用户名: 密码: 验证码:
铀酰印迹树脂的合成及其识别性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹技术是近年来才发展起来的新型分离技术,它以其独特的选择性和亲合能力在很多领域引起了人们的重视,离子交换技术是铀提取与分离的主要技术。本文应用印迹技术的基本原理,从合成适于进行离子交换吸附的单体开始,首次合成了用于分离硫酸铀酰的含叔胺基印迹树脂,并进行了树脂识别性能的研究。论文除了对印迹技术及其基本原理、应用领域、前景,以及铀分离技术、离子交换法分离铀存在的问题等作简要介绍外,还包括如下三个主要部分:
     首先是单体的合成。本文以烯丙基氯作烷基化试剂,在常压、不加催化剂的情况下合成了二乙基烯丙基胺,并对原料配比、水浴温度、加料方式与时间、以及沸腾反应时间对产率的影响进行了研究。在烯丙基氯与二乙胺摩尔比为1.1:1、水浴温度40℃、总加料时间2h及沸腾反应1h时,二乙基烯丙基胺的产率可达78%。合成反应时间有较大的缩短,产物经重蒸馏提纯后,纯度达98%。
     其次,本研究以硫酸铀酰为模板,二乙基烯丙基胺为单体,苯乙烯为树脂基本骨架,二乙烯基苯为交联剂,偶氮二异丁腈为引发剂,在水溶液中进行三元悬浮共聚,进行了硫酸铀酰离子印迹树脂的合成。同时,对树脂合成过程中的单体选择、苯乙烯与二乙烯基苯的用量确定、引发剂的选择与用量、致孔剂选择与影响,以及其他影响因素如搅拌速度、消泡剂选择与用量等进行了研究与讨论。
     最后,对合成的硫酸铀酰印迹树脂进行了识别性能研究,以验证印迹树脂的优越性。试验表明:合成树脂对硫酸铀酰的吸附量在一定程度上受pH值的影响,在pH=2时达最大,印迹树脂吸附性能最好。吸附速率随时间变化较大,在最初10min时间内,吸附受离子的外扩散所控制,树脂吸附速度最快,但随后因受内扩散所控制而变慢,并在约3h左右达到平衡。在将印迹树脂与凝胶型树脂201×7、均孔树脂D263进行的比较试验发现,印迹树脂MIPs-4是一种比D263和201×7更好的吸附剂,其吸附等温线是典型的“优吸”等温线,K_d值更大,对于低含量硫酸铀酰有较高的平衡吸附量。柱内吸附试验表明,与D263、201×7树脂相比,MIPs-4树脂的穿透体积更大,达22BV,穿透容量为21.6mg/ml。印迹树脂除了具有较好的吸附性能外,从淋洗试验可以看出,MIPs-4解吸性能也比D263、201×7树脂好,且不易出现淋洗拖尾现象。
Molecular imprinting technology (MIT) with high selectivity and affinity is developed rapidly in recent three decades. Ion exchange technology is widely used in uranium extraction and separation. During the researching, we synthesized a new kind of amine monomer for synthesis imprinted ion exchange resin. Then, a kind of uranyl sulphate imprinted ion exchange resin with amine function group is synthesized using MIT for the first time. Some experiments were also taken to testify the performance of the imprinted ion exchange resins. On basis of a brief introduction about MIT in principle, recent applications and progresses, and about common uranium separation method and it's defects. The following three aspects were studed in this thesis:
    First, diethyl allylamine(DEAA) is synthesized at normal pressure and without catalysis, using allyl chloride(AC) as alkylation reagent. The affection of proportion of material, reaction time, method and time of feeding, and time of boiling is discussed. The investigation indicated a yield of 78% in the optimal conditions as follows: mol ratio of allyl chloride: diethyl amine= 1.1:1, reaction temperature=40, feeding time=2h, boiling time =lh. The content of DEAA in redistillate reachs 98%.
    Secondly, the uranyl imprinted ion exchange resin for purifying uranium effluent from uranium mining and metallurgy is presented in water by copolymerization of styrene with functional monomer DEAA and crosslinker divinylbenzene, using uranyl sulphate as template and azobisisobutyronitrile as initiator. We also discussed factors influencing polymerization such as ratio of styrene: divinylbenzene, selection of initiator, selection of functional monomer, option of initiatory prerequisite and so on.
