用户名: 密码: 验证码:
基于过程的地下水污染风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水污染风险评价作为地下水合理开发、利用和保护的一项基础性工作,已经成为地下水管理与污染防治的重要手段。本文在地下水污染风险评价理论与方法研究的基础上,采用资料收集、野外调查、室内物理模拟与数值模拟相结合的方法,以地下水污染风险评价为目标,从污染负荷—污染质在包气带行为特征与迁移转化过程—地下水的价值出发,构建了基于过程的地下水污染风险评价理论与方法,实现了污染质迁移转化过程与污染风险评价的耦合,并成功应用于滦河三角洲地下水污染风险评价实践。主要研究成果如下:
     (1)从地下水污染风险的概念出发,基于土壤—包气带—地下水系统与污染源—污染过程—污染受体一体化的思想,综合污染负荷、包气带的防护性能、污染质的迁移转化过程、地下水开发利用功能等影响因素,构建了基于过程的地下水污染风险评价理论框架,实现了地下水污染风险评价、模拟与预警的一体化。
     (2)以基于过程的地下水污染风险评价理论为指导,将机理研究与风险评价相结合,构建了污染质在土壤—地下水系统的迁移转化过程模型与风险评价指数模型相耦合的评价方法,丰富了地下水污染风险评价的方法体系。
     (3)将基于过程的地下水污染风险评价的理论与方法在滦河三角洲地区进行了实践应用并取得了良好的效果,编制相关图件32幅。研究成果已被中国地质调查局重点项目—滦河三角洲地下水污染调查评价项目采用,对该地区污染质的迁移转化研究以及开展地下水污染防治具有重要的指导意义。区域研究成果如下:
     ①研究区地下水防护性能研究与评价表明:滦河三角洲地区土壤—地下水系统防护性能较弱,导致滦河三角洲地区浅层地下水质量下降,大面积污染严重。土壤—地下水中的典型污染物为“三氮”与石油类,其中硝酸盐超标率达到47.3%,苯并[a]芘检出率达到7.8%。污染物均由地表通过包气带以间歇入渗或连续入渗的方式进入地下水。
     ②研究了两种典型污染物“三氮”与石油类在土壤—地下水系统中的对流/弥散、吸附/解吸、降解、植物吸收等动力学过程,建立了相关动力学模型,获得了水分与溶质运移的相关参数。
     ③建立了“三氮”与石油类污染物在土壤—地下水系统中的迁移转化过程模型,揭示了典型污染物在包气带的迁移转化规律。根据模型计算结果,分别获得了“三氮”与石油类污染物在包气带的迁移转化速率以及对地下水的输入量。其中“三氮”中硝态氮的迁移速率远远大于氨氮与亚硝态氮,其对地下水的通量为0.996 kg/ha2·a。石油类污染物间歇入渗条件下的迁移速率远远小于持续入渗,仅为3.65cm/a。
     ④在“三氮”与石油类污染物迁移转化模型的基础上,预测了典型污染物对地下水影响程度。其中滦河三角洲“三氮”对地下水的影响从北向南程度逐渐减弱,易污染区主要分布在唐山市及滦县北部,而石油类对地下水的强影响区主要分布在滦河三角洲滨海冲积平原柳赞镇以南的石油开采区。
     ⑤开展了滦河三角洲浅层地下水污染风险评价。评价结果表明:地下水污染高风险位于北部山前洪积扇区的玉田县东部、丰润区的西部、唐山市、丰南区的北部等地;污染中等风险区则位于丰润区的北部、滦南县、乐亭县和昌黎县的大部分地区;地下水污染低风险区主要位于滨海冲海积平原,包括玉田县与丰南区的南部、唐海县、乐亭县的南部、昌黎县的滨海地区以及秦皇岛市。
     ⑥将基于过程的地下水污染风险评价方法与传统方法进行比较,该理论在指标的选取上更为全面,更能准确的反映地下水污染风险程度。
     本文的研究丰富了地下水污染风险评价的理论与方法,对地下水资源管理与污染防治具有重要的理论和实际意义,研究成果为滦河三角洲浅层地下水保护奠定了基础。
As a fundamental work of rational groundwater exploitation, utilization and protection, groundwater pollution risk assessment is an important approach for groundwater management and pollution control. Based on researches of the related theory and methodology and aimed at groundwater pollution risk assessment, the paper used multi-technologies which included data collection, field investigation, physical and numerical simulation, combined pollution load, migration and transformation processes of pollutant in unsaturated zone with groundwater value, and constructed risk assessment theory and methodology of groundwater pollution based on the processes. The theory and methodology implemented coupling the pollutant migration and transformation simulation with the pollution risk assessment. Furthermore, it was successfully applied to the groundwater pollution risk assessment in Luanhe Delta. The main research results were as follow:
     (1) Based on the concept of groundwater pollution risk and the integration between the soil-unsaturated zone-groundwater system and the pollution load-process-receptor system, the paper synthetically analyzed the influence factors among pollution load, antipollution capacity of unsaturated zones, pollutant migration and transformation processes and the groundwater functions and constructed a risk assessment theory frame of groundwater pollution based on processes. The theory achieved the integration among risk assessment, simulation and early warning of groundwater pollution.
