用户名: 密码: 验证码:
微量元素对新型铸造高Cr热作模具钢热疲劳性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热疲劳是热作模具的主要失效形式。据统计,热作模具中由于热疲劳而导
    致失效的占模具失效总量的 60~70%。我国每年消耗热作模具钢数约 4~5 万吨,
    价值数亿至数十亿元。因此,提高热作模具的热疲劳性能具有重大的国民经济
    意义。模具钢的热疲劳研究是热疲劳研究的代表方向之一。以往关于模具钢热
    疲劳问题的研究在选材上几乎全部集中于锻造材料,而对于铸造模具钢此方面
    的系统研究则比较少见。尤其值得一提的是,近些年来铸造模具材料的研究获
    得了飞速发展,以铸代锻使模具生产大大降低了成本,缩短了生产周期。因此,
    铸造模具材料的热疲劳研究是具有实际理论意义的。
     本文以吉林大学自行研制开发的新型铸造高 Cr 热作模具钢为研究对象,
    通过光学显微镜、SEM、能谱分析、冲击韧性、硬度、抗氧化性试验、热稳
    定性试验以及热疲劳试验等,研究了微量元素(Y、Ce 和 N)对新型铸造高
    Cr 热作模具钢织、力学性能、抗氧化性与抗热疲劳性能等的影响规律及作用
    机制。
     本研究在钢中加入微量元素(Y、Ce 和 N),通过分析实验结果发现:
    (1) 本研究在新型铸造热作模具钢中加入微量元素 Y、Ce、N,并发现当 Y、
     Ce、N 分别为 0.01、0.03、0.06wt. %时,本研究钢的性能最佳。与未加
     微量元素的钢相比,晶粒度提高 25%,组织中的夹杂物尺寸明显减小约
     2 倍,形态由不规则的块状转变为椭球状或球状,分布也较变质前更加
     均匀;韧性提高 150%,硬度提高 14%;且在相同的热疲劳实验条件下
     (650℃?20℃),新型铸造高 Cr 热作模具钢的抗热疲劳性能与 H13 相
     比提高 1 倍,与未加微量元素的钢提高 1.5 倍。
    (2) 本研究发现,单独加 Y 变质后,与未变质钢相比,主裂纹扩展速率减
     小 1 倍,表面龟裂不明显,热疲劳性能提高 1 倍左右,硬度衰减值降低
     43%,抗软化能力得到提高;并且当 Y 含量为 0. 01 wt. %时,热疲劳性
     83
    
    
    能达到最佳;硬度和韧性分别提高 14%和 98%。
    (3) 单独加 Ce 变质后,与未变质钢相比,裂纹萌生寿命得到提高,主裂纹
     扩展速率减小 1 倍,表面龟裂不明显,热疲劳性能提高 1 倍左右,硬
     度衰减值降低 39%,抗软化能力得到提高;并且当 Ce 含量为 0. 03 wt.%
     时,热疲劳性能达到最佳;硬度和韧性分别提高 12%和 104%
    (4) 单独加微量元素 N 后,较未加 N 钢相比,主裂纹长度变短,裂纹扩展
     速率减小 1 倍,表面龟裂不明显,热疲劳性能提高 1 倍左右,硬度衰减
     值降低 43%,抗软化能力得到提高;并且当 N 含量为 0. 06 wt.%时,热
     疲劳性能达到最佳;硬度和韧性 13%和 100%。
    (5) 新型铸造高 Cr 热作模具钢具有非常优良的抗氧化性。在 630℃保温 20
     小时的同一实验条件下,Y-Ce 混合变质的试样抗氧化性较未变质的铸
     造高 Cr 钢和 8407 钢提高分别提高 47.86%和 53.07%,与德国蒂森钢相
     当。
    (6) 新型铸造热作模具钢的热疲劳裂纹的扩展是沿晶扩展。氧化物或硫化物
     的形态、尺寸的不同对裂纹的扩展的影响不同,一般地,形状不规则、
     带棱角的氧化物在疲劳扩展过程中,容易产生应力集中,这些氧化物像
     “楔子” 一样加速裂纹的扩展;一些形状规则的方块状的氧化物同样
     会加速热疲劳裂纹扩展;而一些椭圆状或球状的氧化物不易产生应力集
     中,而且在热疲劳裂纹遇到这些氧化物时,需要绕道扩展,增加了裂纹
     扩展路径,减缓了裂纹扩展速率。
    (7) 新型铸造高 Cr 热作模具钢的热疲劳机制与氧化密切相关。氧化大大地
     促进了热疲劳裂纹的萌生与扩展。热疲劳裂纹在晶界或第二相质点与基
     体脱开处萌生,并沿着被氧化的晶界迅速扩展,新型铸造热作模具钢中
     高的 Cr 含量大大改善其抗氧化性能。另外,稀土元素在合金表面形成
     稀土氧化物(Y2O3和 Ce2O3等)质点可作为 Cr2O3膜的形核核心,促进
     保护膜的形成,从而改善新型铸造热作模具钢的抗氧化性能,使其热疲
     劳抗力强于锻造 H13、一胜百 8407。
     新型铸造高 Cr 热作模具钢通过自身综合性能,裂纹扩展形貌、路径等影
    响热作模具钢的热疲劳抗力。单一的性能指标无法科学准确地衡量其热疲劳性
    能,只有强度、塑性、韧性、抗氧化性、热稳定性具有良好的配合才是新型铸
    造高 Cr 热作模具钢获取较佳的热疲劳性能的途径。
     新型铸造高 Cr 热作模具钢是一种高寿命、低成本、低能耗、高材料利用
     84
    
    
    率的热作模具钢,在环保和经济效益上都有较大的优越性,应用前景十分广阔。
Thermal fatigue (TF) is a leading failure of hot working die steels. It has been
    reported that, among the all failures of hot working die steels, 60~70% failures
    have been caused by TF. In our country, 40~50 thousand tons of hot work die steels,
    worthy of thousands of million RMB, have been used every year. Therefore, it is of
    great interest for the development of the economy to improve the TF property of
    hot working die steels. The TF research of hot work die steel is a representative
    orientation in the field of the TF research. In the past years, much of the research
    on the TF of hot work steels has been focused on forging die steels, while less work
    has been carried out on the TF behavior of cast die steel. Especially in the recent
