用户名: 密码: 验证码:
一类高阶扩散方程的差分格式与并行计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Difference Scheme and Parallel Computation for a Class High Order Diffusion Equations
  • 作者:张晔
  • 论文级别:硕士
  • 学科专业名称:计算数学
  • 学位年度:2004
  • 导师:马富明
  • 学科代码:070102
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-05-01
摘要
在自然科学的许多领域中,很多现象是用抛物方程或方程组描述的。因此,用有限差分方法数值求解抛物偏微分方程问题具有重要的理论意义和应用价值,有限差分方法现有的研究工作大都是关于人们所熟悉的二阶抛物方程,至于高阶扩散方程,相应显格式的稳定性条件比较苛刻,并且其隐格式要大规模求解7对角方程组,因此有必要寻找有效的方法解决这类问题。
     本文针对一类高阶扩散方程的初边值问题,利用有限差分法给出了其显式差分格式、隐式差分格式,分析了格式的局部截断误差和稳定性条件;并且还对该问题进行了整体区域分裂,给出了并行有限差分格式,在内界点上使用显式计算,然后在每个子区域内使用隐式格式联立求解整个子区域,在同一时间层上各子区域的计算是完全并行的。这种局部的大步长显式计算一般不会使该算法的整体收敛阶降低,具有计算简单,易于实现的特点,其数值试验结果
    
    表明,在精度与古典显格式相当的情形下,这种并行计算格式的稳
    定性比显格式要好得多,同时还能实现计算的并行.
    本文的主要工作分为以下几部分.
    1.线性问题的有限差分近似
    我们考虑如下典型六阶抛物方程的初边值问题
    丝_、塾一亚一些
    月子月,6月,4月,2
    仁产LL沪‘LL沪J沪L产J
    边值
    (2)
     0
     一一
     ﹃.立
     n曰
     一一
     工
     U一.5
    丘一X
    口一a
     二
     0
     一一
     工
     祝一3
    3一X
    口一口
     一一
     0
     一一
     X
     舰一X
    口一口
    以及初值
     二(x){‘一。=。o(x).
    利用差商近似代替微商的方法,得到如下显格式
    (3)
    。罗+‘一“:。梦+。一:(6k+h,)。孔,+:(15“+4h2一h‘)。孔,+(l一6:h,一20“r
    +2:h‘)。罗+:(15k+4h,一h‘)二罗一,一r(6k+h,)。乡一,+kr”乡一3,
     了=O,l,2,…,N
    和隐格式
     一从。州十:(6‘十护)。那+:尸一‘5左一4h,)u界户十(,+ZOk:+6动2
     一2:心可十l+:时一15“一4的心扮+:渺+hz)u黔一r“可绪一岭
    边界条件为
     可二“与“又一了一u失十二:二1,2,3.
    
    关于显、隐格式的稳定性及局部截断误差有如下两个定理.
    定理1设函数斌x,t)充分光滑
    件为
    厂<二,,犷
     32凡
    且局部截断误差为衅
    显式格式(3),(4),(6)的稳定性条
    =o(二十矿).
    定理2设函数试二,约充分光滑,隐式差分格式(3),(5),(6)的局部
    截断误差为衅十‘=O(二+矿),且该隐式差分格式是绝对稳定的.
    2.一类非线性问题的有限差分近似
    使用适当的差商近似替代方程(l)中的微商,得到如下的差分显
    格式方程
    可+‘一rk”头。一6rk“界2+l加无可、,+(1一20r助畔+l5r凡可一1
    一6·、视:2十·、祝、3一h3”(
    “梦+:一“罗
     /u乎,,一祝乎、
    +3rh‘H戈一才三夕
    、、、,户/n少
     -一牡
    一3:。3H子…竺二卫呈三、
     \九/
     /祝梦,一牡梦八
    +r尸叹一沐厂二全夕
    +Th‘(A(。孔1)
    一ZA(“梦)+A(“罗一,))·
    (,=o,l,2,二
    (7)
    对典型情形H(s)=,,将川司写成。Al回,则方程(l)可写成如下
    形式
    几。.几6,几4。.门2
    L,“】口以.口u口了月z、、n
    京一‘百二百十百石一万二百又u八1又,a))=U.
    L产‘几吸少J产以沈,少J砂
    (8)
    使用适当的差商近似替代方程(s)中的微商得如下差分隐格式
    一:执招+r脉十码。粼一:尸A飞(可十1)+1肤+“峭)心衬
    +(l+Zokr+6rhZ+Zrh‘A,(二梦))二梦十‘一:(h‘A,(二罗一:)+15无+4h2)“梦士子
    +r泌+钧。尽一:凡可绍一畔
    (9)
    
    关于非线性显格式及隐格式的局部截断误差有如下定理.
    定理3设函数万(s),几(。)充分光滑,贝,J分另,」由(3),(6),(7)和(3),(6),(9)
    式定义的非线性显格式,非线性隐格式的局部截断误差为衅=O(丁十
    矿).
    数值试验表明非线性显格式的稳定性几乎与线性显格式的稳定
    性相同.
    3.并行差分格式
    假设了=xk一1,云=x*,厂=从+,,k是整数,大步长△x=D气D是
    正的整数,且△X兰min风_l,1一尸).如果:=O或:=
    时,网格点(x;,沪)称为边界点,如果j=k一1,或j二
    且n>o时称之为内界点,称其它网格点为内点.
    N,或者n=o
    无,或]=丸+1
     本节构造并行差分格式的基本方法是:在内界点使用向前差商
    替代关于时间的求导运算,在内点及边界点使用向后差商替代关于
    时间的求导运算,在内界点用大步长△x,在其它点使用小步长h及
    中心差商对方程中的关于空间变量的各项求导运算进行替代.
    线性情形的并行差分格式
     由于方程(l)含有六阶偏导数,所以应取三个内界点阿,tn),(至,t“),
    (、“,tn).我们定义问题(1),(3),(6)的近似解为网格函数U={。罗},它满
    