     (2) Led by the risk assessment theory of groundwater pollution based on processes and combined mechanism with risk assessment, the assessment method coupling the process model about pollutant migration and transformation in soil-groundwater system with the risk assessment index model was established. It enriched the methodology system of groundwater pollution risk assessment.
     (3) The theory and method of risk assessment for groundwater pollution based on processes was achieved successfully in Luanhe Delta and 32 relevant maps were drawn. Some achievements have been adopted by one of the key projects of China Geological Survey Bureau- Investigation and Assessment of Groundwater Pollution in Luanhe Delta. The results provided reference for the migration and transformation of pollutants and prevention and control of groundwater pollution in the area. Regional research results were as follow:
     ①The antipollution capacity of the soil-groundwater system in Luanhe Delta was weak. This led that the declining quality of shallow groundwater and serious pollution. The typical pollutants of soil-groundwater system in Luanhe Delta were ammonia-N, nitrite-N, nitrate-N(Generally named“three N”) and petroleum. Oversize rate of three N was 47.3% and that of benzopyrene detection was 7.8% in groundwater. Pollutants passed through vadose zones and entered groundwater by means of intermittent or continuous infiltration.
     ②Through the systematic analysis on behaviour characteristics of three N and petroleum pollutants in the soil-vadose zone and groundwater and researches on their kinetic processes of convection/dispersion, adsorption/desorption, degradation and plant accumulation, the paper established the related kinetic models and obtained the moisture and solute transportation parameters.
     ③The migration and transformation process model about nitrogen and petroleum pollutants in soil-groundwater system were established and migration and transformation rule of the two pollutants in vadose zones were ascertained. According to the model calculation results, the migration and transportation rates of the two pollutants and the input quantity of groundwater were obtained. The migration rate of nitrate -N were much quicker than those of ammonia-N and nitrite-N and the input quantity of groundwater was 0.996kg/ha2·a. The migration rate of petroleum pollutants on condition of intermittent infiltration, only 3.65cm/a, was much slower than that on condition of continuous infiltration.
     ④Based on the migration and transportation models of three N and petroleum pollutants and combined the antipollution capacity of groundwater, the influence of the two pollutants on groundwater were assessed. The assessment results showed that the influence degree of three N on groundwater became gradually weakening from the north to the south in Luanhe Delta. Thereinto the easily polluted areas mainly distributed in Tangshan city and the north part of Luanxian County. The strongly polluted areas of petroleum pollutants mainly distributed in the petroleum exploitation area in the south of Liuzan Town located in coastal alluvial plains.
     ⑤The groundwater pollution risk was assessed in Luanhe Delta. The assessment results showed that the high risk areas of groundwater pollution mainly distributed in the east part of Yutian County, the west part of Fengrun district, Tangshan City and the north part of Fengnan district, which all located in the pluvial fan of mountain fronts. The moderate risk areas included the north part of Fengrun district, Luannan County, Leting County and most of Changli County. The low risk areas mainly distributed in Yutian County, the south part of Fengnan district, Tanghai County, the south part of Leting County, coastal district of Changli County and Qinhuangdao City, all located in alluvial-pluvial plains along the coasts.
     ⑥Compared with the traditional assessment method, the risk assessment method of groundwater pollution based on processes was more comprehensive in index selection and the assessment results could reflect the risk degree of groundwater pollution more accurately.
     These researches enrich the risk assessment theory and methodology of groundwater pollution and have important theoretical and practical significance for groundwater management and pollution prevention. The research results are the basis of the shallow groundwater protection in Luanhe Delta.
引文
[1]郝华.我国城市地下水污染状况与对策研究[J].水利发展研究,2004,4(3):23-25.
    [2]徐凤兰,叶丹,曹德福,等.浅谈地下水污染及其防治[J].地下水,2005,27(1):50-52.
    [3]罗兰.我国地下水污染现状与防治对策研究[J].中国地质大学学报,2008,8(2):73-75.
    [4]陈冬琴.杭嘉湖地区地下水流场模拟及污染物迁移规律分析[D].武汉:中国地质大学(武汉),2007.
    [5]申利娜,李广贺.地下水污染风险区划方法研究[J].环境科学,2010,31(4):918-923.
    [6]胡二邦.环境风险评价实用技术和方法.北京:中国环境科学出版社,2000,2-3.
    [7]梁婕.基于不确定理论的地下水溶质运移及污染风险研究[D].长沙:湖南大学,2009:9-10.
