用户名: 密码: 验证码:
豆粕生物肽的生产工艺及其对肉鸡生产性能和血液生化指标的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过菌种筛选、摇瓶发酵条件优化、50L发酵罐扩大培养和发酵产物性质分析,系统地研究了利用微生物发酵生产豆粕生物肽的工艺,并对其在肉鸡日粮中的应用效果进行了研究。选用艾维因肉仔鸡320只,随机分为5组,每组4个重复,每个重复16只。第一组为对照组,饲喂基础日粮;其余4组分别添加0.1%、0.5%、1.0%、1.5%的豆粕生物肽。研究在饲粮中添加豆粕生物肽对肉仔鸡生产性能、血液常规、免疫以及对盲肠微生物等项指标的影响。
     豆粕生物肽生产工艺研究确定:(1)细菌fj625作为本试验出发菌株;(2)摇瓶优化的适宜发酵条件为:豆粕15%,葡萄糖1%~4%,氯化镁0.02%,磷酸氢二钾0.01%,初始pH为6~7,豆粕粒度<40目;(3)发酵罐扩大培养培养基组成为:豆粕15%,葡萄糖1.5%,氯化镁0.02%,磷酸氢二钾0.01 %;发酵罐装液量为发酵罐容积的50%;消泡剂用量为有机硅0.04%和PDA0.25%;自然pH;发酵罐接种量为发酵体积的5%;(4)发酵过程中控制发酵温度为30℃;通过分阶段控制搅拌速度和通气量控制溶氧;维持罐压0.5Mpa。
     豆粕生物肽常规营养成分测定结果为蛋白质49.27%,能量16.64MJ/kg,水分11.48%,粗脂肪3.02%,粗纤维11.84%,粗灰分8.6%,钙0.38%,磷0.87%,无氮浸出物15.79%。本试验产物豆粕生物肽分子量均小于8000Da,蛋白质降解为多肽的得率为42.01%,中性蛋白酶酶活为1538±35.26U/g。
     动物试验结果表明:(1)肉鸡日粮中添加豆粕生物肽对前期、后期和全期的日增重均随添加量的增加逐渐增加,至添加量为1.5%时,与对照组相比差异极显著(p<0.01)。从全期来看,日增重分别比对照组增加了3.03%、3.52%、4.60%、7.40%。(2)对平均日耗料的影响,从全期来看,各试验组均高于对照组,分别比对照组增加了4.75%、4.54%、3.33%、3.06%。其中第2、3组与对照组相比差异显著(P<0.05),各试验组随着日粮中豆粕发酵肽粉添加量的增加,平均日耗料呈下降的趋势。(3)对料肉比的影响,试验前期,日粮中添加量为1.5%时,料肉比降低了7.36%,显著低于对照组(P<0.05)。其它各试验组与对照组差异不显著。(4)试验前期,日粮中添加豆粕生物肽1.0%、1.5%每公斤增重分别比对照组节约饲料成本0.09 yuan/kg和0.15yuan/kg。后期,添加1.5%节约饲料成本0.05 yuan/kg。(5)日粮中添加豆粕生物肽,对21日龄肉仔鸡血清蛋白无显著影响(P>0.05),血清尿素氮各试验组与对照组差异不显著(P>0.05)。42日龄肉仔鸡血清测定结果表明,各试验组血清总蛋白含量均高于对照组,其中第4组与对照组差异显著(P<0.05)。血清球蛋白各试验组间差异不显著(P>0.05)。各试验组血清白蛋白含量均高于对照组,其中第3组与对照组差异显著(P<0.05),第4组和第5组与对照组差异极显著(P<0.01)。血清尿素氮各组间差异不显著。(6)试验日粮中添加豆粕发酵肽粉对21日龄肉仔鸡免疫器官(脾脏、胸腺和法氏囊)指数无显著影响。42日龄肉仔鸡脾脏指数,第3组与对照组差异极显著(P<0.01),第4组与对照组差异显著(P<0.05)。法氏囊指数随豆粕生物肽添加
    
    量的增加逐渐增加,与21日龄的趋势相同。其中试验3组和4组与对照组之间差异
    显著(P<0.05):第5组与对照组之间差异极显著(P<0.01)。‘7)肉鸡21日龄与对
    照组相比随着添加量的增加,盲肠中大肠杆菌数量逐渐减少。当添加量为1 .0%时,
    大肠杆菌降低数量与对照组相比差异显著(P<0.05),添加量为1.5%时,与对照组差
    异极显著(P<0.01)。42日龄,盲肠大肠杆菌计数,试验组均低于对照组,随添加量
    的增加,盲肠中大肠杆菌数量有下降趋势,但各试验组与对照组相比均未达到显著水
    平。(幻添加大豆降解肤粉对胸肌嫩度有增加的作用,21日龄屠宰的肉仔鸡胸肌嫩
    度除第2组外,其余各组均比对照组增加,但未达显著水平(P<0.05)。42日龄屠宰
    的肉仔鸡胸肌嫩度第4组与对照组差异极显著(P<0.01),第5组与对照组差异显著
     (P<().05)。
In this test, the production method of using bacterium fermenting soybean meal through selecting strain, optimizing the condition in the spinner flask, culturing in the fermenter and analysing the character of the ferment production was studied. And the effect of the production on the broilers was studied. 320 1-day-old Avain broilers were randomly allotted into five groups with 4 replicates of 15 birds each replicate. Group 1 was the basic group, fed basic diet, the other four groups were fed with basic diets adding 0.1%, 0.5%, 1.0%, 1.5% the biologic peptide of soybean meal respectively, studying the effect on the production performance, serum, immunity and the caecum microorganism of broilers.
    The processing technology of the biologic peptide of soybean meal was determined as follows: (1) bacterium fj625 was the fermented strain; (2) the optimum conditions in the spinner flask were: soybean meal 15%, glucose 1%~4%, MgCl2 0.02%, K2HPO3 0.01%, pH 6-7, granularity of the soybean meal < 40 holes; (3) the fermentation medium of the fermentater contained: soybean meal 15%, glucose 1.5%, MgCl2 0.02%, K2HPO3 0.01%; the fermentated volume occupied by 50% of fermenter cubage; natural pH; inoculation volume 5%. (4) during the period of fermentation, the temperature was 30C, controlled the density of oxygen by controlling the agitation speed and ventilate; maintained the pressure at 0.5Mpa.