    years, the studies on cast die materials have been widely and rapidly developed. It
    is interesting to note that more and morecast die steels replace forging die steels as
    die materials because of their shorter produce cycles and lower expense. Therefore,
    the study on the TF behavior of cast hot work die steel not only has a theoretic but
    also a practical value.
     The new type cast high Cr hot work die steel, which is developed by Jilin
    University, is used as the raw material. Optical microscope (OM), scanning
    electron microscopy (SEM), chemical composition analysis, impact toughness tests,
    hardness tests and TF tests have been carried out to study effects of the
    microelements on the microstructure, mechanical behavior, TF of new type cast
    high Cr hot work die steel and the mechanisms on TF resistance.
     By analyzing the experimental data, some conclusions have been drawn as
    follows:
    (1) When the contents of Y、Ce and N are 0.01wt. %、0.03wt. % and 0.06wt. %,
     Respectively, the properties of the new type cast high Cr hot work die steel
     reach to the optimization. Compared to the steels without the microelements,
     the structure is finer; the distribution and morphology of the inclusions are
     greatly improved, and their size is also reduced 2 times; the roughness and
     hardness are increased 150% and 14%, respectively; under the thermal cycling
     temperatures of 650℃ ~ 20℃, the TF life is as one time long as H13, and as
     86
    
    
    1.5 times as the steels without the microelements.
    (2) It has been found that when only Y is added to the steel, compared to the
     unmodified steels, the propagating rate of TF crack is decreased one time and
     furthermore the decrease of the hardness during the TF cycles is reduced 43%,
     and as a result, the TF property is improved one time; when Y content gets to
     0.01%wt.%, the properties reach to the optimization where the roughness and
     hardness are increased 98% and 14%, respectively.
    (3) It has been found that when only Ce is added to the steel, compared to the
     unmodified steels, the propagating rate of TF crack is decreased one time and
     furthermore the decrease of the hardness during the TF cycles is reduced 39%,
     and as a result, the TF property is improved one time; when Ce content gets to
     0.03%wt.%, the properties reach to the optimization where the roughness and
     hardness are increased 104% and 12%, respectively.
    (4) It has been found that when only N is added to the steel, compared to the steels
     without N, the propagating rate of TF crack is decreased one time and
     furthermore the decrease of the hardness during the TF cycles is reduced 43%,
     and as a result, the TF property is improved one time; when N content gets to
     0.06%wt.%, the properties reach to the optimization where the roughness and
     hardness are increased 100% and 13%, respectively.
