用户名: 密码: 验证码:
不锈钢换热设备腐蚀分析与对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以己内酰胺装置中不锈钢换热器为研究背景,运用不锈钢腐蚀研究理论及成果对三台典型的不锈钢换热设备的失效形式进行了腐蚀分析与对策研究。
     E6608气体冷却器失效形式属于典型的不锈钢局部腐蚀,既有冲刷腐蚀、晶间腐蚀、又有高温酸性环境下的过氧化腐蚀。选择四种金属材料(2RE10、C_4、Zr-702、304L)和一种非金属材料(聚四氟乙烯塑料)进行现场挂片和实验研究,结果表明:2RE10不锈钢的抗过钝化腐蚀能力要比304L不锈钢强,同时2RE10不锈钢的耐晶间腐蚀性能也明显优于304L不锈钢。对E6608设备防护设施的研究结果表明:在设备壳程高温气体入口处设置锆材内套筒(含防冲挡板)及锆折流板,入口硝酸喷嘴采用钛材转阀结构及管束上部安装防冲假管,可明显减缓局部冲刷腐蚀和过氧化腐蚀;改进设备的焊接结构设计和优化焊接制造工艺,同样可遏止不锈钢本体材料的晶间腐蚀倾向。氧化和冲刷腐蚀是影响E6608气体冷却器使用寿命的主要原因,寻求耐蚀性和耐冲刷性能均佳的金属材料,是延长E6608使用寿命的有效途径。
     E6805气体加热器腐蚀失效研究表明:恶劣复杂的腐蚀体系是引起设备腐蚀失效的主要原因,要消除奥氏体不锈钢在高温氮氧化合物混合气体介质下的应力腐蚀,最好选用含碳量不低于0.04%的高铬镍钢,以保证其材料的高温抗蚀性及热强性;此外,合理的结构设计和优化工艺操作环境也是控制应力腐蚀与其它局部腐蚀的有效手段。设计改进后的新设备已连续高负荷运行四年,且经受了多次开停车非正常工况下的运行考验,达到了延长设备使用寿命的目的,应用效果显著。
     E3008低变再沸器管束腐蚀失效的主要原因是电化学腐蚀和应力腐蚀,以及设备设计结构不合理和制造加工工艺,引起了热壁汽蚀和缝隙腐蚀,工艺措施不到位也是造成腐蚀的人为原因。通过对20钢、渗铝20钢、18-8、304、316L五种材料进行性能对比试验,五种不同材料的传热面腐蚀试验结果表明:在与介质完全接触时,304不锈钢的耐腐蚀性能最好;在有露点腐蚀的环境中,304不锈钢的抗腐蚀性能同样优于所试验的其它各钢种;在有汽液两相存在的部位,304不锈钢的耐腐蚀性能最好,优于其他各试验钢种。综合研究结果:推荐采用304不锈钢作为E3008再沸器管束材料;同时改进结构设计,避免产生危害较大的局部腐蚀,在设备投用时,进行严格的钒化处理,也是防止再沸器腐蚀失效的有效措施。
The corrosion behavior and protective methods of three typical stainless steel heat exchangers in hexanolactam apparatus were studied in this paper.
    The corrosion type of E6608 gas cooler included eroding corrosion, intercrystalline corrosion and overoxidation corrosion in acidic high temperature environment. The in-situ hung-sample corrosion behaviors of four metallic materials(2REl0 C4 Zr-702 304L) and a non-metallic material (PTFE) were investigated. The results showed that the anti-overpassivity ability and anti-inter crystalline corrosion ability of 2RE10 were higher than those of 304L. Meanwhile, the eroding corrosion and overoxidation corrosion of E6608 can be inhibited obviously by installing Zr inner-cannula and Zr barrier at the high temperature gas entrance of the appartus, installing anti-concussion solid tube at the upper tube bundle and Ti rotational valve at the HNO3 muzzle entrance. Additionally, the intercrystalline corrosion of stainless steel could also be inhibited by using better welding process.
    The eroding corrosion of E6608 was the main factor that affected the life of the apparatus. The effective measure of prolonging the life of E6608 was seeking a suitable metallic material which has good performance of anti-corrosion as well as anti-eroding corrosion.
    The research results of E6805 also showed that the corrosion invalidation of the apparatus was caused by complicated corrosion system.The high Cr-Ni steel,which has good anti-corrosion performance and high strength at high temperture should be chosed to eliminate the stress corrosion of austenitic stainless steel in the mixed gases of nitrogen-oxygen compound at high temperture. In addition, the reasonable design of structure and the optimal process were effective means controlling the stress corrosion and other local corrosion. The improved new apparatus has run normally for four years and no corrosion was observed.
