用户名: 密码: 验证码:
热变高岭石基化学键合抗菌材料及其抗菌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地回顾了国内外抗菌材料的发展状况,全面综述了抗菌剂的选择与抗菌机理、化学键合方法制备抗菌材料及其抗菌性能等方面的研究情况,详细讨论了热变高岭石的结构特点与活性,从微观和宏观两个角度阐述了其作为抗菌基体材料的可行性,利用化学键合无机抗菌剂制备了不同系列的抗菌材料,并对其从抑菌圈、杀菌率和最小抑菌浓度等抗菌性能进行了综合分析。
     高岭石经过300℃—1200℃温度范围内的热处理后所得到的产物称为热变高岭石,500℃—900℃热变高岭石的结构部分地保留了高岭石(Al_2O_3·2SiO_2·2H_2O)层状结构的特点,而且具有了化学活性,符合作为抗菌基体材料的特点。XRD表明结晶较好的高岭石,衍射峰数目多,峰形狭窄,尖锐对称,随着结晶度的降低,由于某些衍射峰的合并而出现平缓的丘状峰,随着温度上升到1200℃左右时,莫来石晶体的衍射峰明显表现出来,逐渐失去活性。
     键合强度值反映了热变温度与其活性的关系,300℃之前的强度不高,300℃至900℃的键合强度处于上升阶段或抛物线形状,一般在700℃左右时的抗压强度值达到峰值,这与热分析与XRD偶合,进一步阐述了结构决定性能的论点,强度平均值在40Mpa以上,活性很好,并可以满足对材料结构和功能的要求。
     化学键合材料的工艺是预先制备基体材料,即热变高岭石,再在较低的温度条件下将无机抗菌物质键合到基体材料中,其优越性在于节能环保并且选用的无机抗菌剂具有安全性高,耐久性、耐热性、缓释性和广谱抗菌的作用。
     水玻璃和磷酸键合的抗菌材料均表现出良好的抑菌性能,透明的抑菌圈带在120h内基本保持,持久性好,抑菌圈实验定性直观地表明了材料的抗菌性能。
     平板计数法测定大肠杆菌菌落总数计算抗菌率,定量比较了水玻璃键合与磷酸键合两个系列,前者在同种条件下,抗菌性能均高于后者,抗菌曲线表明随作用时间增加抗菌率上升最直后趋于平缓,而其中Ag系的抗菌性能最佳,1小时杀菌率达到99%以上。
     抗菌粉体的最小抑菌浓度MIC值,两个系列的抗菌制品分别表现出比抗菌银沸石同等或更好的抗菌性能,抗菌粉体的最小抑菌浓度都在4ppm以下,性能远高于国内外同等抗菌制品的MIC值(一般在250ppm左右)。
     热变高岭石层状结构的特点与化学活性,将抗菌剂融合在层状材料的结构中,由于抗菌剂与浆体共同硬化,抗菌剂的存在方式就不仅仅是静电引力作用和范德华力的作用,更多的是以化学键合的形式参与结构的形成,抗菌剂成为了抗菌材料结构骨架的一部分,因而材料具有优良的抗菌性能。抗菌材料的应用实验进一步表明材料具有很好的抗菌性能和安全性能,具有很好的开发潜力。
This paper briefly introduces the development of antibacterial materials domestic and international, completely overviews antibacterial properties and inorganic antibacterial agents and fabrication .It talks over the structure and activity of Metakaolinite in detailed, expatiates feasibility of antiracial materials from microcosmic and macrocosmic point of view. This paper prepares vary series of antibacterial materials by use of chemically bonded inorganic antibacterial agents method, synthetically analyzes the antibacterial function from antibacterial circle and germs total amount measurement as well as MIC value.
    Kaolinite treated at 300 C~1200 C will turn to change into Metakaolinite. Metakaolinite treated at 500 C~900 C partially holds the layer structure characteristic of Kaolinite and have chemical activity, so it matches with the properties of antibacterial materials. XRD indicates preferable crystal kaolinite has much acuity diffract apexes, when temperature ascends 1200 C, crystallized Mullite diffract apex put up, so Metakaolinite gradually dissolved chemical activity.
    The strength value of chemically bonded materials reflects relation between temperature and chemical activity, that is to say .strength value less than 300 C is little, and located going up phase or parabola figure from 300 C to 900 C, commonly reach peak value at 700 C around, it coincidences with XRD and thermal analysis. So it more expatiates issue which structure decides property, that is to say, average strength value at 40MPa above moreover satisfies framework and function to material.