    (5) The ability to oxidation of new type cast high Cr hot work die steel are better
     than those of the unmodified and 8407 steels. With the tempering for 20 hours
     at 630℃, after modified, compared with the unmodified and 8407 steels, the
     ability to oxidation of new type cast high Cr hot work die steel is increased
     47.86% and 53.07%,
引文
[1] 周永泰,模具工业在国民经济中的重要地位及其发展趋势,模具商情,2003,
     6(62):2-4.
    [2] S.Suresh(美)著,王中光译,材料的疲劳,国防工业出版社,1992.
    [3] 江红,微观组织对热锻模具钢热疲劳性能的影响,吉林大学硕士研究生毕
     业论文,吉林大学,2001.
    [4] Tylenalten, Progress Reporter On Die Casting Research, Die Casting Engineer,
     1988, 6:16.
    [5] G. R. Halford J. F. Saltsman etc., Application of a thermal fatigue life prediction
     model to high temperature aerospace alloys B1900+Hf and Haynes 188,
     Advances in fatigue lifetime predictive techniques, ASTM STP, 1992,
     1122:107-119.
    [6] Y.S.Ha, Y.Li, J.H.Liu, Thermal fatigue cracking in steel 5CrMnMo, Acta
     Metallurgica Sinica (English Edition), Series A, 1991, 1 (4): 55-58.
    [7] 冯晓曾,刘剑虹,3Cr2W8V、4Cr5MoSiV1 钢热疲劳机理及热疲劳抗力差
     异,安徽工学院学报,1988, 2:1-9.
    [8] Las-Ake Norstrom Scand, Performance of Hot Work Tool Steels, Metallurgy,
     1981, 9:45-47.
    [9] 沈俊峰,沈利群,提高模具材料疲劳抗力的途径,上海金属,1998,2
     (10):35-37.
    [10] C.S.Xie, J.S.Zhao, An Approach to Developing a Hot-work Die Steel for High
     Temperature Application, Mater Sci. Aug. 1990, 124 A:1-9.
    [11] H. Sehitoglu. Thermal-mechanical fatigue life prediction methods, STP, ASTM,
     1992, 1122:47-76.
    [12] M.Buission, A. Molinrai, On thermalelastic damping in heterogenous material,
     Thermomechanical Couplings in solids, edited by H. D. Bui and Q. S. Nguyen,
     IUTAM, 1987:55-69.
    [13] I.Cemy, V.Linhart etc., Influence of laser hardening and resulting
     microstructure on fatigue properties of carbon steels, Journal of Materials
     Engineering and Performance, ASTM International, June 1998, 3 (7):361-366.
     75
    
    
    [14] H.Samrout and R. EI Abdi, Fatigue behavior of 28CrMoV5steel under
     thermomechanical loading, Int. J. Fatigue, 1998, 8(20):555-563.
    [15] 何晋瑞,金属高温疲劳,科学出版社,1988.
    [16] F. Meyer-Olbersleben, N.kasik etc., The thermal fatigue behavior of the
     combustor alloys IN617 and HAYNES 230 before and after welding,
     Metallurgical and Materials Transactions A, April 1999, 12(30A):981-989.
    [17] 李代忠,钢中非金属夹杂物,科学出版社,1983.
    [18] 郑治沙,王中光,疲劳裂纹前端的位错结构,金属学报,1995, 31(3):24.
    [19] 刘禹门,铁素体珠光体钢的疲劳位错结构,机械工程学报,1983,19(2):1-8.
    [20] 曾庆祥,何国求等,一种高强度的钢低周疲劳特性及其微观机理的研究,
     西南交通大学学报,1999,34(2).
    [21] Thielen P N, Fine M E, Cyclic stress strain relations and strain controlled
     fatigue of 4140 steels, Acta Metal, 1976, (24): 1-10.
    [22] Mataya M C, Fournelle R A. Fatigue behavior of NiAl precipation hardening
     medium carbon steel, Metal. Trans., 1978, (7) A: 917-225.
    [23] Akama M, Matsugama S. Plastic deformation behavior of rail under cyclic
     impact blows, ISIJ international, 1989, (29): 947-953.
    [24] 何世禹,李瑛,刘剑虹,5CrMnMo 钢的冷热疲劳裂纹的研究,金属学报,
     1990,4(26):527-A529.
