用户名: 密码: 验证码:
中国西北地区植物δ~(13)C值的影响因素及其生态意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,碳同位素技术已被广泛应用于植物的生理生态,特别是植物碳—水关系的研究中。植物的碳同位素组成是叶片组织合成过程中光合作用的整合,反映植物长期的水分利用效率。由于西北干旱、半干旱区的年平均降水量均在600毫米以下,尤其是干旱区年平均降水量不足200毫米,水分成为植物生长过程中最主要的限制性因子,控制着植物气孔的关闭与开张,影响植物叶片的Pi/Pa值。许多研究已证实,植物叶片的碳同位素组成值与水分利用效率都受气孔的开闭以及叶片的Pi/Pa值所影响。一方面,研究植物叶片的碳同位素组成值,可以反映叶片的Pi/Pa值。另一方面,由于高的水分利用效率对应植物叶片碳同位素组成值偏正。因此,植物水分利用效率可以通过叶片的碳同位素组成值来揭示。
     按照植被分布的特征,本文研究区域包括温带草原植被区域,温带荒漠植被区域和甘南高原、山地植被区域。所采集的植物样品有草本、灌木、半灌木以及乔木。本文主要研究不同区域内植物碳同位素组成的空间分布特征,植物碳同位素组成所反映的影响因素以及研究区内植物水分利用效率的评估。其具体的研究结论如下:
     1、分析研究区(西北干旱、半干旱区)内所采集植物δ~(13)C值空间分布特征,发现植物δ~(13)C值的分布范围在-23.1‰~-32.6‰之内,平均值为-27.1‰。同时表明,所采集的植物均通过C_3分馏模式进行光合作用,且植物δ~(13)C值的差异性是受环境因素和部分生物因素所影响。
     2、通过分析研究区内植物δ~(13)C值与环境因素的关系,发现年平均降水量对植物δ~(13)C值影响较明显,且年平均降水量每增加100毫米,植物δ~(13)C值偏负0.8‰,叶片气孔的Pi值变化12.9ppm。虽然其它环境因素,如年平均温度、全年光照时数、海拔高度以及空间环境因素(经、纬度)与植物δ~(13)C值具有不同程度相关性,但它们的相关性均受降水因素干扰。生物因素(植物生活型、生长器官的差异性)同样对植物δ~(13)C值产生影响,不同生活型的常绿树木叶片δ~(13)C值偏正于每年落叶树木叶片δ~(13)C值;植物枝的δ~(13)C值偏正于叶的δ~(13)C值。
     3、分别通过理论与实验两个方面研究植物δ~(13)C值与WUE值之间的关系。理论的研究结果表明,两者具有较好的正相关性。为了探索研究区植物δ~(13)C值与WUE值之间的关系,本文通过分析年平均降水量对植物δ~(13)C值的影响,推导研究区范围内植物叶片Pi/Pa值变化的平均幅度,并对植物的WUE值进行初步估算,结果显示:研究区范围内植物的WUE值变化达80%。
The use of stable isotope techniques in plant ecological research has grown steadily during the past two decades.Carbon isotope composition of plant is a useful index for assessing intrinsic water use efficiency,meanwhile it can provide information on long-term water use efficiency,becauseδ~(13)C value integrates photosynthetic activity throughout the period of time when the leaf tissue was synthesized.Most of the arid and semi-arid areas in northwest China are with average annual precipitations under 600 mm,in particular,they are less than 200 mm in arid areas.In such areas,water,which can control the stomata of plant leaves on closing and opening,and influences the Pi/Pa values of plant leaves,will be the main restrictive factor for plants growth.Many studies have shown that theδ~(13)C values of leaves and WUE values are related to the stomatic closing,opening and Pi/Pa values. For one thing,δ~(13)C valuesof leaves can reflect Pi/Pa values.For another,plants which are with high WUE values,theδ~(13)C values of leaves are also high.Above all, WUE values can be reflected byδ~(13)C values.
     According to the distributing characters of plants,we have studied three regions, which are temperate grassland zone,temperate desert zone and plateau,mountain zone.All the samples that we have collected include herbs,shrubs,semi-shrubs and trees.We have studied the distributing characters ofδ~(13)C values in various regions, and theδ~(13)C values can reflect many affecting factors and WUE values.Our results are as follows:
     1.After having analyzed the spatial distribution character of plants' in studying areas(arid and semi-arid regions in northwest China),we found that plants'δ~(13)C values are in the range of-23.1%o and -32.6%o,within an average of-27.1‰.At the same time,it shows that plants,which are collected this time,are all C_3 species,and the differences ofδ~(13)C values are related to environmental and part of biological factors.