    [8]夏家淇,骆永明.关于土壤污染的概念和3类评价指标的探讨[J].生态与农村环境学报,2006,22(1):87-90
    [9]朱成.重庆市典型搬迁企业土壤污染现状及健康风险评价[D].重庆:西南大学,2008.
    [10]赵沁娜.城市土地置换过程中土壤污染风险评价与风险管理研究[D].上海:华东师范大学,2006:3-5.
    [11]李胜涛,蔡五田,张敏,等.我国土壤污染风险评价的研究进展[J].黑龙江水专学报,2010,37(2):120-123.
    [12]杨柳,刘长礼,王秀艳,等.河南省主要城市土壤污染评价及防护措施[J].南水北调与水利科技,2010,8(6):94-97.
    [13]郑袁明,陈同斌.北京市土壤和蔬菜重金属污染与风险评价[J].地理研究,2004,23(5):1001.
    [14]曹云者,施烈焰,李丽和,等.石油烃污染场地环境风险评价与风险管理[J].生态毒理学报,2007,2(3):165-272.
    [15]何巧力,颜增光,汪群慧,等.利用蚯蚓回避试验方法评价萘污染土壤的生态风险[J].农业环境科学学报,2007,26(2):538-543.
    [16]王显炜,徐友宁,杨敏,等.国内外矿山土壤重金属污染风险评价方法综述[J].中国矿业,2009,18(10):54-56.
    [17] G Suter, S B Norton, L W Barnthouse. The evolution of frameworks for ecological risk assessment from the Red Book Ancestor[J]. Human and Ecological Risk Assessment, 2003, 9(5): 1349-1360.
    [18]郭晓君.太原市污灌区土壤重金属生态风险评价研究[D].太原:山西大学,2010:4-6.
    [19]许杰,柯欣,宋静,等.弹尾目昆虫在土壤重金属污染生态风险评估中的应用[J].土壤学报,2007,44(3):544-548.
    [20]刘石.地下水质量评价方法探讨[D].北京:中国地质大学,2006:2-4.
    [21]高彦伟.地下水污染评价中统计理论与应用研究[D].长春:吉林大学,2010:9-18.
    [22]柴成繁.天津市地下水质量评价及氟吸附研究[D].天津:天津大学,2006:2-3.
    [23]王小丹.关中盆地氮对浅层地下水污染的数值模拟与预警研究[D].西安:长安大学,2008:17-25.
    [24]李琦.陕北风沙滩地区地下水脆弱性评价及“三氮”对地下水污染的数值模拟[D].西安:长安大学,2009:18-25.
    [25]郝汉舟,靳孟贵,汪丙国.河南省浅层地下水质量评价[J].江西农业大学学报,2007,29(4):655-674.
    [26]姬亚东.川地区地下水质量评价及氮污染成因分析[D].西安:长安大学,2003:16-26.
    [27]付园.煤矿开采对地下水污染的评价方法研究[D].阜新:辽宁工程技术大学, 2006:27-35.
    [28] J Fernández-Gálvez, E Barahona, A Iriarte, et al. A simple methodology for the evaluation of groundwater pollution risks[J]. Science of the Total Environment, 2007,378 (1-2): 67-70.
    [29] Cheng-Shin Jang, Chen-Wuing Liu.Contamination potential of nitrogen compounds in the heterogeneous aquifers of the Choushui River alluvial fan, Taiwan[J]. Journal of Contaminant Hydrology.2005, 79 (3-4):135-155.
    [30] Brenda N Chisala, Nigel G Tait, David N Lerner. Evaluating the risks of methyl tertiary butylether(MTBE) pollution of urban groundwater[J]. Journal of Contaminant Hydrology, 2007, 91(1-2): 128–145
    [31]姜桂华,王文科.关中盆地包气带氮迁移转化数值模拟及预测[J].西北大学学报(自然科学版),2007,37(5):825-829.
    [32]谢洪波.焦作市地下水质量综合评价及污染预警研究[D].西安:长安大学,2008:10.
    [33]程东会.北京城近郊区地下水硝态氮和总硬度水文地球化学过程及数值模拟[D].北京:中国地质大学,2007:12.
    [34]程燕,周军英,单正军,等.运用SCI-GROW模型预测农药对地下水的污染风险[J].生态与农村环境学报,2007,23(4):78-82.
    [35]谭文清,孙春,胡婧敏,等.GMS在地下水污染质运移数值模拟预测中的应用[J].东北水利水电,2008,26(5):54-59.
    [36]曹渊,王铁良,张建鑫,等.GMS在饱和—非饱和地下水流动及核素迁移模拟中的应用[J].辽宁工程技术大学学报(自然科学版),2009,28(Suppl):190-192.
    [37] Finizio A, Villa S. Environment risk assessment for pesticides: A tool fordecision-makers[J]. Environmental Impact Assessment Review, 2002, 22(3): 235-248.