    Finally, the adsorption character and selective recognition ability of the MIPs were investigated. The results showed that MIPs-1 resin, MIPs-3 resin, MIPs-4 resin and MIPs-5 resin can be used in a large pH range from 1 to 6, but the adsorption rate is highest when pH=2 for all imprinted or un-imprinted resins. At the same time, compared with 201× 7 strong base type anion ion exchange resin and medium pore resin D263, imprinted ion exchange resin MTPs-4 show better adsorption property and fast adsorption rate. In acid medium, when adsorption reaches equilibrium, the total distribution coefficients of uranium on D263, 201 X 7 and MIPs-4 resin are 0.179, 0.110 and 0.249L/g respectively. When P (U)=1.0mg/ml in effluent, the contact time is 4 minutes, breakthrough point(or breakthrough capacity) of D263, 201×7 and MIPs-4 resin are 20BV(19.6mg/ml), 18BV(17.6mg/ml) and 22BV(21.6mg/ml), and saturated capacity are 39.4, 35.2 and 36.2mg/ml respectively. The MIPs-4 resin's elution property is better than D263 resin an
    d 201× 7 resin. Using the 0.05M H2SO4 and 1.0M NaC1 as elution solution, the elution volume is only about 4.0BV. The MTPs-4 resin also shows better operation property in dilute uranium solution among those kind of resins,
引文
[1] Pauling L. A theory of the structure and process of formation of antibodies, J. Am. Chem. Soc., 1940, 62:2643~2657.
    [2] Wulff G, Sarhan A, Zabrocki. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett., 1973, 44:4329~4332.
    [3] Vlatakis G, Andersson L I, Muller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature(London), 1993, 361:645~647.
    [4] 卢彦兵 翁健 徐伟箭.分子印迹技术.高分子通报.1999,(2):61~65.
    [5] 聂利华 姚守拙.关于分子印迹技术的研究.大学化学.2002,17(1):21~26.
    [6] 赖家平 曹现峰 何锡文等.水溶液中制备分子印迹聚合物微球及其分子识别特性研究.化学学报.2002,60(2):322~327.
    [7] 成国祥 张立永 付聪.种子溶胀悬浮聚合法制备分子印迹聚合物微球.色谱.2002,20(2):102~107.
    [8] 雷建都 谭天伟.酮洛芬分子印迹拆分及分离过程热力学研究.化学学报.2002,60(7):1279~1283.
    [9] 姜忠义,吴洪.分子印迹技术.北京:化学工业出版社,2003,1~40.
    [10] 罗鹏.一种基于分子印迹技术的新型固相萃取填料:[硕士].长沙:湖南大学.2002,1~25.
    [11] Dhal P K, Amold F. H. Template-mediated synthesis of metal-complexing polymers for molecular recognition. J. Am. Chem. Soc., 1991, 113:7417~7418.
    [12] Matsui J, Nichills I A, Karube I, et al. Carbon-carbon bond formation using substrate selective catalytic polymers prepared by molecular imprinting: an artificial class Ⅱ aldolase. J. Org. Chem. 1996, 61:5414~5417.
    [13] Sellergren B, Shea K J. Chiral ion-exchange chromatography. Correlation between solute retention and a theoretical ion-exchange model using imprinted polymers. J. Chromatogr. 1993, A654:17-28.
    [14] Dickert F L, Besnbook H, Tortschanoff M. Molecular imprinting through van der
    
    waals interactions: fluorescence detection of PAHs in water. Adv. Mater., 1998, 10(2): 149~155.
    [15] Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc., 1995, 117:7107~7111. ~
    [16] Mayes A G, Mosbach K. Molecularly imprinted polymers by suspension polymerization in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent. J. Chromatogr. A, 1997, 787:55~66.
    [17] Kempe M, Mosbach K. Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase. J. Chromatogr., 1994, A664(2):276~279.
    [18] Lin J M, Nakagame T, Wu X Z, et al. Capillary electrochromatographic separation of amino acid enantiomers with molecularly imprinted polymers as chiral recognition agents. Fresenius J. Anal. Chem., 1997, 35:130~132.
    [19] Sellergen B, Shea K J. Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases. J. Chromatogr., 1995, 690:29~39.
