用户名: 密码: 验证码:
二维零偏移与共偏移距共反射面叠加研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
德国Karlsurhe大学Hubral教授于二十世纪九十年代提出的共反射面叠加方法属于宏速度模型无关的完全数据驱动模拟零偏移距剖面地震成像方法,是对动校正/叠加与倾角时差校正/叠加等常规模拟零偏移距剖面方法的扩展。该方法通过合并相邻的共中心点道集直接对叠前时间域反射同相轴进行处理,收集并更好地利用了叠前数据中属于深度域内共反射面的冗余信息,可大幅度提高地震叠加剖面信噪比和分辨率,是复杂地区地震资料处理技术的重要发展方向。
     本文对二维零偏移距共反射面叠加与共偏移距共反射面叠加方法进行了仔细研究与分析,主要进行了以下几方面的工作:
     1)从面到面传播矩阵和共反射点轨迹出发,分别采用旁轴射线理论及几何方法,推导了复杂非均匀介质条件下适用于任意弯曲反射段的二维零偏移距共反射面抛物线与双曲线走时近似公式。共反射面叠加通过两种假想特征波(法向入射点波与法向波)建立了深度域与时间域的联系。相对于常规叠加方法来说,零偏移距共反射面叠加使用全部叠前多次覆盖数据体,并不局限于特定的道集,因此有更多数量的地震道对叠加结果产生贡献。
     2)对二维零偏移距共反射面叠加属性参数实用搜索策略进行了研究分析及改进,通过将黎曼球半径引入共反射面叠加参数搜索策略中,避免了出现数值问题;将相干阀值引入相干分析过程,大大提高了共反射面叠加属性参数搜索效率;对部分灵活多面体参数搜索优化算法进行了改进,在确保其精度的前提下,使得共反射面叠加优化算法计算效率更高。形成了一套面向对象的共反射面叠加属性实用搜索策略实现方法,能够对实际数据进行处理并更强有力、更灵活地控制叠加参数扫描范围。
     3)针对实用搜索策略中法向入射点波曲率半径RNIP的计算容易导致不确定性问题的缺陷,建立一种面向对象的扩展零偏移距共反射面叠加参数搜索策略来克服这种局限性,并且尽可能保留了实用搜索策略的效率,从而使得共反射面叠加提供一个更完全及更具有物理意义上的零偏移距模拟剖面。
     4)分别对共反射面叠加中的共中心点叠加孔径、零偏移距叠加孔径及共反射面超道集孔径问题进行了详细探讨,并给出了计算办法,为共反射面叠加的正确高效执行提供了保障。在共反射面叠加每个步骤中合理地应用合适的叠加孔径可以得到比较理想的共反射面叠加剖面。
     5)将共反射面叠加理论引入共偏移距叠加中,根据旁轴射线理论推导了复杂非均匀介质条件下的五参数二维共偏移距共反射面抛物线与双曲线走时二阶近似公式。所推导的走时近似公式与实际反射响应比较结果证明共偏移距共反射面叠加算子在较大范围内与反射响应拟合得非常好,能够产生非常好的拥有高信噪比的叠加结果。
     6)借鉴零偏移距共反射面叠加实现过程建立了共偏移距共反射面叠加处理流程,对同时进行的五参数搜索进行分解,在保证正确性的同时大量地节约了计算时间。共偏移距共反射面叠加可得到质量明显改善的共偏移距叠加剖面及五个运动学波场属性剖面,并能够处理大偏移距情况及具有处理转换波的潜力,这扩展了地震资料处理的思路,为将来复杂地区转换波地震资料处理开辟了一条新途径。
     理论模型与实际资料试算表明,零偏移距与共偏移距共反射面叠加方法都是完全数据驱动且与宏速度模型无关的方法,零偏移距共反射面叠加能够适用于海洋及陆地地震资料数据处理,可提高数据覆盖次数与信噪比,显著改善模拟零偏移距剖面的成像质量,是一种非常有发展前景的地震成像方法;共偏移距共反射面叠加能够改善共偏移距叠加剖面质量,得到的角度值及波前曲率等波场属性参数为将来转换波处理提供了可能。
The common-reflection-surface(CRS) stack method developed in the end of 1990's by professor Hubral of Karlsurhe university in Germany is an entirely data-oriented seismic reflection imaging approach of zero-offset section simulation in a macro-velocity model independent way. The idea of the CRS stack method is to provide an extension of conventional zero-offset section simulateion approaches such as normal moveout (NMO)/stack and dip moveout/stack. The CRS stack method parameterizes the reflection events in the pre-stack time domain by incorporating neighboring common-mid-point (CMP) gathers directly, and the inherent redundancy of the pre-stack data is used to collect information that pertains to common reflection surfaces in depth, which can improve the signal-to-noise ratio and resolutions of seismic stacked sections. The CRS stack approach has become an important development trend of seismic data processing in difficult terrians.