    The craftwork of chemically bonded ceramics (CBC) is first to prepare basic materials, that is to say Metakaolinite. Using chemically bonded inorganic antibacterial agents method, we prepare varies series antibacterial materials, and their advantages are security and antibacterial wear and so on.
    Water glass and phosphoric acid bonded antibacterial materials have well antibacterial properties. Lucid antibacterial circle is holding in 120h, and Ag-series antibacterial rate reaches 99% above in 1h, antibacterial rate rational compares vary series antibacterial materials, and antibacterial curve indicates that it firstly raises then reaches even with time. MIC value is all at 4ppm hereinafter; antibacterial properties outclass other antibacterial materials.
    The layer structure characteristic and chemical activity of Metakaolinite can fuse in antibacterial agents; the research indicates that chemically bonded antibacterial materials take on excellent antibacterial properties and capacious exploder potential.
引文
[1] 魏丽乔,许并社.纳米抗菌材料制备与应用的研究
    [2] 张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001
    [3] 李毕忠.国内外抗菌材料及其应用技术的产业发展现状和面临的挑战.新材料产业,2002,5
    [4] 李毕忠.张伟等.抗菌塑料的研制,塑料科技,1997(6):90~91
    [5] 李毕忠,季君晖,董晓旭等.塑料抗菌剂KHFS—Z及其母料在塑料中的应用,塑料助剂,1998(5),9~11
    [6] 李毕忠,季君晖,董晓旭等.抗菌塑料的研制及其在家电中的应用,工程塑料应用,1999,27(2),19~21
    [7] 李毕忠.抗菌材料产业化急需跨行业应用的技术和产品开发.化工新型材料,2002,10
    [8] 曹德光,陈益兰,邓雪菊等.碱烧粘土水泥的热稳定性[J].建筑材料学报,2000,(2):171~174
    [9] 国家自然科学基金委员会.《自然科学学科发展战略调研报告—无机非金属材料科学》,科学山版社,(1997):104~105;118~120
    [10] Guangrcn Qiao, Darren Delai Sun, Joo Hwa Tay. New aluminium-rich alkali slag matrix with clay minerals for immobilizing simulated radioactive Sr and Cs waste[J]. Journal of Nuclear Materials 299(2001) 199-204
    [11] 杨南如.碱胶凝材料的物理化学基础[J].硅酸盐学报,1996,24(2):209;1996,24(4):459
    [12] 曹德光,陈益兰,欧绍权等.烧粘土的碱胶凝性研究[J].中国非金属矿工业导刊,2000,(2)21~22,28
    [13] 代新祥,文梓芸.新型土壤聚合物研究进展[J].合成材料老化与应用,2001(3):27~30
    [14] 陈益兰,曹德光,刘翠等.碱烧粘土水泥的水化与凝结特征[J].建筑材料学报,2000,(1):84~87
    [15] 冯秀平,杨南如.Ca-SiO_2-P_2O_5-H_2O体系中CBC材料的水化产物(一)水化产物组成[J].南京化工大学学报,1996,18(3):22~27
    [16] 冯晋阳,吴建锋,徐晓虹等.几种抗菌载体之对比[J].佛山陶瓷,2002(2):3~6
    [17] 曹德光,陈益兰.热变高岭石的碱活性及其结构解释[J].硅酸盐通报,2001,增刊:96~99
    [18] 袁鸿吕,江尧忠.地聚合物材料的发展及其在我国的应用前景[J].硅酸盐通报,1998,(2):46~51
    [19] 郑娟荣.覃维祖.地聚物材料的研究进展[J],建筑石膏与胶凝材料,2002(4):11~12
    [20] Della M. Roy. Alkali-activated cements Opportunities and challenges [J]. Cement and Concrete Research 29 (1999) :249~254
    [21] R.Pedabzur, H.I.Shuval, S.Ulitur. Silver and hydrogen peroxide as potential drinking water disinfectants: their bactericidal effects and possible modes of action, Water Science and Technology, 1997,v35,n11—12