    [38] Brian Morris, Stephen Foster. Assessment of Groundwater Pollution risk[M/OL]. [2006-05-06]. http://www.lnweb18. worldbank.org/essd/essd.nsf.
    [39]周仰效,李文鹏.地下水质监测与评价[J].水文地质工程地质,2008,35(1):1-11.
    [40]张伟红.地下水污染预警研究[D].长春:吉林大学,2007:34-35.
    [41]姜桂华.关中盆地地下水脆弱性研究[D].西安:长安大学,2002:2-6.
    [42] Doerfliger N, Jeannin P Y, Wahlen F Z. Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools[J]. Environmental Geology, 1999, 39(2): 165-176.
    [43]林山杉.地下水脆弱性的概念及评价[J].长春地质学院学报,1997,27(supⅠ):45-47.
    [44] Tesoriero Anthony J, Voss Frank D. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: Implications for aquifer susceptibility and vulnerability[J]. Ground Water, 1997, 35(6): 1029-1039.
    [45]付素蓉,王焰新,蔡鹤生,等.城市地下水污染敏感性分析[J].中国地质大学学报,2000, 25(5):482-486.
    [46]姜桂华.地下水脆弱性研究进展[J].世界地质,2002,21(1):33-38.
    [47]黄栋.北京市平原区地下水脆弱性研究[D].北京:首都师范大学,2009:1-6.
    [48] Rida A N Al-Adamat, Ian D L Foster, Serwan M J Baban. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC[J]. Applied Geography, 2003, 23:303-324.
    [49]刘仁涛,付强,李伟业,等.地下水脆弱性研究与探讨[J].水资源与水工程学报,2006, 17(6): 1-5.
    [50]雷静.地下水环境脆弱性的研究[D].北京:清华大学,2002:3-10.
    [51]李涛.基于MapInfo的大沽河地下水库脆弱性研究[D].青岛:中国海洋大学,2004:6.
    [52]雷静,张思聪.唐山市平原区地下水脆弱性评价研究[J].环境科学学报,2003(1):94-99.
    [53]孙才志,潘俊.地下水脆弱性的概念、评价方法与研究前景[J].水科学进展,1999, 10(4):444-449.
    [54]蔚辉.北京近郊“三氮”特殊防污性能评价[D].北京:中国地质大学,2007:4-5.
    [55] Legrand H E. System for evaluating the contamination potential of some waste sites[J]. American Water Works Association Journal,1964,56(8):959-974.
    [56] Aller L, Bennet T, Lehr J H, et al. DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings[M]. U.S. Environmental Protection Agency,1987.
    [57]左海军.下辽河平原地下水脆弱性研究[D].大连:辽宁师范大学,2003:5-9.
    [58]张保祥,万力,Jade Julawong.DRASTIC地下水脆弱性评价方法及其应用—以泰国清迈盆地为例[J].水资源保护,2007,23(2):38-42.
    [59]薛强,王慧芸,刘建军.采煤矿区地下水脆弱性评价[J].辽宁工程技术大学学报,2005, 24(1):8-11.
    [60]杨庆,栾茂田,崇金著,等.DRASTIC指标体系法在大连市地下水易污性评价中的应用[J].大连理工大学学报,1999,39(5):684-688.
    [61]孙丰英,徐卫东.DRASTIC指标体系法在滹滏平原地下水脆弱性评价中的应用[J].地下水,2006,28(2):39-42.
    [62]左海凤,魏加华,王光谦.DRASTIC地下水防污性能评价因子赋权[J].水资源保护,2008,24(2):22-25.
    [63]张泰丽,冯小铭,刘红樱,等.DRASTIC评价模型在台州市浅层地下水脆弱性评价中的应用[J].资源调查与环境,2007,28(2):138-144.
    [64] R C Gogu, A Dassargues. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods[J].Environmental Geology, 2000, 39(6):549-559.
    [65] F Lasserre, M Razack, O Banton. GIS-linked model for the assessment of nitrate contamination in groundwater[J].Journal of Hydrology,1999,224:81-80.
    [66] U Sunday Tim, Dharmesh Jain, Hsiu-Huka Liao. Interactive modeling of groundwater vulnerability within a Geographic Information System environment[J]. Ground Water, 1996,34(4):618-627.
    [67]姚文锋.基于过程模拟的地下水脆弱性研究[D].北京:清华大学,2007:1-13.
    [68]杨旭东,孙建平,魏玉梅.地下水系统脆弱性评价探讨[J].安全与环境工程,2006,13(1): 1-4.
    [69] Anthony J Tesoriero, Frank D Voss. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: Implications for aquifer susceptibility and vulnerability[J]. Ground Water, 1997, 35(6): 1029-1039.
    [70] Marios Sophocleous, Tainshing Ma. A decision support model to assess vulnerability to saltwater intrusion in the Great Bend Prairie aquifer of Kansas[J]. Ground Water, 1998, 36(3): 476-483.