     Two-dimensional (2D) zero-offset CRS stack and common-offset CRS stack method have been studied respectively in this paper.
     Firstly,2D zero-offset CRS parabolic and hyperbolic traveltime approximation for arbitrarily curved reflector segment in complex inhomogeneous media have been derived by means of paraxial ray method and geometrical approach by starting with the surface-to-surface progagator matrix and common-reflection-point trajectory. Two hypothetical eigenwaves (the normal- incidence-point and nomal wave) establish a relationship between the depth and the time domain. In contrast to conventional stacking methods, the zero-offset CRS stack uses the full multi-coverage data volume in the stacking procedure as the CRS operator is not restricted to specific gathers. Consequently, many more traces compared to conventional stacking methods contribute to the stack.
     Secondly, the pragmatic search strategy for 2D zero-offset CRS attributes was studied. A Riemann sphere radius was introduced into the CRS stacking attributes search to avoid causing numerical problems and some improvement was made that the efficiency of the pragmatic search strategy is enhanced by giving a threshold in coherence analysis. The flexible polyhedron search algorithm used by the implementation of the CRS stack was studied and analized, and some adaptation was made to enhance the efficency of the CRS stacking operator optimization algorithm. Consequently, an object-oriented implementation of CRS search strategy implementation has been presented to allow a generalized handling of real data and provide more powerfull and flexible features to control the range of tested CRS stacking attributes.
     Thirdly, an object-oriented implementation of extended zero-offset CRS atttibutes search strategy implementation has been presented to overcome some of limitations in pragmatic search strategy caused by the ambiguity in the determineation of the radii of curvature RNIP, and the efficiency of the pragmatic search strategy is preserved as far as possible so that a more complete and more physical zero-offset simulateion section is provided by the CRS stack approach.
     Fourthly, the calculation of CMP stacking aperture, zero-offset stacking aperture and the CRS super gather aperture was discussed respetively, and which ensures the high efficency of the implementation of CRS stack. Consequently, the ideal CRS stacked section was acheieved by means of reasonable application of suitable stacking aperture to respective steps of the CRS stacking implementation.
     Fifthly,2D five-parameter CO CRS parabolic and hypobolic traveltime second-order approximation equation in complex inhomogeneous media was derived by means of paraxial ray theory by introducing the CRS stack approach into common-offset (CO) stack. Compared to the real reflection response show that the CO CRS stacking operator derived fits well to the relection response over a large range and could yield stack sections of better quality with high signal-to-noise ratio.
     Finally, CO CRS stack processing sequence was established by referring to the implementation of ZO CRS stack. The simultaneously five-parameter search was correctly split to save enormous computation time. The CO CRS stack can yield noteworthy CO stacked section and five kinematic wave-field attributes sections, and it also has the potential to simulate sections for converted waves. This extends the idea of seismic data processing and provides a new approach for seismic coverted wave processing in difficult terrians.
     Applications of the CRS stack method to several synthetic and real data sets have proved that the CRS stack approach is an entirely data-oriented macro-velocity model independent seismic reflection imaging approach, and the ZO CRS stack method can handle marine and land seismic data sets, increase fold and signal-to-noise ratio of data sets and improve the imaging quality of simulated ZO sections, so the ZO CRS stack has greate developing prospects. The CO CRS stack approach can improve the quality of CO stacked sections, and the wave field attributes determined by this approach can serve for converted waves processing.