     2.We have analyzed the environmental parameters that could affectδ~(13)C values of plants,and found the average annual precipitation would influenceδ~(13)C values greatly,furthermore,when the average annual precipitation increases by 100 mm,theδ~(13)C values will decrease by about 0.8%,and the change of Pi values is about 12.9ppm.Other environmental factors,such as average annual temperature,light hours in one year,altitude and environmental space parameters(longitude and latitude),are more or less correlation withδ~(13)C values,however,they would be interfered by average annual precipitation.Biological factors,such as life forms,plant organs will also influenceδ~(13)C values of plants.Theδ~(13)C values of evergreen trees are higher than deciduous trees'.Branches'δ~(13)C values are higher than leaves'.
     3.We have discussed the relationship betweenδ~(13)C values and WUE values in theoretical and experimental aspects.It is evident that theδ~(13)C and WUE values are with positive correlation in theoretics.In order to expore the relationship betweenδ~(13)C and WUE values in experimental aspect,we have analyzed the average annual precipitation that affectsδ~(13)C values of plants in studying regions.Furthermore,we have obtained the variational average event of Pi/Pa values,and the preliminary estimates showed that the WUE values can vary by about 80%in studying regions.
引文
Button T.W, Shin-ichi Yamasaki. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. Marcel Dekker, Inc, New York,1996, pp: 47-82.
    Bruno D.Marino, Michael B.Mcelroy, Ross J.Salawitch., et al. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO_2. Nature, 1992,357(11):461-465.
    Brooks, J.R., L.B. Flanagan, N. Buchmann, et al .Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia 1997,110:301-311.
    Beerling, D. J. 13C discrimination by fossil leaves during the late-glacial climate oscillation 12-10 BP: measurements and physiological controls. Oecologia, 1996,108:29-37.
    Beerling, D. J.Ecophysiological responses of woody plants to past CO_2 concentrations. Tree Physiology, 1996,16:389-396.
    Bettarini I, Calderoni G, Miglietta F, Raschi A, Ehleringer J. Isotopic carbon discrimination and leaf nitrogen content of Erica arborea L along a CO_2 concentration gradient in a CO_2 spring in Italy. Tree Physiol. 1995,15:327-32
    Bowman WD, Hubick KT, von Caemmerer S. Short-term changes in leaf carbon isotope discrimination in salt- and waterstressed C_4 grasses. Plant Physiol. 1989,90(1): 162-166
    Chabot BF, Hicks DJ. The ecology of leaf life spans. Ann Rev Ecol Syst,1982 13:229-259
    Chen SP, Bai YF, Han XG. Variations in Composition and Water Use Efficiency of Plant Functional Groups Based on Their Water Ecological Groups in the Xilin River Basin. Acta Botanica Sinica 2003, 45 (10): 1251-1260
    Chen SP, Bai YF, Han XG. Variation of water-use efficiency of Leymus chinensis and Cleistogenes squarrosa in different plant communities in Xilin River Basin. Nei Mongol. Acta Bot Sin, 2002,44:1484-1490.
    Comstock JP, Ehleringer JR. Correlating genetic variation in carbon isotopic composition with complex climatic gradients. Proc. Natl. Acad. Sci. 1992,89:7747-7751
    Condon AG, Richards RA, Farquhar GD. Carbon isotope discrimination is positively correlated with grain yield and dry matter production in field-grown wheat. Crop Sci. 1987, 27:996-1001
    Condon AG, Richards RA, Farquhar GD. The effect of variation in soil water availability, vapour pressure deficit and nitrogen nutrition on carbon isotope discrimination in wheat. Aust. J. Agric. Res.1992, 43:935-48
    Condon,A,G, R. A. Richards, G. J. Rebetzke, et al. Improving Intrinsic Water-Use Efficiency and Crop Yield. Crop Sci. 2002, 42:122-131.
    Condon, A.G, R. A. Richards, G. J. Rebetzkel,et al. Breeding for high water-use Efficiency. Journal of Experimental Botany, 2004,407(55): 2447-2460.
    Condon, A.G., G.D Farquhar, R.A. Richards. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies. Plant Physiol, 1990,17:9-22.