    [71]郭永海,沈照理,钟佐燊,等.河北平原地下水有机氯污染及其与防污性能的关系[J].水文地质工程地质,1996,23(1):40-42.
    [72]林学钰,陈梦熊,王兆馨,等.松嫩盆地地下水资源与可持续发展研究[M].北京:地震出版社,2000.
    [73]陈守煜,伏广涛,周惠成,等.含水层脆弱性模糊分析评价模型与方法[J].水利学报,2002,7:23-30.
    [74]陈南祥,董贵明,贺新春.基于AHP的地下水环境脆弱性模糊综合评价[J].华北水利水电学院学报,2005,26(3):63-66.
    [75] R C M Nobre, O C Rotunno Filho, W J Mansur, et al. Groundwater vulnerability and risk mapping using GIS , modelingand a fuzzy logic tool[J].Journal of Contaminant Hydrology,2007,94(3-4):277-292.
    [76]张丽君.地下水脆弱性和风险性评价研究进展综述[J].水文地质工程地质,2006, 33(6):113-119.
    [77]陈学群.莱州市地下水脆弱性评价研究[D].济南:山东大学,2006:8-11.
    [78]武强,王志强,赵增敏,等.油气田区承压含水层地下水污染机理及其脆弱性评价[J].水利学报,2006,37(7):851-857.
    [79]张保祥,万力,余成,等.基于熵权与GIS耦合的DRASTIC地下水脆弱性模糊优选评价[J].现代地质,2009,23(1):150-156.
    [80] A J Collin M L Melloul, A Melloul. Combined land-use and environmental factors for sustainable groundwater management[J]. Urban Water, 2001,3(3):229-237.
    [81] Lobo-Ferreira J P. The European Union experience on groundwater vulnerability assessment and mapping [M/OL]. LISBOA : the Groundwater Research Group Laboratório Nacional de Engenharia Civil. [2006-05-08]. http://static. teriin. org/teri-wr/coastin/papers/ paper1.htm
    [82]张树军,张丽君,王学凤.基于综合方法的地下水污染脆弱性评价—以山东济宁市浅层地下水为例[J].地质学报,2009,83(1):131-137.
    [83]吴登定,谢振华,林健,等.地下水污染脆弱性评价方法[J].地质通报,2005,24(10): 1043-1047.
    [84] Rahman A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh,India[J].Applied Geography, 2008, 28(1): 32-53.
    [85] Atiqur Rahman. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India[J]. Applied Geography, 2008,28(1):32–53
    [86] Husam Baalousha. Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand [J]. Agricultural Water Management,2010,97(2):240–246
    [87]杨悦所, Wang J L.基于GIS的农业面源硝酸盐地下水污染动态风险评价[J].吉林大学学报(地球科学版),2007,37(2):311-318.
    [88] Civita M V, M De Maio.Assessing Groundwater Contamination risk using ArcInfo via GRIDfunction[J/OL].[2006-05-02].http://gis.esri.com/library/userconf/proc97/proc97/to600/pap591/p591.htm.
    [89]刘桂友,徐琳瑜,李巍.环境风险评价研究进展[J].环境科学与管理,2007, 32(2):114-118.
    [90]王德显.安全评价(第3版,上册)[M].北京:煤炭工业出版社.2005:1-569.
    [91] Vito F Uricchio, Raffaele Giordano, Nicola Lopez. A fuzzy knowledge-based decision support system for groundwater pollution risk evalution[J]. Journal of Environmental Management,2004,73(3):189-197.
    [92] E Capri, M Civita, A Corniello, et al. Assessment of nitrate contamination risk: The Italian experience[J]. Journal of Geochemical Exploration, 2009,102(2):71-86
    [93] Giorgio Ghiglieri, Giulio Barbieri, Antonio Vernier, et al. Potential risks of nitrate pollution in aquifers from agricultural practices in the Nurra region, northwestern Sardinia Italy[J]. Journal of Hydrology, 2009, 379(3-4):339-350.
    [94]周磊,王翊虹,林健,等.北京平原区地下水水质监测网优化设计[J].水文地质与工程地质,2008,2:1-9.
    [95]江剑,董殿伟,杨冠宁,等.北京市海淀区地下水污染风险性评价[J].分析研究,2010, 5(2):1-5.
    [96] Rosén L, Wladis D, Ramaekers D. Risk and decision analysis of groundwater protection alternatives on the European scale with emphasis on nitrate and aluminium contamination from diffuse sources[J].Journal of Hazardous Materials,1998,61(1-3):329-336.
    [97] Irene M C Lo, Wendy K. W. Law, Helen M. Shen. Lo I M C, Law W K W, Shen H M. Risk assessment using stochastic modeling of pollutant transport in landfill clay liners[J].Water Science and Technology,1999,39(10-11):337-341.