引文
[1]Heilmann Z. CRS-stack-based seismic reflection imaging for land data in time and depth domains [D]. Germany:Karlsruhe University,2007
    [2]Bergler S. The Common-Reflection-Surface Stack for Common Offset:Theory and Application [D]. Germany:Karlsruhe University,2001
    [3]谭未一.共反射面元叠加[D].北京:中国科学院地质与地球物理研究所,2004
    [4]Boelsen T. The Common-Reflection-Surface Stack for arbitrary acquisition geometries and multi-component data-Theory and Application [D]. Germany:Karlsruhe University,2005
    [5]Yilmaz O著.地震数据处理[M].黄绪德,袁明德等译.北京:石油工业出版社,1993:1-7
    [6]李庆忠.走向精确勘探的道路[M].北京:石油工业出版社,1993:1-2
    [7]Hocht G., Mann J., Jager R. The Common Reflection Surface Stack-Part Ⅰ:Theory[R]. Karlsruhe University: Wave Inversion Technology Consortium,1998
    [8]Jager R., Mann J., Hocht G. The Common Reflection Surface Stack-Part Ⅱ:Application [R]. Karlsruhe University:Wave Inversion Technology Consortium,1998
    [9]Jager R. The Common-Reflection-Surface Stack Theory and Application [D]. Germany:Karlsruhe University,1999
    [10]Mann J., Jager R., Miiller T., et al. Common-reflection-surface stack-a real data example[J]. Journal of Applied Geophysics,1999, v42(3,4):301-318
    [11]Mann J. Extensions and Applications of the Common-Reflection-Surface Stack Method[D]. Germany: Karlsruhe University,2002
    [12]Zhang Y., Bergler S., Hubral P. Common-Reflection-Surface (CRS) stack for common-offset[J]. Geophysical Prospecting.,2001, v49(6):709-718
    [13]Hubral P. WIT Annual Report NO.5[R]. Karlsruhe University:Wave Inversion Technology Consortium,2001
    [14]Yilmaz O., Claerbout J. F. Prestack partial migration[J]. Geophysics,1980, V45(12):1753-1779
    [15]Hale, D. Dip-moveout by Fourier transform[J]. SEG Expanded Abstracts,1983, v2:271-273
    [16]Hale D. Dip moveout by Fourier transform[J]. Geophysics,1984, V49(6):741-751
    [17]Hale D. A nonaliased integral method for dip moveout[J]. Geophysics,1991, v56(6):795-805
    [18]Hale D., Artley C. Squeezing dip moveout for depth-variable velocity[J]. Geophysics,1993, v58(2):257-264
    [19]Forel D., Gardner G. A three-dimensional perspective on two-dimension aldip moveout[J]. Geophysics, 1988, v53(5):604-610
    [20]de Bazelaire E. Normal moveout revisited-inhomogeneous media and curved interfaces[J]. Geophysics, 1988,53(2):143-157
    [21]何樵登.地震勘探原理和方法[M].北京:地质出版社,1986:242-249
    [22]陆基孟.地震勘探原理[M].北京:石油大学出版社,1993:92-98
    [23]熊煮.数据数字处理应用技术[M].北京:石油工业出版社,1993:112-125
    [24]牟永光.地震勘探资料数字处理方法[M].北京:石油工业出版社,1980:99-169
    [25]Mayne W. H. Common reflection point horizontal data stacking techniques[J]. Geophysics,1962, v27(6): 927-938
    [26]裴江云.地震波场延拓+菲涅尔体叠加方法及成像效果[D].北京:中国科学院地质与地球物理研究所,2002
    [27]Taner M. T., Koehler F. Velocity spectra-digital computer derivation and applications of velocity functions[J]. Geophysics,1969, v34(6):859-881
    [28]Levin F. K. Apparent velocity from dipping interface reflections[J]. Geophysics,1971, v36 (5): 510-516
    [29]覃天.共反射面叠加及其波场属性在地震资料处理中的应用研究[D].北京:中国地质大学,2007
    [30]Deregowski S. M., Rocca F.,1981,Geometrical optics and wave theory of constant offset sectionsin layered media[J]. Geophysical Prospecting, v29:374-406
    [31]Bolondi G., Loinger E., Rocca F. Offset continuation of seismic sections[J]. Geophysical Prospecting, 1982, v30:813-828