    The nutrition level of the biologic peptide of soybean meal were: CP 49.27%, TE 16.64MJ/kg, EE 3.02%, CF 11.84%, Ash 8.6%, Ca 0.38%, TP 0.87%, NFE 15.79%. The molecular weight of the biologic peptide of soybean meal were all smaller 8000Da, the ratio of the peptides from the soybean protein was 42.01%, neutral proteinase activity was 1538?5.26U/g.
    The result of animal experiment showed that: (1) the average daily gain of the experiment groups increased with the increasing of adding level of the biologic peptide of soybean meal. It was significant difference between the group 5 (adding 1.5%) and the group l(p<0.01). In the whole period (0~6w), comparing to group 1, the average daily gain of the group 2, 3, 4, 5 were increased by 3.03%, 3.52%, 4.60%, 7.40% (2) In the whole period (0~6w), comparing to group 1, the average daily feed intake of the group 2, 3, 4, 5 were increased by 4.75%, 4.54% 3.33% 3.06%. The group 4 and group5 could increase
    
    
    the average daily feed intake significantly (p<0.05). With the increasing level of the biologic peptide of soybean meal, the average daily feed intake was in the downward. (3) In the prephase period (0-3w), comparing to control group, adding 1.5% biologic peptide of soybean meal to broiler diets decreased F/G by 7.36%(p<0.05). (4) In the prephase period (0~3w), the diets containing 1.0%, 1.5% biologic peptide of soybean meal saved the feed cost 0.09 yuan/kg and 0.15 yuan/kg respectively. In the anaphase period (4~6w), the diets containing 1.5% biologic peptide of soybean meal saved the feed cost 0.05 yuan/kg. (5) It was no significant difference of the serum protein and serum urea nitrogen of the 21-day broilers (p>0.05). Comparing to the control group, the TP of the 42-day broiler's serum of the experiment groups were increased and there was significant difference between group 4 and the control group (p<0.05). There were no significant differences of the globin among the experiment groups (p>0.05). The con
    tent of the albumin of the experiment groups adding the biologic peptide of soybean meal were higher than control group. It was significant difference between the group 3 and the control group (p<0.05). Group 4 and Group 5 could increase the albumin significantly (p<0.01). The serum urea nitrogen was not significant changed (p>.05). (6) There were no significant differences of the immunity organs index by adding the biologic peptide of soybean meal. Increasing the spleen index of the 42-day broiler. It was significant difference between the group 3 and the group 1 (p<0.01) and it was significant difference between the group 4 and the groupl (p<0.05). The trend was same as the 21-day's. There w
引文
[1] 杨洁彬,王晶.食品安全性[M].北京:中国轻工业出版社,1999.