    [98] A Chen, G H Huang, A Chakma. A.Integrated environmental risk assessment for petroleum-contaminated sites-A North American case study[J]. Water Science and Technology, 1998, 38(4-5): 131-138.
    [99] Maged M. Hamed, Philip B. Bedient, Joel P. Conte. Numerical stochastic analysis of groundwater contaminant transport and plume containment[J].Journal of Contaminant Hydrology, 1996, 4(1):1-24.
    [100]曾光明,钟政林,曾北危,等.环境风险评价中的不确定性问题[J].中国环境科学,1998, 18(3):252-255.
    [101] Rehan Sadiqa, Tahir Husain. A Fuzzy-based Methodology for An Aggregative Environmental Risk Assessment: A Case Study of Drilling Waste. EnvironmentalModelling& Soft-ware[J]. 2005,20(1): 33-46.
    [102]李如忠,汪明武,金菊良.地下水环境风险的模糊多指标分析方法[J].地理科学,2010,30(2):229-235.
    [103]王焰新.地下水污染与防治[M].北京:高等教育出版社,2007.
    [104]董志贵.地下水污染风险评价方法研究及软件设计开发[D].哈尔滨:东北农业大学,2008:8-15.
    [105]韩冰,地下水有机污染场地健康风险评价[D].北京:中国地质大学,2006:1-5.
    [106]李政红,毕二平,张胜,等.地下水污染健康风险评价方法[J].南水北调与水利科技,2008,6(6):47-51
    [107]李政红,张胜,毕二平,等.某储油库地下水有机污染健康风险评价[J].地球学报,2010,31(2):258-262.
    [108]梁婕.基于不确定理论地下水溶质运移及污染风险研究[D].长沙:湖南大学,2009:13-15.
    [109] M J M. Pruppers, M P M Janssen, B J M Ale, et al. Accumulation of environmental risks to human health:geographicl differences in the Netherlands[J]. Journal of Hazardous Materials.1998, 61(1): 187-196.
    [110] Krishnan K, Paterson J, Williams D T. Health risk assessment of drinking water conta minants in Canada: the applicability ofmixture risk assessmentmethods[J]. Regulatory Toxicology and Pharmacology, 1997, 26(3): 179-187.
    [111]闫欣荣,周航,邸涛.城市饮用水源地水质健康风险评价[J].环境科学与管理,2008,33(4):164-166.
    [112]张厚坚,王兴润,陈春云,等.典型铬渣污染场地健康风险评价及修复指导限值[J].环境科学学报,30(7):1445-1450.
    [113]黄奕龙,王仰麟,谭启宇,等.城市饮用水源地水环境健康风险评价及风险管理[J].地学前缘,2006,13(3):162-167.
    [114] Joshua Lipton, Hector Galbraith, Joanna Burger, et al. Lipton J, Galbraith H, Burger J, et al. A Paradigm for Ecological Risk Assessment. Environmental Management, 1993, 17(1): 1-5.
    [115] US EPA. EPA/630/R-95/002F Guidelines for ecological riskassessment[S].Washington DC: Risk Assessment Forum,1998.
    [116] Carolyn T Hunsaker, Robin L Graham, Glenn W Suter, et al. Assessing Ecological Risk on a Regional Scale. Environmental Management[J]. 1990,14(3): 325-332.
    [117]毛小苓,倪晋仁.生态风险评价研究述评[J].北京大学学报(自然科学版),2005, 41(4):646-654
    [118]王威,苏小四,王小元.地下水开采下的植被生态风险评价—以鄂尔多斯乌兰淖地区为例[J].吉林大学学报(地球科学版),2010,40(6):1344-1352.
    [119]郭先华,崔胜辉,赵千钧.城市水源地生态风险评价[J].环境科学研究,2009, 22(6):688-694.
    [120] M Power; L S Mc Cart. Trends in the Development of Ecological Risk Assessment and Management Framework[J]. Human and Ecological Risk Assessment, 2002, 8(1) :7-18 .
    [121] Angela M Obery, Wayne G Landis. A Regional Multiple Stressor Risk Assessment of the Codorus Creek Watershed Applying the Relative Risk Model[J]. Human and Ecological Risk Assessment, 2002, 8(2) :405-428 .
    [122]仵彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社,2007:81-111.
    [123]郑西来.土壤—地下水系统石油污染原理与应用研究[M].北京:地质出版社,2004:84-87.
    [124]魏义长,刘作新,康玲玲,等.土壤持水曲线van Genuchten模型求参的Matlab实现[J].土壤学报,2004,41(3):380-386.
    [125]李少龙,杨金忠,蔡树英.基于van Genuchten.Mualem模型的饱和一非饱和介质流动随机数值分析[J].水利学报,2006,37(1):33-39.
    [126]段磊.关中盆地地下环境氮污染机理与地下水质安全评价[D].西安:长安大学,2010: 43.