    [32]Jakubowicz H. A simple efficient method of dip-moveout correction[J]. Geop hysical Prospecting,1990, v38:221-245
    [33]Biondi B., Ronen S. Dip moveout in shot profiles [J]. Geophysics,1987, v52(11):1473-1482
    [34]Notfors C. D., Godfrey R. J. Dip moveout in the frequency-wavenumber domain[J]. Geophysics,1987, v52(12):1718-1721
    [35]Gardner G. H. F., Wang S. Y., Randazzo S. Examples of DMO for 3-D data over 3-D structures [A]. Expanded Abstracts of 57th Annual International Meeting[C]. SEG,1987:309-312
    [36]Hubral P., Krey T. Interval velocities from seismic reflection traveltime measurements[M]. SEG,1980
    [37]Hubral P., Schleicher J., Tygel M. Three-dimensional paraxial ray properties Part I:Basic relations[J]: Journal of Seismic Exploration,1992, vl:265-279
    [38]de Bazelaire E. Normal moveout revisited-inhomogeneous media and curved interfaces[J]. Geophysics, 1988,v53(2):143-157
    [39]Thore P. D., de Bazelaire E., Ray M. P. Three-parameter equation:An efficient tool to enhance the stack[J]. Geophysics,1994, v59(2):297-308
    [40]Hocht G. Traveltime approximations for 2D and 3D media and kinematic wavefield attributes [D]. Germany:Karlsruhe University,2002
    [41]Gelchinsky B. Homeomorphic imaging in processing and interpretation of seismic data-fundamentals and schemes[A]. Expanded Abstracts of 59th Annual International Meeting[C]. SEG,1989:983-988
    [42]Berkovitch A., Gelchinsky B. Inverse of common reflecting element data[A]. Expanded Abstracts of 59th Annual International Meeting [C]. SEG,1989:1250-1252
    [43]Keydar S., Gelchinsky B., Shtivelman V., et al. Common evolute element(cee) stack and imaging (zero offset stack)[A]. Expanded Abstracts of 60th Annual International Meeting[C]. SEG,1990:1719-1722
    [44]Berkovitch A., Gelchinsky B., Keydar, S. Basic formulae for multifocusing stack[A]. Extended Abstracts of 56th Conference & Technical Exhibition[C]. EAGE,1994:P140
    [45]Keydar S., Gelchinsky B., Berkovitch A. The combined homeomorphic stacking[A]. Expanded Abstracts of 63th Annual International Meeting[C]. SEG,1993:1141-1144
    [46]Landa E., Gurevich B., Keydar S., et al. Application of multifocusing method for subsurface imaging[J]. Journal of Applied Geophysics,1999, v42(3,4):283-300
    [47]Gelchinsky B., Berkovitch A., Keydar S. Multifocusing homeomorphic imaging:Parts I and II Special Course on Homeomorphic Imaging[R]. Karlsruhe University:Wave Inversion Technology Consortium, 1997
    [48]Berkhout A. J. A real shot record technology [J]. Journal of Seismic Exploration,1992, vl(2):251-264
    [49]Schleicher J., Tygel M., Hubral P. Parabolic and hyperbolic paraxial two-point traveltimes in 3D media[J]. Geophysical Prospecting,1993, v41(4):495-514
    [50]Hocht G., de Bazelaire E., Majer P., et al. Seismics and optics:hyperbolae and curvatures[J]. Journal of Applied Geophysics,1999, v42(3,4):261-281
    [51]Majer P., Hocht G., Mann J., et al. Inversion by means of kinematic wavefield attributes[R]. Karlsruhe University:Wave Inversion Technology Consortium,1999
    [52]Majer, P. Inversion of seismic parameters:Determination of the 2-d iso-velociry layer model[D]. Germany: Karlsruhe University,2000
