Blumeria graminis.f.sp.tritici) with a natural mutant (CPW-1,white) were crossed and ascospores released. A population with one hundred and seventy-five progeny individuals was obtained. The number of the progeny isolates for pink and white was 93 and 82, respectively. Genetic analysis for the segregation shows that the ratio of normal progeny to albino ones was approximately 1:1 (2=0.35<2 0.05, 1=3.84), indicating that a single locus confers the albino trait of powdery mildew. 82 selected progenies at random were tested on differential hosts with known resistance genes in greenhouse. The results show that avirulence matching Pm3b and Pm3f is controlled by one gene respectively. Each of avirulences matching Pml3, Pm4b, Pml3 and Pm22 is controlled by two dominant avirulence genes. Avirulence matching Pm (4a) is controlled by three dominant genes.
    A total of 200 random AFLP primer pairs were used to screen polymorphic DNA fragments and identify the AFLP markers linked to pigment gene between the parents and progenies Result shows that 25 primer pairs can amplify polymorphic DNA fragments. One polymorphic DNA fragment with the length of 700bp was amplified by primer pair E17M15 between offspring of normal and albino isolates. The genetic distance is 28.2cM. Furthermore, two pairs of primers (E16M19, E21M13) may link to genes that control the mating-type trait. The analysis is still on going.
    13 pairs of primers that selected from random primers were used to make AFLP analysis between parents and 74 progenies. Result shows that 22 markers linked in seven groups. The total distance is 173.4cM, with the average of 7.9cM. The remaining 17 markers were not linked to each other. The reason for this is probably due to the limited number of markers.
引文
1.白建荣.分子标记的类型、特点及在育种中的应用.山西农业科学,1999,27(4):33—38
    2.单卫星,陈受宜,惠东威等.我国小麦条锈菌系的DNA指纹分析.科学通报,1996,41(15):1427—1430
    3.段霞瑜.小麦白粉菌群体多样性DNA分子标记的研究:[博士学位论文].北京.中国农业大学,1998
    4.高军,刘大群.AFL P技术在植物病原真菌种群遗传上的应用.河北农业大学学报,2002,25:155-159
    5.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报.1999,(4):19-22
    6.李成云,罗朝喜.稻瘟病菌无毒基因的分子标记.中国农业科学,2000,33(3):49~53
    7.林长生,等.Magnaporthre grisea菌的遗传多样性研究(J].日本植物病理学会报,1993,59:2701
    8.刘俊峰.稻瘟菌无毒基因的遗传学研究和分子标记:[博士论文].北京.中国农业大学,2000
    9.刘俊峰,董宁,侯占军,等.稻瘟菌对水稻品种梅雨明的无毒性的遗传分析和分子标记.植物病理学报, 2001,01:10-15
    10.刘万才,邵振润.我国小麦白粉菌的发生状况,原因及趋势浅析.植物保护研究进展,1995,387—393
    11.龙跃生,陈良碧,夏快飞,等.分子标记技术及其在分离和克隆水稻基因中的应用.生物学杂志,2001,18(2):29-31
    12.罗琼.小麦白粉菌群体多样性分析及无毒基因的分子标记:[硕士学位论文].中国农业科学院:北京,2001
    13.马育华 田间试验和统计方法,农业出版社,北京,1979,256—257
    14.牛永春.分子系统学技术在探索某些共生真菌亲缘关系中的应用.中国科学院微生物所博士后工作总结
    15.森直树,等.Magnaporthre grisea菌的遗传多样性研究[J].日本植物病理学会报,1993,59:1231
    16.向齐君,段霞瑜,盛宝钦,等.小麦白粉菌无毒位点的遗传特性.植物病理学报,1998,29(1):27—30
    17.向齐君,段霞瑜,周益林,等.小麦白粉菌子囊孢子释放和侵染实验,植物保护,1995,21(2):40
    18.向齐君,周益林,段霞瑜,等.我国小麦白粉菌群体遗传变异性及其与抗病育种的关系,中国植物保护研究进展,1996,8—16
    19.张新心,周益林,段霞瑜,等.小麦白粉病菌生理小种多态监测和种群毒性区系研究,全国主要粮棉作物病虫草鼠害综合防治关键技术研究,中国科技出版社,1993,238—243
    20.张修国,邓晖,李雪玲,等.植物病原微生物的分子检测与抗病基因克隆的研究.山东农业
    
    大学学报,2001,32(1):99-102
    21.张修国,罗文富,等.烟草黑胫病菌株亲缘关系的RAPD分析,菌物系统,2000,19(1):39—44
    22.张谊,朱砺.遗传标记的研究进展.Journal of Animal Science and Veterinary Medicine,2001,vol 20:18-20
    23.张莹,小麦白粉菌对三唑酮抗药性的监测及不同抗性菌株的RAPD标记:[硕士学位论文].中国农业科学院:北京,2001
    24.朱文华,任明见,张庆勤,等.贵州小麦白粉菌毒性结构及品种抗性分析.西南农业学报,1998,11(2):73-79
    25. Brown J K M, et al. The mtDNA probe for Erysiphe [J]. Nucleic Acids Res, 1991, 19: 3101-3105
    26. Brown J K M. Comparative genetics of avirulence and fungicide resistance in the Powdery Mildew Fungi. (to be published by) APS Press, Dditor: Belanger RR, Dik AJ, Bushnell WR, St Paul, 2001
    27. Brown J K M. Pathogens' response to the management of disease resistance genes. Advances in Plant Pathology, 1995, 11: 75-102