    Craig H, The geochemistry of the stable carbon isotopes. Geochim.Cosmochim. Acta, 1953 3:53-92.
    DeLucia E H, Sch lesinger W H. Resource fuse efficiency and drought to lerance in adjacent Great Basin and Sierran Plants. Ecology, 2001,72 (1): 51-58.
    Ehleringer JR, Comstock, Cooper TA. Leaf-twig carbon isotope ratio differences in photosynthetic-twig desert shrub.Oecologia,1987,71:318-320
    Ehleringer JR, Cooper TA. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia,1988,76:562-566
    Ehleringer JR, Field CB, Lin Z-F, Kuo C-Y. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 1986,70:520-26
    Ehleringer ,J.R, Klassen .S, Clayton C et al..Carbon isotope discrimination and transpirationefficiency in common bean. Crop Sci,1991,3:1611-1615.
    Ehleringer JR. Variation in leaf carbon isotope discrimination in Encelia farinosa: implications for growth, competition, and drought survival. Oecologia 1993, 95:340-46
    Ehleringer, J. R., and T. E. Cerling. Atmospheric CO_2 and the ratio of intercellular to ambient CO_2 concentrations in plants. Tree Physiology, 1995,15:105-111.
    Enrico Brugnoli, Marco Lauteri, et al. Effects of salinity on stomatal conductance, Photosynthetic capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive(Phaseolus vulgaris L.)C_3 Non-Halophytes. Plant Physiol, 1991, 95:628-635.
    Farquhar GD, van Caemmerer S, Berry JA. A biochemical model of photosynthetic CO_2 assimilation in leaves of C3 species. Planta,1980,149:78-90.
    Farquhar GD, M.H.O'Leary, JABeny. On the relationship between carbon dioxide discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J.Plant Physoil, 1982,9:121-137.
    Farquhar GD, Ball MC, von Caemmerer S, et al.Effect of salinity and humidity on 613 values of halophytes evidence for diffusional fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO_2 under different environmental conditions. Oecologia, 1982,52:121-124.
    Farquhar GD. On the nature of carbon isotope discrimination in C_4 species. Aust J.Plantphysoil, 1983,10:205-260.
    Farquhar GD, Richards R.A.Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physoil, 1984,11:539-552.
    Farquhar GD, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol,1989,40:503-537.
    Farquhar GD, Wong S.C.An empirical model of stomatal conductance .Aust. J.Plant Physoil, 1984, 11:191-220.
    Farquhar, G. D., Sharkey T. D.Stomatal conductance and photosynthesis.Annual Review of Plant Physiology, 1982,33: 317-345.
    
    Farmer JG. Problems in interpreting tree-ring d~(13)C records. Nature, 1979,279:229-231
    Feng X., Epstein S. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO_2 concentration. Geochimica et Cosmo-Chimica Acta, 1995, 59:2599-2608.
    Flanagan, L. B, Jefferies, R. L. Stomatal limitation of photosynthesis and reduced growth of the halophyte, Plantago maritima L., at high salinity Plant. Cell and Environment, 1988, 11 (4):239-245.
    Francey R J, Farquhar GD. An explanation of ~(13)C/~(12)C variation in tree rings. Nature, 1982,297:28-31.
    Frncey RJ, Tans PP, Allision CF et al. changes in oceanic and terrestrial carbon uptake since 1982 Nature 373:326-330.
    Garten CT, Taylor GE. Foliar δ~(13)C within a temperate deciduous forest: spatial temporal, and species sources of variation. Oecologia,1992,90:1-7
    Geber MA, Dawson TE. Genetic variation in and covariation between leaf gas exchange, morphology, and development in Polygonum arenastrum, an annual plant. Oecologia. 1990,85:53-58
    Gitay H, Noble IR. Plant and ecosystem functional types. Smith TM, Shugart HH, Woodward FI. Plant Functional Typers: Their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, 1997, pp:3-19
    Greitner, CS, Winner, WE. Increases in d~(13)C values of radish and soybean plants caused by ozone. New phytol,108:489-494
    Guehl J-M, Fort C, Ferhi A. Differential response of leaf conductance, carbon isotope discrimination andwater-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants. New Phytol, 1995,131:149-157
    Hanba YT, Shigeta Mori,Thomas T. Lei ,et al. Variations in leaf d~(13)C along a vertical profile of irradiance in a temperate Japanese forest.Oecologia,1997,110:253-261
    Hogberg P, Johannisson C. abundance of forests is correlated with losses of nitrogen. Plant Soil 1993,157:147-150
    Hubick K T, Farquhar GD, Shorter R. Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut (Arachis) germplasm. Aust. J. Plant Physiol, 1986, 13: 803-816.