    [20] Chen Y, Kele M, Sajonz P, et al. Influence of thermal annealing on the thermodynamic and mass transfer kinetic properties of D- and L-phenylalanine anilide on imprinted polymeric stationary phases. Anal Chem., 1999, 71:928~938.
    [21] 郑宁 李元宗 王宗睦等.铜离子配位的分子印迹聚合物的分子识别特性研究.化学学报.2001,59(10):1572~1576.
    [22] 谢建春 朱丽荔 徐筱杰.分子烙印亲和色谱与质谱联用实现中草药活性成分分离鉴定一体化.化学学报.2002,60(3):385~388.
    [23] 黄晓冬 邹汉法 毛希琴等.分子印迹手性整体柱的制备及对非对映异构体的分离.色谱,2002,20(5):436~438.
    [24] Huang X D, Zou H F, Chen X M, et al. Molecularly imprinted monolithic stationary phase for liquid chromatographic separation of enantiomers and diastereomers. J.
    
    Chromatogr., 2003, A984:273~282.
    [25] Bjamason B, Chimuka L, Ramstrom O. On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Anal Chem., 1999, 71:2152~2156.
    [26] Zander , Findlay P, Renner T, et al, Swietlow A. Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid-phase extraction. Anal Chem., 1998, 70:3304~3314.
    [27] Matsui J, Kaneko A, Miyoshi Y, et al. A molecularly imprinted nicotine-selective polymer. Anal Lett., 1996, 29(12):2071~2078.
    [28] 刘勤 周永新 孟子晖等.分子烙印固相萃取—毛细管电泳法分析大米中神经性毒剂降解产物.分析化学,2001,29(4):387~390.
    [29] 孟子晖 周永新 冯建林等.分子烙印聚合物吸附有机磷毒剂的研究.分析化学,2000,28(4):432~435.
    [30] Piletsky S A. Receptor and transport properties of imprinted polymer membrances-a review. J Membr. Sci., 1999, (157):263~278.
    [31] 楼蔓藤 商振华.固相萃取技术的发展与应用.分析仪器.1998,(1):1~6.
    [32] 张海霞 朱彭龄.固相萃取.分析化学,2000,20(9):1172~1180.
    [33] 胡秋芬 黎勇坤 汤丹瑜等.2-(2-喹啉偶氮).1,5.苯二酚固相萃取光度法测定饮用水中铜的研究.分析科学学报.2002,18(5):412~414.
    [34] Sellergren, B. 1994. Direct drug determination by selective sample enrichment on an imprinted polymer. J. Anal Chem. 1994, 66:1578~1582.
    [35] Olsen J, Martin P, Wilson I D, et al. Methodology for assessing the properties of molecular imprinted polymers for solid phase extraction. Analyst, 1999, 124(4):467~471.
    [36] Matsui J, Okada M, Tsuruoka M, et al. Solid:phase extraction of a triazine herbicide using a molecularly imprinted synthetic receptor. Anal Comm., 1997, 34:85~87.
    [37] Lubke M, Whitcombe M J, Vulfson E N. A novel approach to the molecular imprinting of polychlorinated aromatic compounds. J. Am. Chem. Soc., 1998, 120(51): 13342~13348.
    
    
    [38] Rashid B A, Briggs R J, Hay J N, et al. Preliminary evaluation of a molecular imprinted polymer for solid-phase extraction of tamoxifen. Anal. Comm., 1997, 34:301~305.
    [39] 周杰 韩红岩 何锡文等.固相萃取法对微量药物的选择性富集和直接测定.分析化学,1999,27(1):5~9.
    [40] Martin P, Wilson I D, Morgan D E, et al. Evaluation of a molecular-imprinted polymer for use in the solidphase extraction of propranolol from biological fluids. Anal. Comm., 1997, 34:45~47.
    [41] Mullett W M, Lai E P C. Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed eution. Anal. Chem., 1998, 70:3636~3641.
    [42] Spivak D, Gilmore M A, Shea K J. Evaluation of binding and origins of specificity of 9-ethyladenine imprinted polymers. J. Am. Chem. Soc., 1997, 119(19):4388~4393.
    [43] Andersson L I. Molecular imprinting for drug bioanalysis. A review on the application of imprinted polymers to solid-phase extraction and binding assay. J Chromatogr B: Biomed Sci Appl, 2000, 739(1):163~173.