    [53]Grosfeld V., Biloti R., Santos L. T., et al. Topographic effect correction using CRS parameters [EB/OL], http://www.lgc.ime.unicamp,br/publications/V,+Grosfeld..html.2002-7-31/2009-8-5
    [54]Birgin E. G., Biloti R., Tygel M., et al. Restricted optimization:a clue to a fast and accurate implementation of the Common Reflection Surface Stack method[J]. Journal of Applied Geophysics,1999, v42: 143-155
    [55]Garabito G., Cruz J. C. R., Hubral P., et al. Common reflection surface stack:a new parameter search strategy by global optimization[R]. Karlsruhe:Wave Inversion Technology Consortium,2000
    [56]Vieth K.U. Kinematic Wavefield Attributes in Seismic Imaging[D]. Germany:Karlsuhe University,2001
    [57]Mann J. and Gerst A., New features of the Common-Reflection-Surface Stack[R]. Karlsruhe University: Wave Inversion Technology Consortium,2000
    [58]Bergler S., Mann J., Hocht G., et al. The Finite-Offset CRS stack:an alternative stacking tool for subsalt imaging[A]. Expanded Abstracts of 72nd Annual Meeting[C]. Salt Lake City:SEG,2002:2058-2061
    [59]Biloti R., Santos L. T., Tygel M. Macro-Velocity Model Inversion from CRS Attributes:The Hubral and Krey algorithm revisited[R]. Karlsruhe University:Wave Inversion Technology Consortium,2000
    [60]Biloti R., Santos L. T., Tygel M. Multiparametric traveltime inversion[R]. Karlsruhe University:Wave Inversion Technology Consortium,2001
    [61]Duveneck E., Hubral P. Tomographic velocity model inversion using kinematic wavefield attributes [A]. Expanded Abstracts of 72nd Annual International Meeting[C]. SEG,2002:IT 2.3
    [62]Duveneck E. Tomographic determination of seismic velocity models with kinematic wavefield attributes[M]. Berlin:Logos Verlag,2004
    [63]Miiller N. A. The 3D Common-Reflection-Surface Stack Stack Theory and Application[D]. Germany: Karlsruhe University,2003
    [64]Bergler S., Marchetti P., Cardone G.3D common-reflection-surface stack and kinematic wavefield attributes[J]. The Leading Edge,2002, v21:1010-1015
    [65]Bergler S. On the determination and use of kinematic wavefield attributes for 3D seismic imaging[M]. Berlin:Logos Verlag,2004
    [66]Zhang, Y. Common-Reflection-Surface Stack and the Handling of Top Surface Topography[M]. Berlin: Logos Verlag,2003
    [67]Chira O. P., Tygel M., Zhang Y., et al. Analytic CRS stack formula for 2D curved measurement surface and finite-offset reflections[J]. Journal of Seismic Exploration,2001, v10:245-262
    [68]Heilmann Z. The Common-Reflection-Surface Stack under Consideration of the Acquisition Surface Topography and of the Near-Surface Velocity Gradient[D]. Germany:Karlsruhe University,2002
    [69]Bergler S., Duveneck E., Hocht G., et al. Common-Reflection-Surface stack for converted waves[R]. Karlsruhe University:Wave Inversion Technology Consortium,2001
    [70]Bergler S., Duveneck E., Hocht G., et al. Common-Reflection-Surface stack for converted waves[J]. Stud, geophys. geod.,2002, v46:165-175
    [71]Boelsen T., Mann J.2D CO CRS stack for multi-component seismic reflection data[A]. Extended abstracts of 67th Conference & Technical Exhibition[C]. Madrid:EAGE,2005:P063
    [72]Heilmann Z., Mann J., Koglin I. CRS-stack-based seismic imaging for land data—a case study from Saudi Arabia[J]. SEG Expanded Abstracts,2006, v25:2087-2090