    Hultine KR, Marshall JD. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 2000,123: 32-40
    James A.Bunce. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia, 2004,140:1-10
    Jasper JP, Hayes JM, Mix AC, et al. Photosynthetic fraction of ~(13)C and concentration of discrimination and the intercellular equatorial pacific during last 255,000 years. Paleoceanograph, 1994,9: 781-789
    Krishnamurthy R. V., and Epstein. Glacial-interglacial excursion in the concentration of atmospheric CO2: effect in the ~(13)C/~(12)C ratio in wood cellulose. Tellus, 1990,42B:423-434.
    Korner C, Farquhar. G.D, Z. Roksandic. A global survey of carbon isotope discrimination in plants from high altitude.Oecologia,1988, 74:623-632.
    Korner C, Farquhar. G.D, S.C.Wong. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends.Oecologia,1991, 88:30-40.
    Korol RL, Kirschbaum MUF, Farquhar GD, Jeffreys M. Effects of water status and soil fertility on the C-isotope signature in Pinus radiate.Tree Physiol. 1999,19:551-562
    Leavitt SW, Long A. Evidence for ~(13)C/~(12)C fractionation between tree leaves and wood.Nature, 1982,298:742-743
    Li CY, Zhang XJ, Liu XL, et al Leaf Morphological and Physiological Responses of Quercus aquifolioides along an Altitudinal Gradient. Silva Fennica, 2006,40 (1):5-13.
    Lin, G. Greenhouse Ecosystems: a book review on World Ecosystem Series 20 (invited). Ecological Engineering, 2001,17: 463-465
    Lin, G. R. Siegwolf. What can we learn from oxygen and hydrogen isotope compositions of tree-ring cellulose in higher plants (invited review paper for a special forum). Acta Phytoecologia Sinica, 2002,26: 381-384.
    Lloyd J, Kruijt B, Hollinger DY, et al. Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia. Aust. J. Plant Physiol. 1996, 23:371-399
    Ma Jianying, Chen Tuo, QiangWeiya et al. Correlations between foliar stable carbon isotope composition and environmental factors in desert plant Reaumuria soongorica ( Pall. )Maxim. Journal of Integrative. Plant Biology, 2005,47 (9):1065-1073
    Malse J. .Farquhar GD. Effects of soil strength on the relation of water-use efficiency and growth to carbon isotope discrimination in wheat seedlings. Plant Physiol, 1988, 86:32-38
    Marshall JD, Zhang J. Carbon isotope discrimination and water-use efficiency in native plants of the north-central Rockies. Ecology, 1994,75:1887-1895
    Martin B, Bytnerowicz A, Thorstenson YR. Effects of air pollutions on the composition of stable isotopes of leaves and wood, and on the leaf injury. Plant physiol. 1988,88:218-223
    Martin B, Sutherland EK. Air pollution in the past recorded in width and stable carbon isotope composition of annual growth rings of Douglas-fir. Plant cell environment,1990,13:839-844
    James D. Mauseth et al, Botany -An introdrction to plant biology, 3rd ed. Janes and Bartlett Publishers, MA01776, U.S.A. 2003
    Nan Crystal Arens, A. Hope Jahren, Ronald Amundson. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology, 2000, 26 (1): 137-164.
    O'Leary M.H. Carbon isotope fractionation in plants. J.Phytochemistry, 1981,20:553-557.
    O'Leary M.H, Treichel, I., Rooney, M. Short-time measurement of carbon isotope fractionation in plants. Plant physiol,1986, 80:578-582
    
    O'Leary M. H. Carbon isotope in Photosynthesis. Bioscience, 1988,38(5):328-336.
    Pearman GI, Francey RJ, Fraster PB. Climatic implications of stable isotopes in tree rings. Nature, 1986,206:771-772
    Pasquier-Cardin A. Magma-derived CO_2 emissions recorded in ~(14)C and ~(13)C content of plants growing in Furnas Caldera, Azores. Journal of Volcanology and Geother- mal Research, 1999, 92:195-207.