    The primary reasons of E3008 invalidation were electrochemical corrosion and stress corrosion. The unreasonable design of structure and manufacturing process resulted in heat-wall corrosion and crack corrosion.
    The corrosion behavior of the heat exchange surface of five materials(20 s teel,infiltrating-aluminium 20 steel, 18-8 stainless steel, 304 stainless steel ,316 L stainless steel) were investigated. The results showed that 304 stainless steel had the
    II
    
    
    best anti-corrosion performance when the corrosion medium contacted with the material totally. The 304 stainless steel also exhibited the best anti-corrosion performance in the environment of dew point corrosion and at the gas/liquid interface. Consequently, 304 stainless steel can be used as the tube bundle material of E3008 re-boiling implement. Simultaneously, strict treatment with V2O5 and more reasonable structure were the effective measures which prevented the E3008 from corrosion invalidation.
引文
[1] Brown B.F. Concept of the Occluded Corrosion Cell, Corrosion, 1970,26:249
    [2] Tuinbull A. The Solution Composition and Electrode Potential in PITS Crevices and Cracks, Corrosion Science, 1983,23:833
    [3] Zou J Y, Jin Z Q, Sun R H, et al. Accelerating Effect and Critical PH Valve of Occluded Cell Corrosion within Pit , Crevices, or Stress Corrosion Crack, Corrosion, 1988,44:539
    [4] 刘幼平,迟芳,左景伊.1Cr13不锈钢应力腐蚀裂缝内的电化学机制研究,化工学报,1993,44(5):617-623
    [5] Tomasshow N D, Chemova G P.曹铁梁译.腐蚀与耐蚀合金.北京:化学化工出版社,1982,46
    [6] 刘幼平.不锈钢局部腐蚀过程中的氢去极化反应研究,腐蚀科学与防护技术1997.9(2):115-119
    [7] Merello R, Botana F.J., Botella J., Mattes M.V. Influence of chemical composition on the Pitting Corrosion resistance of Non-standard low Ni-high-N Duplex Stainless Steels. Marcos, M. Corrosion Science 2003 , 45 (5) : 909-921
    [8] 李久青,孙冬柏,吴荫顺等.应用方波电位脉冲方法检测304L奥氏体不锈钢晶间腐蚀敏感性.北京科技大学学报,1994,16(增刊):52-58
    [9] 方智,吴荫顺,孙冬柏等.304L不锈钢晶间腐蚀的临界电位.腐蚀科学与防护技术,1995,7(4):332-335
    [10] 张巍,田虹,李久青.应用恒电位浸蚀技术检测奥氏体不锈钢晶间腐蚀敏感性.腐蚀科学与防护技术,1997,9(4):297-301
    [11] 肖纪美编著.腐蚀总论.北京:化学工业出版社,1994,65-78
    [12] 化工部化机研究院编.腐蚀与防护手册.北京:化学工业出版社,1989:246-292
    [13] Cigada A, Mazza B, Pedeferri P, et al. Stress Corrosion Cracking of Cold-worked Austenitic Stainless Steels, Corros. Sci, 1982,22(6):559
    [14] 王命元.金属腐蚀破坏形态及其防护方法.化工机械,1989,16(1):57-62
    [15] 刘新宽,方其先.两种不锈钢冲刷腐蚀的研究.化工机械,1998,25(1):12-16
    [16] 刘新宽,方其先.抽油泵球阀材料冲刷腐蚀的研究.石油机械,1996,24(6):28-30
    [17] 郑玉贵,姚治铭,李生春等.外加电位对0Cr18Ni9Ti不锈钢冲刷腐蚀行为的影响.化工机械,1994,2l(2):78-82
    [18] 刘双梅,刘道新.TA7钛合金耐热不锈钢电偶腐蚀敏感性研究.材料工程,2000(1):17-20
    [19] Parkings R N. Environment-Induced Cracking of Metals. eds, Gang loft R P, Ives M B Houston, TX; NACE, 1990,