    [2] 刘亚力.抗生素替代品的研究进展[J].中国饲料,1999,(9):12~13.
    [3] 刘辉.绿色饲料添加剂的研究与应用[J].饲料研究,2002,(7):18~21.
    [4] Baker O H. Amino acid nutrition in the chick[J]. Draper.H.H.ed.Advances in Nutrition Research. 1977 299.
    [5] Pinchasou Y, et al. Broiler chicken response to low protein diets supplemented with synthetic animo acids[J]. Poul. Sci. 1990, 69: 1950~1955.
    [6] Jensen L S. Are peptides needed for optimum animal nutrition?[J]. Feed management. 1991, 42: 37~40.
    [7] Webb K E, Jr J C, Matthews, D B Dirienzo. Intestinal absorption of protein hydrolysis products: A review[J]. Anim Sci. 1990, 68: 3011~3022.
    [8] Newey H and Smyth D H. [J] Phsiol, 1960, 152: 367.
    [9] Rubino, A M Field, H Shwachman. Intestinal transport of amino acid residues of dipeptides Ⅰ. Influx of the glycine residue of glycyl-L-proline across mucosal border [J]. Biol. Chem. 1971, 246: 3542-3550.
    [10] Ganapathy V, F H Leibach. Peptide transport in intestinal and renal brush border membrane vesicles [J]. Life Sci, 1982, 30: 2137.
    [11] Fei, Y J, Y Kanai, S Nussberger, V Ganapathy, H H Leibach, M F Romero, S K Singh, W F Boron, M A Hediger. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature (Lond.) [J]. 1994, 368: 563~566.
    [12] 李文立,刘炳义.饲料添加剂与饲料安全,山东畜牧兽医,2003(3):19~20
    [13] Bronk J R, Lister N, Helliwell P A. Syereospecficity of dipeptide transport in rat small intestine in vitro[J]. Physiol, 1993, 467: 189.
    [14] Vincenzin, M T, Iantomasi, F Favilli. Glutathione transport across intestinal brush-border membrances effects of ions , pH , membranepotential , and inhibitors [J]. Biochem. Biophys. Acta. 1989, 987 (1): 29~37.
    [15] Matthews D M . Protein Absorption , Development and Present State of the Subject[J]. Wiley-Liss, New York. 1991.
    [16] Reeds, P. J, Fuller, M. F, Cadcnhead, A, Lohley, G. E. and Mcdonald, J. D, 1981. Effects ofchanges In the Intakes ofproteln and non—protein energy on whole—body protein turnover In growing pigs[J]. Brl. K. Nutri. 45: 539~546.
    [17] Mordenti A, et al. Nitrogen nutrition in the pig, biological role and zootechnical efficiency of free amino acids and oligopeptides added to the diet in small doses[J]. Zootechnicae Natriaone Animale. 1980, 6: 249~270.
    [18] 施用晖,乐国伟,左绍群,等.1996a.产蛋鸡日粮中添加酪蛋白肽对产蛋性能及血浆肽和铁、锌含量的影响[J].四川农业大学学报,14(增刊):46~50.
    [19] 张日俊.生物技术在饲料工业中的应用[J].饲料工业,2001,22(8):1~6.
    [20] Grirnble G K. The significance of peptides in clinical nutrition[J]. Annu. Rev. Nutr. 1994 14:: 419~447.
    [21] Yamashita O. Enzymatic modification of proteins in foodstuffs (Ⅱ): Phenomenal survey on α
    
    -chymotryptic plastein synthesis form peptic hydrolyzates of soy protein[J]. Agric Biol Chem. 1970, 34: 1484~4491
    [22] Hevia P, Olcott H S. Flavour of enzyme-solubitized fish protein concentrate fractions[J]. Agric Chem. 1977, 25: 772~775.