    
    Peisker.M,S.A.Henderson. Carbon: Terrestrial C_4 plants. Plant Cell and Environment, 1992,15:987-1004
    Perry W. Swanborough, Byron B,et al.d~(13)C and water-use efficiency in Australian grasstrees and South African conifers over the last century. Oecologia, 2003,136:205-212.
    Poorter H, Farquhar GD. Transpiration, intercellular carbon dioxide concentration and carbon-isotope discrimination of 24 wild species differing in relative growth rate. Aust. J. Plant Physiol. 1994,21:507-517
    Poss JA, Grattan SR, Suarez DL, Grieve CM. Stable carbon isotope discrimination: an indicator of 20:1121-1127
    Reich PB, Amundson RG. Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science, 1985,230:566-570
    Reich PB, Walters MB, Ellsworth DS. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr,1992,62:365-392
    Schulze ED, Williams RJ, Farquhar GD, Schulze W, Langridge J, et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust. J. Plant Physiol.1998,25:413-25
    Schuster WSF, Sandquist DR, Phillips SL et al. Heritability of carbon isotope discrimination in Gutierrezia microcephala (Asteraceae). Am. J. Bot. 1992, 79:216-221
    Shugart HH. Plant and ecosystem functional types. Smith TM, Shugart HH, Woodward FI. Plant Functional Typers: Their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, 1997,pp:21-43
    Smedley M.P, Dawsori T.E, Comstock J.P et al. Seasonal carbon isotope discrimination in a grassland community. Oecologa, 1991,85:314-320
    
    Sparks J, Ehleringer JR. Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transect. Oecologia 1997,109:362-67
    Stewart GR, Turnbull MH, Schmidt S, Erskine PD. 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Aust. J. Plant Physiol.1995, 22:51-55
    Su Bo, Han Xingguo, Li Linghao, et al2000.Responses of δ~(13)C value and water use efficiency of plant species to environmental gradients along the grassland zone of Northeast China Transect. Acta Phytoecologica Sinica, 2000,24(6):648-655
    Sun, Bainian, David L Dilcher, David J. Beerling, et al. 2003. Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. PNAS, 2003,100(12):7141-7146.
    Stewart G.R., Turnbull M.H. et al. ~(13)C natural abundance in plant communities along a rainfall gradient: A biological integrator of water availability. Journal of Plant Physiology, 1995, 22:51-55.
    Tanner CB, Sinclar TR. Efficient water use in crop production research[A].H M Taylor, W R Jordan, T R Research. Limitation to efficient water use in crop production[C]. American society of agronomy, Inc, 1983:1-25
    Tans PP, Mook WG. Past atmospheric CO2 levels and ~(13)C/~(12)C ratios in tree rings. Tellus, 1980, 32:268-283.
    Tieszen,L.L.,Boutton, T.W. Stable carbon isotope in terrestrial ecological research, in stable isotope in Ecological Research(eds.Rundel, P.W., Ehleringer,J.R.,Nagy,K.A.). Berlin: Springer-Verlag,1989,167-195.
    Tsialtas JT, Handley LL, Kassioumi MT, et al. Interspecifuc variation in potential water-use efficiency and its relation to plant species abundance in a water-limited grassland. Funct Ecol 2001,15:605-614
    Virgona JM, Farquhar GD. Genotypic variation in relative growth rate and carbon isotope discrimination in sunflower is related to photosynthetic capacity. Aust. J.Plant Physiol. 1996, 23:227-44
    Vitousek PM, Field CB, Matson PA. Variation in foliar δ~(13)C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia, 1990, 84:362-70
    Welker JM, Wookey PA, Parsons AN. Leaf carbon isotope discrimination and vegetative responses of Dryas octopetala to temperature and water manipulations in a High Arctic polar semi-desert, Svalbard[J]. Oecologia 1993,95:463-69
    Waring RH, Silvester WB. Variation in foliar δ~(13)C values within the crowns of Pinus radiata trees. Tree Physiol. 1994,14:1203-13
    Williams DG, Ehleringer JR. Carbon isotope discrimination and water relations of oak hybrid populations in southwestern Utah. West. N. Am. Nat. 2000, 60:121-29
    Williams DG, Gempko V, Fravolini A, et al. Carbon isotope discrimination by Sorghum bicolor under CO2 enrichment and drought. New Phytol, 2001,150:285-93
    Wright G.C., R.C. Nageswara Rao, G. D Farquhar. Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions.Crop Sci.1994,34:92-97.