    [127] B J Peterson, W M Wollheim, P J Mulholland.,et al. Control of nitrogen export from watershed by headwater streams[J]. Science, 2001,292(5514):86~90.
    [128]马文洁,何江涛,金爱芳,等.萘和p,p′-DDE在典型包气带介质上的吸附动力学及吸附—解吸特征[J].农业环境科学学报,2010,29(7):1275-1282.
    [129] Hou L J, Liu M., Lu J. J, et, al. Ammonium regeneration in intertidal sediments of the Yangtze estuary during air-exposure. Estuarine[J]. Coastal and Shelf Science, 2007, 49: 937-945.
    [130] N Holmboe, E Kristensen. Ammonium adsorption in sediments of a tropical mangrove forest (Thailand) and a temperate Wadden Sea area (Denmark) [J]. Wetlands Ecology and Management, 2002, 10(6): 453–460.
    [131] L J Hou, M Liu, H Y Jiang, et al. Ammonium adsorption by tidal flat surfaces ediments from the Yangtze Estuary[J].Environmental Geology, 2003, 45(1):72-78.
    [132] Thomas H Christensen, Paul L Bierg, Peter Kjeldsen. Natural attenuation a feasible approachto remediation of groundwater pollution at landfill[J]. Ground Water Monitoring&Remediation, 2000, 20(1): 69-77.
    [133]刘转年,何婵,赵西成.超细粉煤灰对甲基橙的吸附性能和机理研究.环境科学与技术,2009, 32(2):125-129.
    [134]李海明,吴锦兰,贾晓玉,等.滨海含水介质胶体对垃圾渗滤液氨氮的吸附特征[J].水科学进展,2008,19(3):339-344.
    [135]王现国,郭立.洛河冲积平原包气带对入渗水污染物净化能力研究.水文地质工程地质[J],2009,36(6):123-130.
    [136]翟丽华,刘鸿亮,席北斗,等.农业源头沟渠沉积物氮磷吸附特性研究.农业环境科学学报[J].2008,27(4):1359-1363.
    [137]王娟,王圣瑞,金相灿,等.长江中下游浅水湖泊表层沉积物对氨氮的吸附特征[J].农业环境科学学报,2007,26(4):1224-1229.
    [138]姜桂华.铵态氮在土壤中吸附性能探讨[J].长安大学学报,2004,21(2):32-38.
    [139]高秀花,陈鸿汉,李海明,等.不同岩性对氨氮吸附影响的实验研究[J].环境与可持续发展,2006,5(21):55-57.
    [140]翟丽华,刘鸿亮,徐红灯,等.浙江某农场土壤和沟渠沉积物对氨氮的吸附研究[J].环境科学,2007,28(8):1770-1773.
    [141]孙大志.氨氮在土壤中吸附/解吸的动力学与热力学研究[J].北华大学学报(自然科学版),2007,8(6):493-496.
    [142]马宁,王宇,史春梅,等.氨氮在底泥中的吸附-解吸行为研究进展[J].现代农业科技,2010,5(24):273-274.
    [143]黑宇峰,晏宗全,孙岳新.粉状沸石吸附及解吸氨氮影响研究[J].陕西师范大学学报(自然科学版),2006,34(sup):59-61.
    [144]郝建朝,刘学增,卢显之,等.pH和沸石处理池塘底泥磷吸附与解吸行为的研究[J].环境科学与技术,2008,31(8):18-21.
    [145] Adam G., Gamoh K, Morris D G., et al. Effect of alcohol additionon themovement of petroleum hydrocarbon fuels in soils[J]. Sci Total Environ,2001,286:15-25.
    [146] Yasemin Bulut, Haluk Ayd?n. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells[J].Desalination,2006,194(1-3):259-267.
    [147]张景环,曾溅辉.北京地区壤土对柴油的吸附作用研究[J].环境科学学报,2006,26(2): 287-292
    [148]张景环,曾溅辉.北京地区土壤对柴油的吸附及影响因素研究[J].环境科学研究,2007,20(2):19-23.
    [149]岳宏伟,王海燕,汪卫国,等.厦门湾沉积物对石油的吸附解吸规律研究[J].台湾海峡,2009,28(2):187-191.
    [150]解岳.黄廷林.王志盈.等.河流沉积物中石油类污染物吸附与释放规律的实验研究[J].环境工程,2000,18(3):59-61.
    [151]高翀.石油类污染物在土壤中的吸附和解吸研究[D].哈尔滨:哈尔滨工业大学,2008: 43-44.
    [152]梁秀娟,肖长来,盛洪勋,等.吉林市地下水中“三氮”迁移转化规律[J].吉林大学学报(地球科学版),2007,37(2):335-340.
    [153]李翔.关中盆地马兰黄土中三氮转化及相关微生物关系实验研究[D].西安:长安大学,2003.