    [23] Dambmann C, Aunstrup K. Proteinases and their inhibitors, structure, funtion and applied aspects Oxford[J]. Pergamon Press. 1981, 231~244.
    [24] Belkinda V C Protein Hydrolysates for reducing water Activity in Meat Products[J]. Food Sci. 1986, 51(5): 1156~1161.
    [25] Sook Y K. Functional Properties of Proteolytic Enzyme Modified Soy protein Isolates[J ]. Adric Food Chem, 1990, 38(3): 651~656.
    [26] 张延坤,刘炳智.大豆肽在食品工业中的应用[J].食品工业,1997,(3):5~6.
    [27] 刘大川.大豆肽的功能特性研究[J].中国油脂,1998,(3):17~19.
    [28] 郭敏允.用豆粕生产大豆蛋白肽饮料[J].食品科学,1992,10:33~35.
    [29] 李书国.大豆多肽饮料加工工艺研究.西部粮油科技[J].1999,22(6):14~16.
    [30] 陈美珍,余杰.大豆多肽饮料的工艺研究[J].软饮料特辑,2002,(2):13~14.
    [31] 李书国.大豆多肽的功能特性及加工工艺[J].粮油食品科技,2000,8(1):14~15.
    [32] 陈怡宏.蛋白质酵素水解物与医疗调理营养[J].科学与技木,台湾,2001,33
    [33] Badal c s, Kiyoshi H. Debittering of Proteinhydrolyzates[J]. Biotechnology Advances, 2001, 19: 355~370.
    [34] 葛文光.大豆多肽的生理功能及作用效果[J].无锡轻工大学学报,1996,15(3):272~277.
    [35] 夏向东.生物活性肽在饲料工业中的应用及其商业化生产[J].粮食与饲料工业,2001,7:32~34.
    [36] Boon Visut S, Whitaker. Agrie Food Chen, 1979, 24:1130.
    [37] 邓勇,吴煜欢,微生物蛋白酶对大豆分离蛋白水解作用的研究[J].食品科学.1999,6:42~45.
    [38] B C Weimer, C J Oberg, L V Moyes, R J Brown, G H Richardson Comparison of Classical on Exchange Amino Acid Analysis and α-phthaldialdthyde Methods to Characterize Proteolysis by Lactobacillius Bulgaricus[J]. Dairy sci, 1989, 72: 2873~2876.
    [39] 北京理化分析测试技术学会编印.氨基酸分析技术[M].北京:1984,3~43.
    [40] 苏拔贤,范培昌,程明哲,等.生物技术导论[M].北京:人民教育出版社,1978 9
    [41] 关于商品肉禽屠宰测定和确定一些解剖部位的建议[M].黄鸡资料汇编.1995.
    [42] 刘万峰,陈润生.鸡肉嫩度(剪切力值)测定前处理方法的研究[A].养猪研究,1994.
    [43] Bouton P E, Harri P V Ratchiff, D. Effect of cooking temperature and time on the shear properties of meat[J]. Food Sci, 1981, 46: 1082.
    [44] Mollier, A J, Bouton, P E, Harri, P V, Jone P N. A comparison between two different shear systems used for measuring meat tenderness[J]. Food Sci, 1982, 47: 1354.
    [45] 郝黎仁,樊元,郝哲欧,等编著.SPSS实用统计分析[M].中国水利水电出版社,2003.
    [46] 曲永询.大豆肽的特性及其应用[J].中国油脂,1996,21(2):3~5.
    [47] 肖安乐,骆承庠.乳清蛋白质的水解利用[J].中国乳品工业,199l,19(4):159~163.
    [48] 王凤翼,王忠德.关于α s—酪蛋白控制水解条件的研究[J].中国乳品工业,1994,22(2):59~63.
    [49] 张和平.乳清蛋白的热稳定性及其影响因素[J].国外畜牧学:草食家畜,199l(2):63~64.
    [50] 张亚非,周羽并,吴凤兰等.酪蛋白磷酸肽(CPP)对大鼠钙吸收利用的影响[J].营养学
    
    报,1994,16(1):73~77.