    [25] 刘剑虹,何世禹,姚枚,3Cr2W8V 钢冷热疲劳裂纹长大方式的原位观察,
     金属学报,1992,12(28):A292-A295.
    [26] V. Subramnya, Sarma etc, Low cycle fatigue behavior of low carbon
     microalloyed steel: microstructural evolution and life assessment,Materials
     Science and Technology,March 1999, 15:260-264.
    [27] V. B. Dutta, S. Suresh and R.O. Ritchie, Fatigue crack propagation in dual
     phase steels: effect of ferrite-martensite microstructures on crack path
     morphology, Metall. Trans. 15A: 1193-1207.
    [28] Li Zhonghua, Han Jianguo etc. Low cycle fatigue investigations and numerical
     on dual phase steel with different microstructures, Fatigue Engng Mater. Struct.
     1990, Vol.13, 2:229-240.
    [29] 杨雪梅,碳化物对热变形中铬半钢的热疲劳性能的影响,特殊钢,2001,
     22(1).
     76
    
    
    [30] 余宗森,楮幼义,钢中的稀土,冶金工业出版社,1982.
    [31] 杨庆祥,王爱荣等,60CrMoMn 钢热疲劳裂纹生成与长大及稀土的作用,
     中国稀土学报,1996,2(14):181-185.
    [32] Roland Kiessling, the influence of non-metallic inclusions on the properties of
     steel, Journal of Metals, 1969, 10: 48-54.
    [33] R.M. Ramage, K.V. Jata, G.J. Shiflet and E.A. Starke, The effect of phase
     continuity on the fatigue and crack closure behavior of a dual phase steel,
     Metall. Trans. 1987,18A: 1291-1298.
    [34] S. Chakrabortty, A model relating low cycle fatigue properties and
     microstructure to crack propagation rates, Fatigue Engng Mater. Struct. 2:
     221-228.
    [35] S. Majumdar and J. Morrow, Correlation between fatigue crack propagation
     and low cycle fatigue properties, In Fracture Toughness and Slow-Stable
     Cracking, ASTM STP 559, 1974:159
    [36] R.P. Skelton, Crack initiation and growth in simple metal compenents during
     thermal cycling, in R.P. Skelton (ed.), fatigue at high temperature, Applied
     science publishers London and New York LTD, 1983:1-61.
    [37] 宋武林等, 大截面热作模具钢 45Cr2NiMoVSi 中残余奥氏体行为的研究,
     兵器材料科学与工程, 1995, 3:27-33.
    [38] 李鹏兴, 模具钢的显微组织与韧性及热疲劳, 上海金属,1986,11:71-77.
    [39] Y.C. Lin, Y.T. Lin, S.C. Chen, Z.R. Liu, Role of retained ferrite on the thermal
     fatigue cracking resistance in martensitic steel weldment, Mater. Sci. Eng.,
     2003, (A339): 133-135.
    [40] 刘剑虹,热作模具钢 3Cr2W8V、4Cr5MoSiV1 热疲劳机理的研究,哈尔
     滨工业大学硕士学位论文,1987, 3:24-25.
    [41] R.P. Skelton, Crack initiation and growth in simple metal compenents during
     thermal cycling, in R.P. Skelton (ed.), fatigue at high temperature, Applied
     science publishers London and New York LTD, 1983.
    [42] C. Y. Huangetc, effect of compressive deformation on the transformation
     behavior of an ultra-low-carbon bainitic steel, Materials Transactions, 1993,
     8(34): 658-668.
    [43] Robert M. Young,Alisc A.Moore etc.,the Effect of Step Quenching on the
     77
    
    
    Microstructure and Fracture Toughness of Fe-C-Ti Alloys,Industrial Heating,
     1981, 7:12-14.
    [44] Sandomirskill M. M.,Effect of Phase Transformation Temperature During
     Heating on the Tempering Resistance of Martensite Die Steels,Die Casting
     Engineer, 1988, 1(32): 24-26.
    [45] 周梅阁等, 45Cr2NiMoVSi 钢马氏体贝氏体复合组织的热疲劳性能, 金属
     热处理, 1991, 2: 8-12.
    [46] S.R. Mediratta, V.Ramaswamy and P.Raama Rao, Low cycle fatigue behavior
     of dual-phase steel with different volume fractions of martensite, Int. J. Fatigue
     7, 1985, 101-106.
    [47] Z.Z. Hu, M.L. Ma and Y,Q. Liu, The effect of austenite on low cycle fatigue in
     three-phase steel, Int. J. Fatigue, 1997, 8-9(19):641-646.