    [73]王华忠,杨锴,马在田.共反射面元叠加的应用理论—从共反射点到共反射面元[J].地球物理学报,2004,47(1):317-342
    [74]王华忠,杨锴,马在田.从共反射点(CRP)到共反射面元(CRS)—共反射面元叠加的应用理论基础[A].中国地球物理学会第十七届年会论文集[C].昆明:云南科技出版社,2001:362
    [75]裴江云,刘洪,李幼铭.共反射圆弧叠加方法在火山岩成像中的应用[J].地球物理学报,2004,47(1):106-111
    [76]韩立国,孙建国,何樵登,等.共反射面与共中心点联合叠加成像[J].石油物探,2003,42(1):25-28
    [77]杨锴,王华忠,马在田.实现最佳零炮检距地震照明成像—CRS叠加之几何阐述[J].勘探地球物理进展,2003,31(3):309-313
    [78]杨锴,徐蔚亚,王华忠.基于模型数据的共反射面元叠加初步实践[J].同济大学学报,2003,25(3):27-31
    [79]杨锴,王华忠,马在田.共反射面元叠加的实践[J].地球物理物理学报,2004,47(2):327-331
    [80]谭未一,杨长春,李瑞忠,等.共反射面元叠加的实现途径及流程[J].地球物理学进展,2004,19(2):325-330
    [81]韩立国,孙建国,朱建伟,等.CRS叠加成像的属性参数反演与应用[A].中国地球物理学会第十七届年会论文集[C].昆明:云南科技出版社,2001:52
    [82]丁建荣,王华忠,李代芳,等.共反射面元方法在下扬子地区的实验[J].石油物探,2003,42(3):414-416
    [83]徐国庆,胡中平.CRS叠加技术及其应用[J].勘探地球物理进展,2003,26(5-6):447-450
    [84]李振春,姚云霞,马在田.基于参数多级优化的共反射面叠加方法及其应用[J].石油地球物理勘探,2003,38(23):155-161
    [85]李振春,孙小东,刘洪.复杂地表条件下共反射面元(CRS)叠加方法研究[J].地球物理学报,2006,49(6):1794-1801
    [86]孙小东,李振春,丁仁伟.基于最优化方法的共反射面元叠加[J].中国石油大学学报(自然科学版),2008,52(1):46-49
    [87]杨锴,许士勇,王华忠,等.倾角分解共反射面元叠加方法[J].地球物理学报,2005,48(5):1148-1155
    [88]杨锴,罗卫东.基于广义Radon变换的共反射面元叠加方法[J].天然气工业,2006,26(6):50-52
    [89]杨锴,马在田.输出道成像方式的共反射面元叠加方法Ⅰ—理论[J].地球物理学报,2006,49(2):546-553
    [90]杨锴,马在田,罗卫东.输出道成像方式的共反射面元叠加方法Ⅱ—实践[J].地球物理学报,2006,49(3):895-902
    [91]韩立国.共反射面共中心点联合叠加成像与速度模型重建研究[D].长春:吉林大学,2003
    [92]杨锴,马在田.关于共反射面元叠加方法在实际应用中的一些思考[J].地球物理学进展,2005,20(1):12-16
    [93]张铁强,王兆湖,牛滨华.CRS叠加技术在国内的应用和发展[J].大庆石油地质与开发,2008,27(2):128-131
    [94]Hubral P., Hocht G., Jager R. Seismic illumination[J]. The Leading Edge,1999, V18(11):1268-1271
    [95]Jager R., Mann J., Hocht G., et al. Common-reflection-surface stack:Image and attributes[J]. Geophysics, 2001,v66(1):97-109
    [96]Muller, T. Common Reflection Surface Stack versus NMO/STACK and NMO/DMO/STACK[A]. Extended Abstracts of 60th Conference & Technical Exhibition [C]. EAGE,1998:1-20
    [97]Thore P. D., de Bazelaire E., Ray M. P. Three-parameter equation:An efficient tool to enhance the stack[J]. Geophysics,1994, v59(2):297-308
    [98]Mann, J., Jager, R., Hocht, G., and Hubral, P. Common-reflection-surface stack and wavefield attributes[A]. Extended abstracts of 6th International Congress[C]. de Geofisica:SBGf,1999
    [99]Mann J., Jager R., Muller T., et al. Common-reflection-surface stack-a real data example[J]. Journal of Appllied Geophysics,1999, v42(3,4):301-318
    [100]Mann J., Muller T., Jager R., et al. Applications of the commonreflection-surface stack[A]. Expanded Abstracts of 69th Annual Internatonal Meeting[C]. SEG,1999
    [101]Mann J., Hocht G., Jager R., et al. Common Reflection Surface Stack-an attribute analysis[A]. Extended Abstracts of 61st Meeting[C]. EAGE,1999:P140
    [102]Mann J., Traub B., Hubral P. Common-Reflection-Surface Stack and conflicting dips[J]. SEG Expanded Abstracts,2000, v20:1931-1934
    [103]Mann J. Common-Reflection-Surface Stack and conflicting dips[J]. SEG Expanded Abstracts,2001, v20:1886-1869
    [104]Mann J. Common-Reflection-Surface stack-a generalized stacking velocity analysis tool[A].9th International Congress of the Brasilian Geophysical Society[C]. Salvador:SBGf,2005