    [51] 于江虹.酪蛋白磷酸肽(CPP)的生理活性及其在功能食品中的应用[J].中国食品添加剂,1995(1):14~20.
    [52] 从建民.大豆肽及其生物活性的研究[D].吉林:吉林农业大学硕士学位论文,2003.
    [53] 何国庆.食品发酵与酿造工艺学[M].中国农业出版社,2001.
    [54] 马学强,赵毅,石严国.大豆蛋白水解物中肽分子分布的研究[J].中国粮油学报,2001,16(6):15~17.
    [55] 李富伟.肽的制备工艺及肽对肉鸡生长性能影响机理研究[D].北京:中国农业科学院,2003.
    [56] 储炬,李有荣.现代工业发酵调控学[M].化学工业出版社.
    [57] 高启平,乐国伟.饲粮完整蛋白比例对肉雏鸡生产性能和养分利用的影响[J].畜牧兽医学报,1999,30(5):421~426.
    [58] Parsini P, Scicipioni R, Marchetti S, Mordenti A. Effects of peptide components in a proteolysate in piglet nutrition[J]. Zootechnicae Nutriz-ione-Animale, 1989, 15: 637.
    [59] Fante P D. HIV, breast-feeding and under-5mortality: modeling the impact of policy decisions for or against breast-feeding[J] Tro. Medi and Hyg, 1992, 96 (4): 203~211.
    [60] Chen M L, Rogers O R, Harper A E. Observation on protein in vivo. 4. Further observation of gastrointestinal contents of rats fed different dietary proteins[J] Nutr. 1962, 76: 235~241.
    [61] Newey H, Smyth D H. Intestinal absorption of dipeptides[J]. Physiol (London), 1957, 135: 43.
    [62] Newey H, Smyth D H. The intestinal absorption of some dipeptides[J]. Physiol (London). 1959, 154: 48.
    [63] Newey H, Smyth D H. Cellular mechanisms in intestinal transport of amino acids[J]. Physiol.(London). 1962, 164: 527.
    [64] Adibi, S A. Intestinal transport of dipeptides in man: Relative importance of hydrolysis and intact absorption[J]. Clin. Invest, 1971, 50: 2226.
    [65] 乐国伟.寡肽在家禽蛋白质营养中的作用[M].雅安:四川农业大学,1995.
    [66] Adibi, S A, Philips, E.Evidence for greater absorption of amino acids from pepetide than from free form in human intestine[J]. Clin. Res. 1968, 16: 446.
    [67] Takuwa N, ShimadaT, Matsumoto H, Hoshi T. Proton-coupled transport of glycylglycine in rabbit renal brush-border membrane vesicles.Biophys. Acta. 1985, 814:: 186.
    [68] Ganapathy V, Leibach F H. Is intestinal peptide transport energized by a proton gradient Am[J]. Physiol, 1985, 249: 253.
    [69] Daniel H, Boll M. Wenzel U. Physiological importance and characteristics of Peptide transport in intestinal epithelial cells. In: Souffrant W B. Hagemeister H. (Ed)6th international Symposium on Digestive Physiology in Pigs[J]. DummerstotfPub, 1994,1: 1~7.
    [70] 王丽娟.蛋白质饲料在鸡胃肠道中的肽类释放规律及其吸收特点的研究[M].北京:中国农业大学,2003.
    [71] Bamba T. et al. Effects of small peptides as intraluminal abstrates on transport carries for amino acids and peptides[J]. Clinc. Biochem. Nutr, 1993, 15: 33~42.
    [72] Brandsch M H, Leibach F, Mahesh V B, et al. Calmodulin-dependent modulation of pH sensitivity of the amino acid transport system in human placental choriocarcinoma cells. Biochim[J]. Biophys. Acta, 1994, 1192(2): 177~184.
    [73] 赵昕红.仔猪小肠对二肽的吸收特点[M].北京:中国农业大学,1998.
    
    
    [74] Hara H, Funabili R, Iwata M, Yamazaki K I. Portal absorption of small peptides in rats under unrestrained conditions[J]. Nutr, 1984, 114: 1122.