    [154]姜桂华,王文科,杨胜科.“三氮”在黄土非饱和带迁移转化原位试验及数值模拟[J].吉林大学学报(地球科学版),2004,34(4):571-575.
    [155]张曦,夏星辉,杨志峰.水体中有机污染物自然降解研究进展[J].环境科学与技术,2004,27(sup):136-139.
    [156] Steven K S, Stephen S, Martin A. Models for the Kinetics of Biodegradation of Organic Compounds Not Supporting Growth[J]. Appl.Environ.Microbiol,1996, 50:323-331.
    [157]张学佳,纪巍,康志军,等.土壤中石油类污染物的自然降解[J].石化技术与应用,2008,26(3):273-278.
    [158]郭伟,何孟常,杨志峰.土壤/沉积物中石油烃微生物降解研究综述[J].矿物岩石地球化学通报2007,26(3):276-283.
    [159]吉喜斌,康尔泗,陈仁升,等.植物根系吸水模型研究进展[J].西北植物学报,2006,26(5): 1079-1086.
    [160]杨培岭,郝仲勇.植物根系吸水模型的发展动态[J].中国农业大学学报,1999,4(2):67-73.
    [161] Feddes R A, Kowalik P J, Malinka K K, et al. Simulation of field water uptake by plants using a soil water dependent root extraction function[J].Journal of Hydrology, 1976,31:13-26.
    [162] Hoogland J C, Feddes R A,Belmans C. Root water uptake model depending on soil water pressure head and maximum extrac-tion rate[J]. Acta Horticulturae,1981,119:123- 136.
    [163] Prasad R A. Linear root water uptake model[J]. Journal of Hydrology, 1988, 99: 297-306.
    [164] Van Genuchten M T, Gupta S K A. Reassessment of the crop tolerance response function[J]. Indian Society of Soil Science Jour-nal,1993,41(4):730-737.
    [165] Homaee M, Dirksen C, Feddes R A. Simulation of root water uptake non-uniform transient salinity using different macroscop-ic reduction functions[J]. Agricultural Water Management, 2002, 57:89-109.
    [166] Homaee M, Feddes R A, Dirksen C. A macroscopic water extraction model fornouniform transient salinity and water stress[J]. Soil Science Society of American Journal, 2002, 66(6):1 764-1772.
    [167]孟江丽,董新光,周金龙,等.HYDRUS模型在干旱区灌溉与土壤盐化关系研究中的应用[J].新疆农业大学学报,2004,27(1):45-49.
    [168]强小嫚,蔡焕杰,王健,等.冬小麦蒸发系数变化规律研究[J].灌溉排水学报,2008,27(1): 43-45.
    [169]王健,蔡焕杰,陈凤,等.夏玉米田蒸发蒸腾量与棵间蒸发的试验研究[J].水利学报,2004,11:108-113.
    [170]赵娜娜,刘钰,蔡甲冰.夏玉米生育期叶面蒸腾与棵间蒸发比例试验研究[J].灌溉排水学报,2009,28(2):5-8.
    [171]陈凤,蔡焕杰,王健,等.杨凌地区冬小麦和夏玉米蒸发蒸腾和作物系数的确定[J].农业工程学报,2006,22(5):191-193.
    [172]康绍忠,张富仓,刘晓明.作物叶面蒸腾与棵间蒸发分摊系数的计算方法[J].水科学进展,1995,6(4):285-289.
    [173]杨泽元.地表水引起的表生生态效应及其评价研究—以秃尾河流域为例[D].西安:长安大学,2004,64-69.
    [174]邓韬.石油类污染物在包气带中迁移转化研究—以曹妃甸地区为例[D].西安:长安大学,2010.
    [175]朱学愚,刘建立,朱俊杰,等.山东淄博裂隙岩溶水中石油污染物分布和迁移特征[J].中国科学(D辑),2000,30(5):479-485.
    [176] C J von der Heyden, M G New. Groundwater pollution on the Zambian Copperbelt: decipheringthe source and the risk[J]. Science of the Total Environment, 2004,327(1-3): 17–30.
    [177] J Fernández-Gálvez , E Barahona , A Iriarte1, et al. A simple methodology for the evaluation of groundwater pollution risks[J]. Science of the Total Environment, 2007, 378(1-2):67–70.
    [178] R C M Nobre, O C Rotunno Filho , W J Mansur, et al. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool[J]. Journal of Contaminant Hydrology, 2007, 94 (3-4):277–292.
    [179] Elias Dimitriou, Ioannis Karaouzas, Konstantinos Sarantakos, et al. Groundwater risk assessment at a heavily industrialised catchment andthe associated impacts on a peri-urban wetland[J]. Journal of Environmental Management, 2008,88 (33) 526–538.
    [180]叶浩,刘长礼,姜建梅,等.滹沱河石家庄段地下水污染风险评价[J].地质通报,2008, 27(7):1065-1070.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700