    足如下的差分方程,在内界点标‘,t“),(‘,t”),(云‘,,tn)
    心+‘一可_
     k
    △X
    、(“孔3。一6“孔Zn+15“孔。一20“梦+15u二。一6“)2。
    +“13。
    +
    △X
    、(“孔Zn一4“梦+D+6“罗一4“梦一n+“梦一2。)
    +
    △X
    、(“孔D一2”梦+“梦一。),
    j=k一1,丸,k+1.
In many science fields, a lot of phenomena is described by parabolic equation or parabolic system. Hence, numerically solving parabolic partial differential equation by finite difference method is significant in theory and application. As to construction of parallel finite difference schemes of sixth order and exceeding sixth order parabolic equations,existing work is seldom. As to
    the stability of explicit scheme of sixth order diffusion equation, we have the
    condition r < 1/32A;, where r = h and t are step sizes in space and in time
    respectively. In order to solve implicit scheme of sixth order, we have to solve 7's diagonal matrix , so valid parallel finite difference method for solving sixth order parabolic equations is more necessary.
    In this paper ,we will pay much attention to constructing practical and effective finite difference method for sixth order parabolic equations. Our main
    
    
    
    results can be stated as follows.
    1. Finite difference schemes for sixth order linear parabolic equations
    We consider the initial-boundary value problem of sixth order parabolic
    equations as follows.
    which boundary conditions are
    and initial condition is
    (3)
    . We have explicit scheme and implicit scheme as follows 1.1 Explicit Scheme
    
    which boundary conditions are
    (5)
    1.2 Implicit Scheme
    
    which boundary conditions are
    Then we have the following result.
    Theorem 1 When r < 1/32k(r =T/h6), explicit scheme is stable, and its
    truncation error is Rnj=O(r + h2); implicit scheme is absolutely stable, and its truncation error is also Rnj = O(r + h2).
    2. Finite difference schemes for sixth order nonlinear parabolic equations
    In this section, we construct schemes of sixth order nonlinear parabolic equation as follows.
    When H(s) = s, uA(u) is A(u) ,we can achieve 2.1 Explicit Scheme
    
    
    2.2 Implicit Scheme
    (9)
    Theorem 2 If H(s)andA(u) are smooth enough and bounded, truncation errors of explicit scheme and implicit scheme are Rnj = O(t + h2).
    3. Finite difference parallel schemes for sixth order parabolic equations
    In this section , we construct finite difference parallel schemes for sixth order parabolic equations as follows.
     where A; is a integer; X = Dh,where D is a positive integer, and X < min. We will refer to points (xj,tn) as boundary points if i = 0 or N, or if n = 0. Similarly, we refer to them as interface points and n > 0. Otherwise, they are interior points.
    In advancing the solution from time level t = tn-1 to t = tn, one should first computes the values of U at the interface, which requires to simutaneously use the explicit scheme at the interface points. After the interface values have been computed, the implicit computation on the subdomains can be done in parallel.
    
    
    3.1 Finite difference parallel schemes for sixth order linear parabolic equations
    When are interface points, we have the equation
    when (xj,tn) is interior point or boundary point, we have the equation
    3.2 Finite difference parallel schemes for sixth order nonlinear parabolic
    equations
    When are interface points, we have the equation
    
    when (xj,tn) is interior point or boundary point, we have the equation
    In this paper.we achieve explicit scheme and implicit scheme for sixth order diffusion equation, and improve one domain decomposition algorithm with good stability and high accuracy.
引文
[1] 高文杰,尹景学,一类广义扩散模型解的存在性,数学年刊,2002.23A:129-136.
    [2] 刘长春 一类高阶扩散方程解的性质,吉林大学学报,2003,41:144-146.
    [3] C.N.Dawson,Q.Du and T.F.Dupont, A finite difference domain decomposi- ion algorithm for numerical solution of the heat equation, J.Math.Comp, 1991,57: 63-71.
    [4] D. J.Evans and A.R.B.Abdullah, A new explicit method for the solution of (?)u/(?)t=(?)~2u/(?)x~2+(?)~2u/(?)y~2,Intern.J.Computer Math.1983,14:325-353.
    [5] 张宝琳,申卫东,热传导方程有限差分区域分解算法的若干注记,数值计算与计算机应用,2002,23(2):81-90.
    [6] 张宝琳,陆金甫,抛物型方程有限差分并行算法研究的若干进展,第五届全国并行计算学术会议论文集,陕西科学技术出版社 1997,1-9.
    [7] 张宝琳,谷同祥,莫则尧,数值并行计算原理与方法,北京:国防工业出版社,1999.
    [8] 李荣华,冯果忱,微分方程数值解法(第三版),高等教育出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700