    [75] Laurent B C, Moldawcr L I, Youngg V R, Blstrlan B R, Blackburn G L. Whole—body leuclne and muscle protein kinetics In rats fed varying proleln Intakes[J]. American J PhVslo. 1984, 246: 444~451.
    [76] Reeds P J, Fuller M F, CadcnheadA, Lohley, G E, Mcdonald J D. Effects ofchanges In the Intakes of protein and non—protein energy on whole—body protein turnover In growing pigs[J]. Brl. K. Nutri, 1981, 45: 539~546.
    [77] 罗莉,叶元士,林士梅.相同EAA模式下不同蛋白水平对草鱼肌肉、肝胰脏蛋白周转代谢的影响[J].2002,14(3):24~28.
    [78] Morch M, Rerat A A. Comparison of net protein utilization of milk protein mild enzymatic hydrolysates and free amino acids mixtures with a close pattern in the rat[J] Parenter. Enteral. Nutr, 1993, 17(4): 355~363.
    [79] Boza J J, et al. Protein and enzymatic protein hydrolysates. Nitrogen utilization in starved rats[J]. Brit. J. Nutr, 1995, 73: 65~71.
    [80] Adibi S A, Morse E L. The number of glysine residues which limits intact absorption of glysine oligpeptides in human jejnum[J]. Clin. Invest, 1977, 60: 1008.
    [81] Baketwell F R C. Peptide utilization by tissues: current status and application of stable isotope[J]. Proc Nutr. Sci, 1994, 53: 457~464.
    [82] 乐国伟.肽在动物蛋白质营养中的作用——小肽在动物氨基酸吸收中的作用[J].四川农业大学学报,1996,14(增刊):19~26.
    [83] Rerat A, Nuncs C S. Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusion of a milk enzymic hydrolysate or of free amino acids[J]. Br. J. Nutr, 1988, 60: 121~136.
    [84] Funabik R, et al. In vivo effect of L-Leu administration on protein synthesis in mice[J] Nutr.. Biochem, 1992, 3: 401~407.
    [85] Nam Y J, Noguchi T, Funabiki R, et al. Correlation between the urinary excretion of acid soluble peptide, fractional synthesis rate of a whole body proteins, and plasma immunoreactive insulin-like growth factor-Ⅰ/Somatomedin C concentration in the rat[J]. Br. Nutr, 1990, 63: 515~520.
    [86] Wang S, et al. Utilization of methionyl peptides as a source of methionine for the synthesis of secreted protein by mouse explants and cultured and bvine mammary epithelial cells[J]. Dair. Sci, 1994, 77 (Suppl.) 354.
    [87] Mary K. Use of Hydrolysate-Based products In Special Medical Diets[J]. Food Technology, 1994, 10: 23~25.
    [88] Ven, Frokjar. Use of hydrolysate for protein supplementation[J]. FoodTechnology, 1994, 10: 11~13.
    [89] 王世英.大豆功能短肽的制备及生理活性的研究生物学通报[J].2001,36 (1):5~7.
    [90] Christopher T, Cordie. Control of Food Allergies Using Protein Hydrolysates[J]. Food Technoiogy, 1994, 10 (11): 58~63.
    [91] 高峰,江芸.寡果糖对断奶仔猪生长、代谢和免疫的影响[J].畜牧与兽医,2001,33(6):8~9.
    [92] 李振,李萍.蛋白质营养与家禽免疫[J].中国饲料,2002,18:22~23.
    [93] 钱存柔,黄仪秀.微生物学实验教程[M].北京:北京大学出版社,2001,66~67.
    
    
    [94] 何明清.对鸡只不同日龄不同肠断正常菌群的研究[J].中国人兽共患病杂志,1986,2(1):22~24.
    [95] 刘晨黎.鸡盲肠微生物微生态调控研究进展[J].中国家禽,2000,(10):30~31.
    [96] Fuller R. Probiotics in man and animals[J]. Appl Bacteriology, 1989(66): 365~378.
    [97] Evans E W. Use of milk proteins in formulated foods, in Rvelopments in Food proteins, 1, B J F Hudsvn(Ed) [J]. Applied Science Publishers. London, 1979, 131.
    [98] 黄明,刘冠勇,罗欣.影响肉嫩度因素的探讨[J].肉类工业,2000(11):26~28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700