    [48] S.K. Bhambri, V. Singh and G. Jayaraman, The effect of microstructure on
     stage-Ⅱ fatigue crack growth rates in 2.5 Ni-Cr-Mo-V steel, Int. J. Fatigue 11,
     1989, 1: 51-54.
    [49] 李晓东等, 4Cr5MoSiV1 钢热疲劳的微观分析,理化检验-物理分册, 1993,
     6(29)47-48.
    [50]S.R.Mediratta, V.Ramaswamy and P.Raama Rao, Influence of
     ferrite-martensite microstructural morphology on the low cycle fatigue of a
     dual-phase steel, Int. J. Fatigue 7, 1985, 101-106.
    [51] V. B. Dutta, S. Suresh and R.O. Ritchie, Fatigue crack propagation in dual
     phase steels: effect of ferrite-martensite microstructures on crack path
     morphology, Metall. Trans. 15A: 1193-1207.
    [52] Li Zhonghua, Han Jianguo etc. Low cycle fatigue investigations and numerical
     on dual phase steel with different microstructures, Fatigue Engng Mater. Struct.
     1990, 2(13): 229-240.
    [53] A.K.Vasudevan, K.Sandananda, and K.Rajan, Role of microstructure on the
     growth of long fatigue cracks, Int. J. Fatigue, 1997, 1(19):151-S159.
    [54] Ikuhiko Hayashi etc., Microstructural change of low carbon steel during
     low-cycle fatigue, The 23rd Japan Congress on Materials Research-Metallic
     Materials, 1980, 1-5.
    [55] Wang Xiaotian etc., Effects of Rare Earth Metals on Microstructural
     78
    
    
    Transformation of Low or Medium Carbon Si-Mn-V Steels during Quenching
     and Tempering, Acta Metallurgica Sinica, 1991, 3:188-193。
    [56] Z.Z. Hu,M.L. Ma and Y.Q. Liu,The effect of austenite on low cycle fatigue in
     three-phase steel, Int. J. Fatigue, 1997, 8-9(19): 641-646.
    [57] S.K. Bhambri,V. Singh and G. Jayaraman,The effect of microstructure on
     stage-Ⅱ fatigue crack growth rates in 2.5 Ni-Cr-Mo-V steel,Int. J. Fatigue 11,
     1989, 1:51-54.
    [58] 方渐儒,热作模具钢微观组织对热机械疲劳行为的影响,吉林大学博士研
     究生毕业论文,2002.
    [59] S.R. Mediratta , V.Ramaswamy and P.Raama Rao , Influence of
     ferrite-martensite microstructural morphology on the low cycle fatigue of a
     dual-phase steel,Int. J. Fatigue 7,1985, 101-106.
    [60] A.M. Sherman and R,G. Davies,The effect of martensite content on the fatigue
     of a dual –phase steel,Int. J. Fatigue 3,1981, 36-40.
    [61] V. B. Dutta,S. Suresh and R.O. Ritchie,Fatigue crack propagation in dual
     phase steels: effect of ferrite-martensite microstructures on crack path
     morphology,Metall. Trans,(15A):1193-1207.
    [62] 杨庆祥,吴浩泉,丁柏群等,稀土元素对热扎辊用钢 60CrMnMo 热疲劳
     性能的影响,钢铁,1994, 29(5).
    [63] 丁柏群,曹贵允, 60CrMoRE 钢热疲劳性能研究,钢铁,1999, 2(34):38-42.
    [64] 隋鹤龙,新型高寿命铸造热镦模具钢的研究,吉林大学研究生毕业论文,
     2003.
    [65] 杜挺,王龙妹,吴夜明等,稀土在钢中应用的热力学应用基础、问题和前
     景[A],中国稀土学会稀土在钢中应用委员会,稀土在钢中应用技术研讨
     会论文集[C],宝钢冶金研究所,1999, 1-7.
    [66] 李慧,郭铁波,稀土对 9CrMo 钢组织和性能的影响,钢铁,2001, 22(4).
    [67] 王龙妹,杜挺等,微量稀土元素在钢中的作用机制及应用研究,稀土,2001,
     36 (4).
    [68] 宋延沛,李秉哲,朱景芝等,稀土复合变质剂对高碳高速钢性能及组织的
     影响,13 (6).