    28. Brown J K M. The choice of molecular marker methods for population genetic studies of plant pathogens, New Phytologist, 1996, 133: 183-195
    29. Brown J K M.. Jessop A. C. Rezanoor H N, Genetic unifromity in barley and its powdery mildew pathogen, Proc. Roy. Soc, 1991, London, Ser. B246: 83-90
    30. Brown J K M.. Simpson C G. Genetic analysis of DNA fingerprints and virulences in Erysiphe griminess f.sp hordei. Curr. Genet, 1994, 26: 172-178
    31. Brown, J. K. M, Jessop, A. C. Genetics of avirulences in Erysiphe graminis f. sp. horde. Plant Pathology. 1995, 44: 1039-1049
    32. Brown J K M, Le Boulaire S. Evans N. Genetics of responses to morpholine-type fungicides and of avirulences in Erysiphe graminis f.sp. hordei. Eur. J. Plant Pathology, 1996, 102: 479-490
    33. Be'langer R R, Bushnell W R, Dik A J, et al. The Powdery Mildews: a Comprehensive Treatise. A P S: ST. Paml, USA, 2002, 56-65
    34. Borbye L H, Giese. Genome manipulation in recalcitrant species., construction characterization of a yeast artificial chromosome (YAC) library from Erysiphe graminis f.sp. hordei, an obligate fungal pathogen of barley. Gene, 1994, 144: 107-111.
    35. Chaure P. Gurr S J, Spanu P. Stable transformation of Erysiphe graminis, an obligate biotrophic pathogen of barley. Nature Biotechnol, 2000, 18: 205-207
    36. Christansen S K Giese H. Genetic analysis of the obligate parasite barley powdery mildew fungus based on RFLP and virulence loci, Theor. Appl. Genet., 1990, 79: 705-712
    37. Colso B. The cytology and development of Phyllactinia corylea Lév. Ann Bot N. S. 1938, 2: 381-402.
    
    
    38. Elias K S, Zamir D, Lichtman-pleban T, et al. Population structure of Fusarium oxysporum f.sp. Lycopersici: RFLP provide genetic evidence that vegetative compatibility groups is an indicator of evolutionary origin[J]. MPMI, 1993, 6(5): 565-572
    39. Farman M L, Leong S A. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the phiscal and genetic maps[J]. Genetics, 1998, 150: 1049-1058
    40. Flor H H. Genetics of pathogenecity in Melampsora lini J. Agric. Res, 1946. 73:335-357
    41. Flor H H. Inheritance of pathogenticity inMelampsora lini. Phytopathlology, 1942, 32: 653-669
    42. Flor H H. Host-parasite interaction in flax rust-its genetics and other implyeations. Phytopathology. 1955, 45:680-685
    43. Frederick R D, Snyder C L, et al. Polymerase chain reaction assays for the detection and discrimination of the soybean rust pathogens Phakopsora pachyrhizi and P, raeibomiae. Phytopathology, 2002, 92: 217-227
    44. Giese, H. Powdery mildew resistance genes in the Ml-α and Ml-k regions on barley chromosome 5. Hereditas, 1981, 95: 51-62
    45. Guido F J M, Van den Ackerveken, et al. Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosprium fulvum fully supports the gene-for-gene hypothesis. The Plant J. 1992, 2(3): 359-366n
    46. Harper R A. The sexual reproduction and the organisation of the nucleus in certain mildews Carnegie Inst. Washington Publ, 1905, 37: 1-105
    47. Hennin C, Horte M, Diederichsen E. Functional expression of Cf9 and AVR9 genes in Brassica napus induces enhanced resistance to Leptosphaeria raaculan. AMPI, 2001, 14(9): 1075-1085
    48. Honne G, Melchers L S, et al. Production of the AVR9 elicitor from the fungal pathogen Cladosporium fulvum in transgenic tobacco and tomato plants, Plant Molecular Biology, 1995, (29): 909-920
    49. Jensen J, Jensen H P, Jorgensen J H. Linkage studies of barley powdery mildew virulence loci. Hereditas, 1995, 122: 197-209
    50. Jones D A, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporiun fulvum by transposon tagging. Science, 1994, 266: 789-793