    [20] Cottis R A, Husain Z. Corrosion-fatigue Initiation Processes in Maraging Steel. Metals Technology, 1982,9:104
    
    
    [21] Leis B N, Rungta R, Mayfield M E, Beavers J A. Corrosion Fatigue Crock Initiation in an Iron-Caustic System. in Corrosion Fatigue; Mechanics, Metallurgy, Electrochem is try and Engineering, eds. Crooker T W, Leis B N, ASTM STP 801,Philadelphia., PA; ASTM 1983:197
    [22] 王永智.腐蚀开裂过程中的交互作用.腐蚀科学与防护技术,1996,8:1
    [23] Laid C, Duguette D J. Mechanismus of Fatigue Creek Nuckeation. in Corrosion Fatigue: Chemistry, Mechanics and Microstructure ,eds. Devereux O F, Mcevily A J, Staehle R W, NACE-2, Houston T X; NACE 1972:88
    [24] Evan U R. The Corrosion and Oxidation of Metals. London: Edard Arnold, 1960
    [25] 吴荫顺,谢建辉,汪轩义等.氯化物溶液中不锈钢腐蚀疲劳裂纹初始萌生的过程机理.腐蚀科学与防护技术,1999,11(1):24-31
    [26] 雷明凯.生物用奥氏体不锈钢磨损腐蚀问题.大连理工大学学报,2000,40(增刊):65-69
    [27] 苏润西,宋诗哲.腐蚀科学与防护技术,1993,5(4):249
    [28] 许淳淳,吴小梅.钨酸根抑制不锈钢局部腐蚀的机理材料保护,2002,35(1)
    [29] Ateya B G, EI-Anadouli B E, EI-Nizamy F M. The Adsorption of Thiourea on Mild Steel. Corrosion Sci,1984,24(6):509
    [30] Sekine I, Hirakawa Y. Effect of 1-Hydroxyethylidene-1,1-Diphosphonic Acid on the Corrosion of SS 41 Steel in 0.3% chloride Solution. Corrosion, 1986,42:272
    [31] 许淳淳,吴小梅,刘幼平.有机阴离子对不锈钢局部腐蚀闭塞区的作用及机理.化工学报,2002,53(8):793-797
    [32] 唐子龙,宋诗哲.吡啶作为AISI304不锈钢孔蚀缓蚀剂的电化学研究.中国腐蚀与防护学报,1996,16(2):94-100
    [33] 秦紫瑞,姚蔓,李隆盛.超低碳Cr26-Ni28-M05-Cu3-Nb0.35铸造不锈钢的组织与耐蚀性能.特殊钢,1995,16(4):11-16
    [34] 秦紫瑞,郭宁.铸造不锈钢含碳量对其局部腐蚀行为的影响.石油机械,1997,25(7):14-16
    [35] 中国石油化工设备管理协会.石油化工装置腐蚀与防护手册.北京:中国石化出版社,1993,3
    [36] 小若正伦(日)编,袁宝林译.金属的腐蚀破坏与防蚀技术.化学工业出版社,1988
    [37] 吴孟周,吴绍良.加工高含硫原油的设备腐蚀和防护对策.石油化工腐蚀与防护,1998,14(4):1-3,54
    [38] 左景伊,左禹编著.腐蚀数据与选材手册.化学工业出版社,1995,119-131
    [39] 魏宝明.金属腐蚀理论及应用.化学工业出版社,1984,141-158
    [40] 张震.不锈钢在石油石化工业中的应用.中国石油化工,技术交流,2001,294-298
    [41] 肖纪美.不锈钢的金属学问题.冶金工业出版社,1983,210-264
    [42] 叶康民编.金属腐蚀与防护概论.人民教育出版社,1980,3-5
    [43] 张安峰等.动态与静态纯腐蚀对定量研究材料冲刷腐蚀交互作用的影响.金属学报,2002,38(5)521-524
    [44] Zelders HG. Met Corros, 1949, 65 (1): 25
    [45] (美)H.H.尤里克.R.W.瑞维亚著.腐蚀与腐蚀控制—腐蚀科学和腐蚀工程导
    
    论.石油工业出版社,1994,107-134
    [46] GB151-1999,钢制管壳式换热器.中国标准出版社,2000
    [47] 郑玉贵等.冲刷与腐蚀的交互作用与耐冲刷腐蚀合金设计.金属学报,2000,36(1):51-54
    [48] 薛锦著.应力腐蚀与环境氢脆—故障分析及测试方法.西安交通大学出版社,1991
    [49] 陈德和编著.不锈钢的性能与组织.机械工业出版社,1977,163-174
    [50] Staehle R W, Forty A J and Roovan D eds. Fundamental aspects of stress corrosion Cracking. NACE,Houston, 1969
    [51] 王正刚,郑卫国.加工含硫(含酸)原油过程设备用金属材料.石油化工腐蚀与防护,1998,15(1):7-14
    [52] 梁成浩,李淑英.E7007塔顶再沸器换热系统设备腐蚀与防护.石油化工腐蚀与防护,2000,17(3),25~27
    [53] 鹰山石油化工厂,制氢装置工艺技术规程,1997
    [54] GB4334.1~4334.9-84,不锈钢耐腐蚀试验方法,国家标准局
    [55] 中国石化总公司轻油制氢技术联络站,轻油蒸汽转化制氢技术问答,1992,121~131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700