    [69] 郭建亭,任维丽,周继扬,稀土元素在金属间化合物中的作用,材料工程,
     2002, 36(1).
     79
    
    
    [70] 杨庆祥,吴浩泉等,稀土氧化物对焊缝金属夹杂物及组织影响的研究,1994,
     15(4).
    [71] Feranandes SMC, Ramanathan LV. Influence of rare earth oxide coatings on
     oxidation behavior of Fe-20Cr alloys. Surf Eng, 2000, 16:327.
    [72] Riffard F, Buscail H, Caudron E. In-situ characterization of the oxide scale
     formed on yttrium-coated 304 stainless steel at 1000℃.Mater Charact, 2002,
     49-55.
    [73] 王执福,李河清,孙本茂等,稀土元素提高耐热合金抗氧化性的机理,铸
     造,1997.
    [74] 张仲秋,李新亚,娄延春等,含氮不锈钢研究的进展,铸造,2002, 51(11).
    [75] Young-Hwan park, Zin-Hyoung Lee, the effect of nitrogen and heat treatment
     on the microstructure and tensile properties of 25Cr-7Ni-1.5Mo-3W-xN duplex
     stainless steel castings, Mater. Sci. and Eng A297, 2001, 78-84.
    [76] Pickering F B, some beneficial effects of nitrogen in steel [A]. HNS88 [C].
     London: the institute of Metals, 1989.10.
    [77] J.W. Simmons. Overview: high-nitrogen alloying of stainless steels. Mater. Sci.
     Eng, 1996, A207: 159-169.
    [78] M.O. Speidel, properties and application of high nitrogen steels, HNS88, the
     institute of metals, 1989, 92.
    [79] 谢飞,马宝钿,何家文,钢中稀土对化学热处理的影响与作用机理,稀有
     金属材料与工程,1997, 26(1).
    [80] 徐进,国内外合金工具钢发展概况,中国金属学会第一届特殊钢年会论文,
     1980, 13.
    [81] 崔忠圻,金属学与热处理,机械工业出版社,1989,第一版,368.
    [82] 赵振业,合金钢设计,国防工业出版社,1999,第一版, 212-238.
    [83] 马茂元,宋伟,Cr-Mo(W)-V 型热作模具钢的合金化,热加工工艺,1990,
     2: 40-44.
    [84] 姜祖庚,模具钢,机械工业出版社,1989。
    [85] 丁柏群,曹贵允,60CrMoRE 钢热疲劳性能研究,钢铁, 1999(2),2(34):38-42.
    [86] A.K.Vasudevan,K.Sandananda and K.Rajan,Role of microstructure on the
     growth of long fatigue cracks,Int. J. Fatigue, 1997, 1(19): 151-S159.
    [87] 孙振岩,王荣等,不同稀土、硫含量重轨钢的组织与性能,东北大学学报,
     80
    
    
    2002,23(4)
    [88] 李四年,微量元素氮对中铬白口铸铁的强韧化作用,现代铸铁,1997,Vol.2.
    [89] 沈国雄,刘斌,氮对 304 奥氏体不锈钢组织和力学性能的影响,钢铁研究
     学报,1997,Vol. 9 (6).
    [90] K.C. Hwang, S. Lee, H.C. Lee, effects of alloying elements on microstructure
     and fracture properties of cast high speed steel rolls, Mater. Sci. Eng., 1998,
     A254: 296-304.
    [91] Yu CS, Zhang LF, application of rare earth in the steel (in Chinese), China
     metallurgy industry publishing company (in Chinese), 1987,319.
    [92] F.Meyer-Olbersleben,N.kasik etc,The thermal fatigue behavior of the
     combustor alloys IN617 and HAYNES 230 before and after welding,
     Metallurgical and Materials Transactions A, 1999,30A:981-989.
    [93] S. Taira,M.Fujino,R.Ohtanl,collaborative study on thermal fatigue properties
     of high temperature alloys in Japan,Fatigue of Engineering Materials and
     Structures, 1979, (1): 495-508.
    [94] 陈蕴博,热作模具钢的选择与应用,国防出版社,1993.
    [95] 诸武杨,肖纪美,热处理对 25SiMnCrMo 铸钢断裂力学性能的影响,金属
     热处理,1979, 6:18-24.
    [96] 浙江大学铸工教研组,陶瓷型精密铸造模具国外概况,陶瓷型精密铸造汇
     编,一机部情报所.
    [97] 束德林,金属力学性能,机械工业出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700