    [44] Kriz D, Ramstrm O, Mosbach K. Molecular imprinting: new possibilities for sensor technology. Anal Chem, 1997, (69):345~349.
    [45] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev., 2000, (100):2495~2504.
    [46] Andersson H S, Nicholls I A. Molecular imprinting: recent innovations in synthetic polymer receptor and enzyme mimics. Recent Res Dev Pure Appl Chem, 1997, (1):133~157.
    [47] 蒋维钧.新型传质分离技术.北京:化学工业出版社,1997,120~137.
    [48] IAEA. Manual on laboratory testing for uranium ore processing. IAEA Technical Reports Series No. 313.46~55.
    [49] 宫传文.离子交换设备在我国铀提取工艺中的应用(待续).铀矿冶,2004,23(1):31~34.
    [50] 董灵英.萃淋树脂在分析中的应用.铀矿冶,1985,4(3):33~37.
    
    
    [51] 张建国 陈绍强 齐静.离子交换法深度净化铀矿冶废水中铀的研究—(Ⅰ)开发大孔离子交换树脂.铀矿冶,2000,19(2):97~103.
    [52] Broder J,M, Britta Planer-Friedrich, Christian W. Uranium in the aquatic environment. In: Proceedings of the International Conference Uranium Mining and Hydrogeology Ⅲ and the Internation Mine Water Association Symposium. Freiberg(Germany):Springer, 2002, 459~488.
    [53] Zhang J G, Chen S Q, Rao S, et al. Research on treatment of liquid effluent from uranium mines and mills during and after operation in China(coordinated research programme of IAEA). In:IAEA ed. Treatment of liquid effluent from uranium mines and mills during and after operation. An annual report for IAEA. 1997.
    [54] 张锦瑞.国外从海水中提出铀的现状及研究方向.铀矿冶,1995,14(1):49~52.
    [55] Andersson L I, Paprica A, Arvidsson T. A highly selective solid phase extraction sorbent for pre-coneentration of sameridine made by molecular imprinting. Chromatographia, 1997, 46(2):57~62.
    [56] Fujiwara I, Maeda M, Takagi M. Condensed-phosphate imprinted resins prepared by a surface template polymerization method. Anal Sci. 2000, 16(4):407~412.
    [57] Fujiwara I, Maeda M, Takagi M. Preparation of ferrocyanide-imprinted pyridine-carrying microspheres by surface imprinting, polymerization. Anal Sci. 2003, 19(4):617~620.
    [58] Bae S Y, Southard G L, Murray G M. Molecularly imprinted ion exchange resin for purification, concentration and determination of UO_2~(2+) by spectrophotometry and plasma spectrometry. Anal Chim. Acta, 1999, 397:173~181.
    [59] 有机制备化学手册编写组.有机制备化学手册(上).北京:化学工业出版社,1980,307~319.
    [60] 徐寿昌.有机化学.北京:高等教育出版社,1992,350~364.
    [61] Nalco Chemical Company. Preparation of diallyl dimethyl ammonium chloride and polydiallyl dimethyl ammonium chloride. United State. US4151202. 1979-04-24.
    [62] 阎醒.二甲基二烯丙基氯化铵的聚合与交联.油田化学,1992,9(3):259~261.
    [63] 许振举,齐鲁石油化工公司研究院.二甲基二丙烯基氯化铵制备方法.中国.
    
    CN1051169A. 1991-05-08.
    [64] 徐燕莉.N,N-二烯丙基-二甲基氯化铵的合成.石油化工,1998,27(7):517~520.
    [65] Ruch J E, Critchfield F E. Determination of small amounts of tertiary amines in the presence of primary amd secondary amines. Anal. Chem., 1961, 33(11 ): 1569~1572.
    [66] 陈贻文 李庆宏 黄文亮.有机仪器分析.长沙:湖南大学出版社,1999,287~403.
    [67] 比色法测定矿石中的铀.《铀矿石中铀的测定》EJ267-84.
    [68] 张镛 许根福.离子交换及铀的提取.北京:原子能出版社,1991,102~156.
    [69] Nuclear Energy Agency of the OECD, Iternational Atomic Energy Agency. In: Uranium extraction technology-current practice and new developments in ore processing, Paris: OECD, 1983, 34~39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700