    [22] Dewards N, Mitchell S.B., Pratt A. Silver compound antimicrobial composite[J]. Eurpean patent Application,EOS251.783.1987
    [23] 汪山,程继键.磷酸盐玻璃缓释材料应用进展[J].玻璃与搪瓷,1999,27(3):53~57
    
    
    [24] 黄占杰.材料导报.1999,13(2):35~37
    [25] 抗菌剂的抗菌力评价试验法.日本1998年版
    [26] 抗菌制品的抗菌力评价试验法.日本1998年版
    [27] 严玉蓉,聚丙烯/超细粉体多功能共混纤维的研究,华南理工大学博士学位论文,2002.5
    [28] 朱吉禹,郑家齐等编,病原学与免疫学 重庆:重庆大学出版社 1993,P107~108
    [29] 内田真志,化学工业,9(1995):736
    [30] 冯谦,材料导报,12(4),1998:1
    [31] T.N.Kim,Journal of Materials Science: Materials in Medicine,9(1998):129
    [32] 王长平,硅酸盐通报,2(4)(1998):1
    [33] 牟新强,李启甲,刘新年,西北轻工业学院学报,18(2)2000,P107~108
    [34] 林应锐编著,防霉与工业杀菌剂 北京:科学出版社,1987。
    [35] A. Oya. etal, Appl. Clay Sci. 1991(16), P135~142;
    [36] 叶瑛,周玉航等.无机材料学报,2003,18(3):569—573
    [37] 大桥文彦.防霉防菌志,1997,25(2):112—117
    [38] 王宁,李博文,李惠文等.高校地质学报,2000,6(2):306—309
    [39] Rivera-Garza M, Olguin M T, Garica-Sosa I, et al. Microporous and Mesoporous Materials. 2000,39:431—444.
    [40] 杨南如,无机材料测试方法,武汉:武汉工业大学出版社,1993,P187
    [41] 许顺生,X射线分析进展,北京:科学出版杜,1986
    [42] 周志朝,无机材料显微结构分析,杭州:浙江大学出版社,1993,P139;
    [43] 陈世朴等,金属电子显微分析,北京:机械工业出版社,1982
    [44] 刘长龄,关于偏高岭石的X射线分析问题——兼评何宏平等《天燃烧变高岭石的研究》一文,地质找矿论丛 1996;(03)63~72
    [45] 尹荔松,周歧发.焙烧高岭土的相变研究[J].光谱实验室,1998,(03):7~11
    [46] 黄伯岭编著.矿物差热分析鉴定手册[M].北京:科学出版社,1988:313~320
    [47] Hinckley, D. N. Variability in "crystallinity" values among the kaolin deposits of the coastal plain of Georgia and South Carolina, IN E. Ingerson ed. Clays and Clay Minerals. New York. Pergamon press, 1963:291~235
    [48] A.Gultieri, M.Bellotto. Modelling the structure of the metastable phases in the reaction sequence kaolinite-mullite by X-ray scattering experiments, Phys. Chem. Minerals, (1998) 25:442-452
    [49] V.C.Famrmer.The infrared spectra of minerals.北京:科学出版社,1982,244
    [50] 肖士民等,云峰5A抗菌银型沸石的合成及红外谱图.华南理工大学学报(自然科学版),2002,30(4):69—72
    [51] R.L.Frost, J.Kloprogge, S.C.Russell. Et al. Dehydroxylation and structure of alumina gels prepared from trisecbutoxyaluminium. Thermochimica Acta. 1999,3(29): 47~56
    [52] 章莉娟,肖士民,郝俊等.液相离子交换法制备抗菌性沸石.硅酸盐学报.1999,27(3):380~383
    [53] Mendonca,A.F.; Amoroso,T.L.; KnabeI,S.J.. Destruction of gram-negative food-bome pathogens by high PH involves destruction of cytoplasmic membrane. Applied and Environmental Microbiology. 1994,60:4009-4014
    [54] 无锡轻工业学院,华南工学院,天津轻工业学院,大连轻工业学院.微生物学.北京:轻工业出版社.1980:18
    
    
    [55] 程天恩,张一宾.防菌防霉手册.上海:上海科学技术文献出版社.1993:2
    [56] 王宁,陶红,李博文.无机抗菌剂的研究应用现状与矿物材料开发.矿物岩石地球化学通报.1999,18(1):61~65
    [57] AATCC Technical Manual 1981. Test Method 100. 1986
    [58] 川本隆一.日本抗菌产品的发展以及相关标准的制定.家电科技.2003.1:38
    [59] 张昭等.含银无机抗菌剂的研制和抗菌性能初探.稀有金属.2002,26(5)
    [60] 杨辉等.无机抗菌粉体中银价态与抗菌性能研究.硅酸盐学报,2002(30):5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700