    [105]Hertweck T., Jager C., Mann J., et al. An integrated data-driven approach to seismic reflection imaing[A]. Extended abstracts of 65th EAEG Conference & Technical Exhibition[C]. Starvanger: EAGE,,2003:P004
    [106]Hertweck T., Mann J., Duveneck E., et al. CRS-stack-based seismic imaging workflow-theory and synthetic data example[R]. Karlsruhe University:Wave Inversion Technology Consortium,2003
    [107]Hertweck T., Mann J., Duveneck E., et al. CRS-stack-based seismic imaging workflow-a real data example [R]. Karlsruhe University:Wave Inversion Technology Consortium,2003
    [108]Hertweck T., Jager C., Mann J., et al. A seismic reflection imaging workflow based on the Common-Reflection-Surface (CRS) stack:Theoretical background and case study[J]. SEG Expanded Abstracts, 2004,v23:2032-2035
    [109]Hertweck T., Schleicher J., Mann J. Data stacking beyond CMP [J]. The Leading Edge,2007, V26(7): 818-827
    [110]Koglin I., Vieth K. Data-driven macro-velocity model-a real data example[R]. Karlsruhe University: Wave Inversion Technology Consortium,2000
    [111]Chira O. P., Hubral P. Analytic Moveout formulas for a curved 2D measurement surface and near-zero-offset primary reflections[R]. Karlsruhe University:Wave Inversion Technology Consortium,2000
    [112]Muller N. A., Mann J. Automatic Tracking of reflection events in 3D ZO volumes using CRS attributes[A]. Extended abstracts of 69th Conference & Technical Exhibition[C]. London:EAGE,2007:P058
    [113]Cristini A., Cardone G., Marchetti P.3D zero-offset Common Reflection Surface Stack for land data-real data example[A]. Extended Abstracts of 64th Conference & Technical Exhibition [C]. Florence: EAGE,2002:B015
    [114]Majana F., Mascarenhas W., Tygel M., et al. Refinement step for parameter estimateion in the CRS method[R]. Karlsruhe University:Wave Inversion Technology Consortium,2003
    [115]Mann J., Bergler S., Zhang Y., et al. Generalizations of the Common-Reflection-Surface Stack[A]. Extended Abstracts of 64th Conference & Technical Exhibition [C]. Florence:EAGE,2002:E023
    [116]Bergler S., Hocht G.,Mann J. Using cocrs version 1.1:a manual[R]. Karlsruhe University:Wave Inversion Technology Consortium,2002
    [117]Judson D. R., Lin J., Schultz P. S., et al. Depth migration after stack[J]. Geophysics,1980, v45(3): 361-375
    [118]Mann J., Hubral P., Traub B., et al. Macro-Model Independent Approximative Prestack Time Migration[A]. Extended Abstracts of 62nd Conference & Technical Exhibition[C]. EAGE,2000:B-52
    [119]Fowler P. J. A comparative overview of prestack time migration methods[A]. Expanded Abstracts of 67th Annual International Meeting[C].SEG,1997:1571-1574
    [120]Keydar S., Gelchinsky B., Berkovitch A. Common source point stacking and imaging[A]. Extended Abstracts of 55th Conference & Technical Exhibition[C]. EAGE,1993
    [121]Gelchinsky B., Keydar S. Homeomorphic imaging approach-theory and practice[J]. Journal of Applied Geophysics,1999, v42(3,4):169-228
    [122]Keydar S., Edry D., Berkovitch A., et al. Construction of kinematic seismic model by homeomorphic imaging method[A] Extended Abstracts of 57th Conference & Technical Exhibition [C]. EAGE,1995: P086
    [123]Cruz J. C. R., Chira P., Garabito G. Sensibility Analysis of the Multifocusing Traveltime Approximation[R], Karlsruhe University:Wave Inversion Technology Consortium,1999
