用户名: 密码: 验证码:
用于阵列式波导光栅聚合物的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于通讯事业的飞速发展,人们对高容量、高带宽、高速信息传输技术的要求越来越高。为了满足日益增长的需求,人们提出了全光网络这一有效解决办法。聚合物波导器件由于其优良的机械性能,热光和电光效应,对于实现全光网络十分有利,而且器件易于加工,制作费用低,所以引起人们的广泛关注。
    为了得到性能优异的聚合物光波导器件,聚合物必须满足以下几个要求:在以光纤网络为代表的光通讯产品中,聚合物光学材料在光纤的两个近红外低损耗传输窗口(波长1.33μm和1.55μm),光损耗小;聚合物具有一定的热稳定性,可以承受制作器件的熔结温度,并且在器件的使用过程中对于环境(如温度,湿度)变化,有一定的稳定性;具有尽可能低的双折射率,确保聚合物材料的光学同性;因为波导器件具有芯层,包层的三明治结构,为了保证光信号只在芯层中传输,必须保证光信号在芯层发生全反射,所以聚合物的折射率必须可调,以满足芯层与包层的折射率差。
    我们合成了甲基丙烯酸甲酯和甲基丙烯酸环氧丙酯的共聚物,并运用该材料制作阵列式波导光栅. 我们合成的该共聚物,由于聚合物链段中含有环氧基团,所以可以通过热固化的方法使环氧进行开环交联,一方面增加了聚合物膜层的稳定性,同时避免线性聚甲基丙烯酸甲酯的层间互溶,为构造阵列示波导光栅结构,提供基本保障;另一方面使聚合物膜层最终形成三维交联的网状结构,有效的避免基团在成膜过程中沿聚合物链段取向,从而有效的降低了材料
    
    
    的双折射率。我们同时可以通过加入双酚A型环氧来调节聚合物的折射率,折射率1.483~1.588之间可调。我们用光刻技术和反应离子刻蚀技术制作出了聚合物阵列波导光栅,并且对其进行了一系列光学性质的测定。
    聚苯乙烯是一种非常优秀的光学材料,但是由于分子中存在C-H键,C-H键的振动谐波和复合波,在波长600-1500nm范围内的基频伸缩频率的倍频上产生吸收损耗,其损耗正比与C-H键的个数,同单体分子质量成正比,故降低C-H键的数量可以降低聚合物的固有损耗。我们设计了五氟苯乙烯与甲基丙烯酸环氧丙酯的共聚物。这种聚合物中由于C-F键取代了部分C-H键,C-H键振动吸收的基频和谐频都将红移,有效的降低了光通讯波段内由于C-H键伸缩振动引起的光损;我们还可以通过调节共聚比的方法来实现对聚合物折射率的调节;并且由于分子中引入了环氧基团,我们可以通过热固化的方法最终得到交联的聚合物,从而大大的提高了聚合物的热稳定性,并且这种交联结构有效的减少了聚合物材料的双折射率,使这种聚合物在制造阵列式波导光栅方面非常具有引用前景。
    聚酯也是一种用途广泛的高分子材料,其机械性能良好,热稳定性好,但是在阵列式波导光栅方面的应用,鲜有报道。我们利用分子设计的原理,合成高含氟量的双酚A型聚酯。我们采取了不同的合成方法,由于聚酯的合成要求比较苛刻,而且难以得到高分子量的聚合物,目前我们只得到了实验的初步结果,实验条件有待优化,在日后的实验过程中进一步完成。
The continual trend toward high transmission speed, data capacity, and data density in integrated circuits demands a solution to the bottleneck resulting from the limited data rate of electrical interconnects. One approach to this problem is the use of optical interconnection operating with polymer waveguides. Polymer materials have tailorable optical properties such as refractive index and optical losses, and exhibit excellent mechanical and physical properties. We focused on the following three important aspects when synthesizing our waveguide polymer: first, high transparency at both 1.3μm and 1.55μm; second, high thermal and environmental stability; last, high refractive index controllability.
    In this paper, we have synthesized PMMA-co-GMA polymer and characterized its optical properties. It can be used in arrayed waveguide grating fabrication. The crosslinkable polymers were prepared by copolymerization of methylmethacrylate (MMA) and glycidyl methacrylate (GMA) via the sealed-tube reactive technique. These polymers were characterized using 1H-NMR spectrum, gel permeation chromatography (GPC), differential scanning calorimeter (DSC) and in situ infrared (IR). The crosslinkable polymers have large relative molecular weight, good organosolubility, excellent film-forming property and possess high glass transition
    