    51. Jrgensen J H. Erysiphe graminis, powdery mildew of cereals and grasses. Adv. Plant Pathol, 1988, 6: 137-157.
    52. Keen N T. Gene-for-gene complementality in plant-pathogen interactions. Annu Rev. Genet. 1990, 24: 447-463
    53. Klein-Lankhorst R M, et al. The resistance gene for nematode [J] 1. Theor Appl Genet, 1991, 81: 661-6671
    54. Klster P, Munk L, Stlen O, et al. Near-isogenic barley lines with genes for resistance to powderymildew. Crop Sci, 1986, 26:903-907
    
    
    55. Laug R De, Wit P J G M.. Fungal avirulence genes: structure and possible functions, Fungal Genetics and Biology, 1998, 24:285-297
    56. Lee V D, Robold A, Testa A F, Mapping of avirulence genes in Phytophthora infestans With amplified fragment length polymorphism markers selected by bulked segregation analysis, Genetics, 2001, 157: 949-956
    57. Leijerstam B. Variability of virulence in Erysiphe graminis f.sp. tritici due to gene recombination and mutation National Swedish Institute for Plant Protection Contributions. Studies in powdery mildew on wheat in Sweden Ⅲ, 1972, 15: 145
    58. Liu Y- G, Tsunewak K. The probe forFusari um oxysporum [J]. Jpn J, Genet, 1991, 66: 617-6331
    59. May C E. The resistance gene for TMV [J]. Theor Appl Genet, 1987, 74: 617-6241
    60. Mcdermott J M, et al, The probe for Rhynchosporium secakis [J]. Genetics, 1989, 122: 561-5651
    61. Moseman J G. Host-pathogen interaction of the genes for resistance in Hordeum vulgare and for pathogenic in Erysiphe graminis f.sp. horei, Phytopathology, 1959, 49: 469-472
    62. Moseman J G. Genetics of powdery mildews. Ann. Rev.Phytopathol. 1966, 4: 269-291.
    63. O'Dell, et al. Molecular variation in population of Erysiphe graminis on barley, oats, rye. Plant Pathol., 1989, 38: 340-351
    64. Pederse C, Rasmussen S W, Giese H. A genetic map of Blumeria graminis based on functional genes, avirulence genes, and Molecular Markers. Fungal Genetics and Biology, 2002, 35(3): 235-246
    65. Powers H R., Sando W J. Genetic control of the host-parasite relationship in wheat powdery mildew, Phytopathology, 1960, 50: 454-457
    66. Ridout C J, Brown J K M. Physical mapping of avirulence genes in the badey powdery mildew pathogen Erysiphe graminis f.sp. hordei. First International Powdery Mildew Conference 1999, 9
    67. Staskawicz B, Dahlbeck D. Cloned avirulence gene from Pseudomonas syringae pv.glycinea determines race specific incompatibility on glycines max (L.) Proc. Natl. Acad. Sci. USA, 1984, 81: 6024-6028
    68. Vos P, Hogers R, B leeker M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acid Rserearch, 1995, 23: 4407-4414
    69. Welsh J, McClelland M. Fingerprint genomes using PCR with arbitrary primers. Nucleic Acid Rserearch, 1990, 18: 7213-7218
    70. Williams J G K, Kubelik A, Livak k, et al. DNA polymerphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research, 1990, 18(22): 6531-6536
    71. Wolfe M S, McDermott J M. Population genetics of plant pathogen interactions: the example of the Erysiphe graminis-Hordeum vulgare pathosystem, Ann. Rev. Phytopathol, 1990, 32: 89-113
    
    
    72. Zabeau M, et al. Selective restriction fragment amplication: a general method for DNA fingerprinting[P]. European Pattern Application, 1993,0534858
    73. Zambino P J, Kubelik A R, Szabo L J, Gene action and linkage of avirulence genes to DNA markers in the rust fungus Puccinia graminis. Phytopathology, 2000, 90: 819-826
    Zhong S B, Brian J, Steffenson J, et al. A molecular genetic map and electrophoretic karyotype of the plant pathogenic fungus Cochliobolus sativus. MPMI, 2002, 5(15): 481-492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700