    [124]Tygel M., Muller T., Hubral P., et al. Eigenwave based multiparameter traveltime expansions[A]. Expanded Abstracts of 67th Annual International Meeting[C]. SEG,1997:1770-1773
    [125]罗银河.多聚焦(MF)成像技术综述[J].地球物理学进展,2003,18(4):635-642
    [126]Tygel M., Santos L., Schleicher J. Multifocus moveout revisited:Derivations and alternative expressions[R]. Karlsruhe University:Wave Inversion Technology,1999
    [127]刘全艳,凌勋,周作铭,等.PRO—一种新的地震资料处理方法[J].石油地球物理勘探,2006,41(5):509-513
    [128]周青春,刘怀山,Kondrashkov, V. V,等.椭圆展开共反射点叠加方法的应用研究[J].地球物理学报,2009,52(1):222-232
    [129]周青春,刘怀山,Kondrashkov, V. V,等.双参数展开共反射点叠加和速度分析方法研究[J].地球物理学报,2009,52(7):1881-1890
    [130]Hubral P., Schleicher J., Tygel M. Three-dimensional paraxial ray properties, Part Ⅱ:Applications[J]. Journal of Seismic Exploration,1992, vl:347-362.
    [131]Bortfeld R. Geometrical ray theory:Rays and traveltimes in seismic systems (second-order approximations of the traveltimes)[J]. Geophysics,1989, v48(3):342-349
    [132]Ursin B. Quadratic wavefront and traveltime approximations in inhomogeneous layered media with curved interfaces [J]. Geophysics,1982, v47(7):1012-1021
    [133]Hubral P. Computing true amplitude refections in a laterally inhomogeneous earth[J]. Geophysics, 1983,v48(8):1051-1062
    [134]Born M., Wolf E. Principle of optics[M].6th (corrected) edition. New York:Pergamon Press Inc, 1959
    [135]Kravtsov Y. A., Orlov Y. I. Geometrical Optics of Inhomogeneous Media[M]. New York:Springer Verlag,1990
    [136]Schleicher J. Seismic True-Amplitude Imaging, chapter4:Surface-to-surface paraxial ray theory[M]. Campinas,2007:103-138
    [137]Schleicher J., Hubral P., Tygel M., et al. Minimum apertures and fresnel zones in migration and demigration[J]. Geophysics,1997, v62(1):183-194
    [138]Neidell N. S., Taner M. T. Semblance and other coherency measures for multichannel data[J]. Geophysics, 1971, V36(3):482-497
    [139]Taner M. T., Koehler R. Velocity spectra-digital computer derivation and application of velocity functions[J]. Geophysics,1969, V34(6):859-881
    [140]Sun J. Limited aperture migration[J]. Geophysics,2000, v65(2):584-595
    [141]Zhang Y., Hocht G., Hubral P.2D and 3D ZO CRS stack for a complex top-surface topography [A]. Extended Abstracts of 64th Conference & Technical Exhibition [C]. Florence:EAGE,2002:P166
    [142]Bergler S., Chira O. P., Mann J., et al. Stacking velocity analysis with CRS Stack attributes[A]. Extended Abstracts of 64th Conference & Technical Exhibition [C]. Florence:EAGE,2002:B003
    [143]Tygel M., Schleicher J., Hubral P. Geometrical spreading corrections of offset reflections in a laterally inhomogeneous earth[J]. Geophysics,1992, v57(8):1054-1063
    [144]Hubral P., Schleicher J., Tygel M. Three-dimensional primary zero-offset reflections [J]. Geophysics, 1993, v58(5):692-702
    [145]Hubral P., Schleicher J., Tygel M., et al. Determination of Fresnel zones from traveltime measurements[J]. Geophysics,1993, v58(5):703-712
    [146]Duveneck E. Velocity model estimation with data-derived wavefront attributes [J]. Geophysics,2004, v69(1):265-274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700