    
    temperature after crosslinked. The refractive index of the polymer can be adjusted between 1.483 and 1.588, by doping bisphenol A epoxy. Because of three-dimensionally cross-linked structure, the birefringence of the polymer can be very low.
    At the same time, we have synthesized PFS-co-GMA polymer and characterized its optical properties. The crosslinkable polymers were prepared by copolymerization of 2,3,4,5,6-Pentafluorostyrene (PFS) and glycidyl methacrylate (GMA) via the sealed-tube reactive technique. These polymers were characterized using 1H-NMR spectrum, gel permeation chromatography (GPC), differential scanning calorimeter (DSC) and in situ infrared (IR). The crosslinkable polymers have large relative molecular weight, good organosolubility, excellent film-forming property and possess high glass transition temperature after crosslinked. The refractive index of the polymer can be adjusted by doping bisphenol A epoxy or copolymerization with styrene. We know that in the 1300-1600nm range, absorption comes from the overtones of fundamental molecular vibrations. Owing to their higher harmonic order, C-F overtones shoe extremely low absorption throughout the telecommunications windows. In our copolymer, the C-F volume concentrations are increased to 25%, so the optical loss, one of the biggest concerns of the polymer waveguide materials, can be reduced extremely.
    Polyester is one of the very useful conventional optical polymers, with its excellent mechanical properties, thermal stability and so on. But fabricating arrayed waveguide grating (AWG) with polyester, to our knowledge, were not reported. We designed and synthesized fluorinated polyester to fabrication of AWG, based on the 4,4’-(Hexafluoroisopropylidene)diphenol . We know that it is very difficult to obtain polyester with high molecular weight because of the rigorous reaction condition, such as high temperature, vacuum. We synthesized fluorinated polyester with
    
    
    different reaction routine and got the primary result. These polymers were characterized using gel permeation chromatography (GPC), and in situ infrared (IR). Because of the polyester we got with C-F volume concentrations are increased to 40%, the optical loss, one of the biggest concerns of the polymer waveguide materials, can be reduced extremely. We forecast it was very useful in AWG..
引文
鸥海燕,硅基二氧化硅AWG波分复用/解复用器的研究,2000
    H.A.Rowland, Phil.Mag., 1882,13,467
    M.K.Smit, Electron.Lett., 1988,2(7),385
    H.Takahashi, S.Suzuki, K.Kato, I.Nishi, Electron. Lett.,1990, 26(2),87
    C.Dragone, IEEE Photon.Technol. Lett., 1991, 3,812
    K.Okanoto, K.Svuto,H.Takahashi, Y.Ohmori, Electron. Lett., 1996, 32(16), 1474
    Stewart K R, Photonics Spectra, July 1994,104
    Hong Ma, Alex K.-Y.Jen, Larry R.Dalton, Adv.Mater., 2002, 14,1339
    G.Hougham, G.Tesoro, A.Viehbbeck, J.D.Chapple-Sokol, Macromolecules,
    1994,27,5964
    G.Hougham, G.Tesoro, A.Viehbbeck, Macromolecules,1996,29,3453
    S.Herminghaus, D.Boese, D.Y.Yoon, A.Smith, Appl.Phys.Lett. 1991,58,1043
    D.Boese, H.Lee, D.Y.Yoon, J.D.Swalen, J.F.Rabolt, J.polym.Sci.Polym.Phys. 1992,30,1321
    Polymers for Electronic and Photonic Applications (Ed: C.P.Wong),Academic Press,New York 1993
    M.Kihara, S.Nagasawa, T.Tanifuji, J.Lightwave Technol. 1996,14,1986
    R.A.Norwood, R.Y.Gao, J.Sharma, C.C.Teng, in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, Vol.4439, SPIE, Bellingham, MA 2001, p.19
    A.Sumanich, C.R.Moylan, Chem.Phys.Lett. 1990, 174,139
    