    Wang Guoan,Han Jiamao,Zhou Liping,et al.Carbon isotope ratios of C_4 plants in loess areas of North China.Science in China,2006,49(1):97-102.
    Yehoshua Saranga,Igal Flash,Andrew H.Paterson.Carbon isotope ratio in cotton varies with growth stage and plant organ.Plant Science,1999,12:47-56
    Yoder BJ,Ryan MG,Waring RH,Schoettle AW,et al.Evidence of reduced photosynthetic rates in old trees.For.Sci.1994,40:513-27
    Zhang Chenjun,Chen Fahu,Jin Ming.Study on modem plant C-13 in western China and its significance.Chinese journal of geochemistry,2003,22(2):97-106.
    Zimmerman JK,Ehleringer JR.Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiflavum.Oecologia,1990,83:247-249
    陈拓,杨梅学,冯虎元,等.青藏高原北部植物叶片碳同位素组成的空间特征.冰川冻土,2003,25(1):83-87
    冯虎元,安黎哲,陈拓.马先蒿属(Pedicula ris L.)植物稳定碳同位素组成与环境因子之间的关系.2003,25(1):88-93
    蒋高明,黄银晓,万国江,等.树木年轮δ~(13)C值及其对我国北方大气CO_2浓度变化的指示意义.植物生态学报,1997,21(2):155-160.
    林植芳,彭长连,林桂珠,等.菠萝叶片的稳定碳同位素比与PEP羧化酶及PEP羧激酶活性.植物学报,1994,36(7):534-538
    李相搏,陈践发,张平中,等.青藏高原(东北部)现代植物碳同位素组成特征及气候信息.沉积学报,1999,17(2):325-329
    林植芳,林桂珠,孔国辉,等.生长光强对亚热带自然林两种木本植物δ~(13)C,Ci和WUE的影响.热带亚热带植物学报,1995,3(2):77-82.
    林清,王绍令.沉水植物稳定碳同位素组成及影响因素分析.生态学报,2001,21(5):806-809.
    马剑英,陈发虎,夏敦胜.荒漠植物红砂稳定碳同位素组成的空间分布征.生态学报,2006,26(6):947-954
    沈吉、王楚,静态灼烧氧化法制备有机碳同位素质谱分析样品.分析测试技术与仪器,1997,3(2):113-116
    苏波 韩兴国 李凌浩,等.中国东北样带草原区植物δ~(13)C值及水分利用效率对环境梯度的响应[J].植物生态学报,2000,24(6)648-655
    苏培玺,陈怀顺,李启森.河西走廊中部沙漠植物δ~(13)C值的特点及其对水分利用效率的指示.冰川冻土,2003,25(5):597-602
    孙谷畴,林植芳,林桂珠,等.亚热带人工松林~(13)C/~(12)C比率和水分利用效率[J].应用生态学报,1993,4(3):325-327
    王国安.稳定碳同位素在第四纪古环境研究中的应用.第四纪研究,2003,23(5):471-484.
    王国安,韩家懋.中国西北C_3植物的碳同位素组成与年平均降水量关系初探[J].地质科学,2001,36(4):494-499.
    王国安.中国北方C_3植物碳同位素组成与年均温的关系.中国地质.2002.29(1):55-57.
    王国安,韩家懋,等.中国北方黄土区C_3草本植物碳同位素组成研究.中国科学(D辑),2003,33(6):550-556.
    王国安,韩家懋.C3植物碳同位素在旱季和雨季中的变化.海洋地质与第四纪地质,2001,21(4):43-46.
    旺罗,吕厚远,吴乃琴,等.青藏高原现生禾本科植物的δ~(13)C与海拔高度的关系.第四纪研究,2003,23(5):573-580
    严昌荣,韩兴国,等.暖温带落叶阔叶林主要植物叶片中δ~(13)C值的种间差异及时空变化.植物学报,1998,40(9):853-859.
    张成君,陈发虎,尚华明,等.中国西北干旱区湖泊沉积物中有机质碳同位素组成的环境意义.移民勤盆地三角城古湖泊为例.第四纪研究,2004,24(1):88-94.
    徐世建,陈拓,冯虎元,等.新疆乌鲁木齐河上游植物叶片δ~(13)C空间分异的环境分析.自然科学进展,2002,12(6):58-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700