    W.Groh, Makromol.Chem.1988, 189,2861
    Sasaki S, Matsuura T, Sawada T.NTT R&D, 1998, 47, 937
    B.L.Booth, J.Lightwave Technol.1989, 7, 1445
    L.W.Shacklette, R.A.Norwood, L.Sldada, C.Glass, D.Nguyen, C.Poga, B.P.Xu, S.Yin, J.T.Yardley, Proc.SPIE-Int.Soc.Opt.Eng.1997, 3006,344
    R.Yoshimyra, M.Hikita,S.Tomaru, S.Imamura, J.Lightwave Technol. 1998, 16,1030
    Y.S.Liu, R.J.Wojnarowski, W.A.Hennessy, in Optoelectronic Interconnects and Packaging, Vol.CR62,SPIE, Bellingham, MA 1996, P.405
    T.Matsuura, S.Ando, S.Sasaki, F.Yamamoto, Electron.Lett.1993, 29, 269
    J.Kobayashi, T.Matsuura, S.Ando, T.Maruno, Appl.Opt.1998,37,1032
    T.Matsuura, J.Kobayashi, S.Ando, T.Maruno, S.Sasaki, F.Yamamoto, Appl.Opt. 1999,38,966
    Lee H J, LEE E M, Lee M H, Journal of Polymer Science, Part A:Polymer Chemistry, 1998,36:2881
    Usui M, Hikita M, Waranabe T, Journal of Lightwave technology, 1996, 14(10), 2338
    Knoche Th., Müller L, Klein R, Electronics Letters, 1996, 32(14),1284
    T. Matsuura, N. Tamada, S. Nishinori,Macromolecules, 1993, 26, 419
    T. Matsuura, N. Tamada, S. Nishinori,Macromolecules, 1994, 27, 6665
    S. Ando, T. Matsuura, S.Sasaki, Macromolecules, 1992, 25, 5858
     D.Schonfeld, O.Rosch, P.Dannberg, Proc.SPIE, 1997,3135:53
    H.Ma, S.Woog, J.D.Luo, S.H.Kang,A.K.-Y.Jen, R.Barto, C.W.Frank, Polym.Prepr. 2002, 43(2),493
    
    D.W.Smith, D.A.Babb, Macromolecules, 1996, 29,852
    J.M.Hagerhorst-Trewhella, J.D.Gelorme, Proc.SPIE-Int.Soc.Opt.Eng. 1989, 1177, 379
    J.H.Kim, E.J.Kim, H.C.Choi, C.W.Kim, J.H.Cho, Y.W.Lee, B.G.You,S.Y.Yi, H. J.Lee, K.Han, W.H.Jang, T.H.Rhee, J.W.Lee, S.J.Pearton, Thin Solid Films 1999, 341, 192
    K. Han, J. Kim, W. H.Jang, J. Appl. Polym. Sci. 2001, 79, 176
    Adar R, Henry C H, Dragone C, et al., J.Lightwave Technol, 1993,11:212
    Brackett C A, Acampora A S, Sweitzer J, et al., J.Lightwave Technol , 1993 ,11:736
    Toyoda S, Kaneko A, Ooba N, polymer tunable wavelength filter for WDM systems, IEICE Trans.Electron., 2000, E83-C (7), 1119
    Kobayashi J, Inoue Y, Matsuura T, Maruno T, IEICE.Trans.Electron ,1998 ,7, 1020
    Ahn J H, Lee H J, Hwang W Y, et al., IEICE.Trans.Electron ,1999,2:354
    Keil N, Yao H J, Zawadzki C, et al., Electronics.Letters, 2001,9:579
    Watanable T, Inoue Y, Kaneko A, et al., Electronics.Letters,1997,18:1547
    Diemecr M B J, Spiekman L H, Ramsamoedj R, et al., Electronics.Letters,
    1996,12:1132
    Elsui M., Hikita M., Watanabe T., Amano M., Sugawara S., Sugawara S., Hayashida S., Imamura S., J.Lightwave Tech. 1996,14,10, 2338
    Eldada L., Shacklette L.W., Norwood R.A., Yardley J.T., Organic Thin Films Photonics Applicat., 1997,14,5
    江源 邹宁宇 聚合物光纤 化工工业出版社
    
    Hong Ma, Alex K.-Y.Jen, Larry R.Dalton, Adv.Mater., 2002, 14,1339
    J. Wang., P.Shustack, S. Garner, SPIE. 2000,4904
    Ouano, A.C., Carothers, J.A., Kinematics of polymer dissolution. IBM internal report 2000
    November A.E., Masakowski L.M., Hartney M.A., Polym.Eng.Sci.1986, 26,1158
    Hong Ma, Alex K.-Y.Jen, Larry R.Dalton, Adv.Mater., 2002, 14,1339
    S. Ando, T. Matsuura, S.Sasaki, Macromolecules, 1992, 25, 5858
    林尚安,陆耘,梁兆熙 高分子化学 科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700