用户名: 密码: 验证码:
铁矿石烧结过程智能集成优化控制技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧结过程是钢铁冶金生产的重要工序之一,直接影响到高炉炉况和钢铁产量。烧结过程是一个工艺流程长、影响因素多、机理复杂的动态系统,采用传统的控制理论和方法难以解决过程优化运行和优化控制问题。
     本文通过深入分析烧结过程的工艺特点,论述烧结过程智能集成优化控制方法和控制策略,将复杂的烧结过程优化控制分解为烧结配料优化控制和烧结过程热状态优化控制两个阶段。根据烧结过程控制的目标和特点,分别对烧结配料优化控制、烧结终点优化控制和烧结过程多目标优化控制等技术进行研究,建立烧结生产智能集成优化控制系统。论文的主要研究内容如下:
     (1)智能集成优化控制结构
     针对铁矿石烧结过程的复杂特性和控制特性,提出一种智能集成优化控制系统的基本框架,从控制思想、过程建模方法和集成控制形式三方面,给出烧结过程智能集成优化控制系统的结构描述、设计原则和设计步骤,为铁矿石烧结过程的优化控制提供一种新思路。
     (2)烧结配料优化控制
     配料是烧结的基础。烧结配料效果的好坏直接影响烧结矿化学成分及其稳定性,并影响到原料的使用成本。本文分别建立一配和二配物料关系模型、烧结矿化学成分神经网络预测模型和基于线性规划的烧结生产成本优化模型,并在此基础上设计一种配料专家规则优化算法,通过稳定控制烧结矿化学成分和降低生产成本,实现配料结构的优化。
     (3)烧结终点预测与多模型模糊切换控制
     烧结终点位置是烧结过程的重要状态参数。为实现烧结过程的热状态优化控制,不仅需要获得当前实时的烧结终点位置,更重要的是获得烧结终点未来状态的变化趋势。本文对烧结终点的控制方法进行深入研究,针对烧结终点的大滞后特性,建立烧结终点神经网络预测模型。针对烧结过程的非线性、强耦合和模糊特性,研究模糊控制技术和预测控制技术的集成方法,采用模糊切换技术,建立烧结终点模糊-预测集成优化控制模型,使模型既具有较快的响应速度又有较强的鲁棒性。
     (4)基于评价函数法的多目标优化控制技术
     针对烧结过程中多个控制环节的控制目标相互影响、相互制约的问题,提出一种基于评价函数法的烧结过程多目标优化控制方法,通过构筑系统目标评价函数,将多目标优化问题转化为单目标优化问题进行求解,降低模型的求解难度,实现烧结终点和混合料槽料位的协调优化控制。
     (5)烧结过程智能集成控制系统
     以提出的智能集成优化控制系统框架为基础,采用EIC计算机控制系统实现铁矿石烧结过程的基础自动化和信息管理,开发烧结过程智能集成优化控制系统,将开发的烧结生产集成优化控制系统嵌入某钢铁企业烧结厂的烧结控制系统中,实现铁矿石烧结过程的集成优化控制。
     通过应用铁矿石烧结过程智能集成优化技术,能优化配料结构,降低烧结矿化学成分和烧结终点的波动,从而实现烧结过程高产、质优和低耗的生产目的。实际工业应用效果证明该系统的工业有效性。
As an important step in iron ore production, the sintering process has a direct influence on state of the blast furnace and output of steel. Since the sintering process is a dynamic system with long circuit, multivariable and complex mechanism, it is hard to perform optimal control of process by using traditional control theory and methods.
     In this paper, the intelligent integrated optimal controlling methods and strategies of sintering process are discussed, after an analysis of the characteristics of sintering process. The complicated optimal control of sintering process is divided into two parts:optimistic control of blending and heat status of sinter process. According to goals and characteristics of sintering process, controlling of blending, burning through point (BTP) and multi-objective optimal control technique are investigation respectively, and integrated optimal control system of sintering process is developed. The main study achievements include:
     (1) Intelligent integrated optimal control structure
     Based on the analysis of the complicated control characteristics of the iron ore sintering process, the basic frame of the intelligent integrated optimal control is proposed. The three parts of basic concept, which are the description of structure, the principles and steps of design, are put forward. This method provided a new idea for optimization control of the iron ore sintering process.
     (2) Optimal control of blending
     Blending is the foundation of the sintering process. The predicted model of composition based on artificial neural networks are established, the production cost optimal model based on linear programming is proposed, and the expert rules model aimed to adjust the percentages is constructed, then structure of the blending in the sintering process is optimized.
     (3) Predictive model and multi-model transition controller based on fuzzy weight of BTP
     BTP is crucial factor during sintering, which affects heat status of sintering process. The strategies of controlling BTP are studied deeply in this paper. Due to the sintering process having the characteristics of long time-delay, the prediction models of BTP based on neural network are put forward. Based on the analysis of the characteristics of strong nonlinear and strong coupling in the process, the integrated control method of fuzzy control technology and predictive control technology is studied. The optimal control models based on the multi-model transition controller of BTP is established. The performances of the two models have been compared through simulation. And the multi-model transition control method has better stability and adaptability.
     (4) Multi-objective Optimization and Control based on Evaluation Function Algorithm
     A multi-objective optimal control method based on evaluation function algorithm is proposed. The objective evaluation function of the system is designed, which transform the multi-objective optimization problems into the single-objective optimization problems and eventually results in coordinating control of the burning through point and the bunker-lever.
     (5) Intelligent integrated optimal control system of sintering process
     The basic automation is realized through the computer control system of EIC. The intelligent integrated optimal control system is developed based on the proposed frame of the intelligent integrated optimal control system, which has been embedded in the EIC in the sintering process of some Iron & Steel Co. and eventually results in integrated optimal control of the iron ore sintering process.
     Through the application of the intelligent integrated optimal control technology in the iron-ore sintering process, the structure of blending is optimized, and the fluctuation of sinter compositions and BTP is restrained. The output and quality of sinter are improved effectively. The results of actual runs show that the system is effective.
引文
[1]唐贤容,王笃阳,张清岑.烧结理论与工艺.长沙:中南工业大学出版社,1992,1-4,141-149
    [2]张寿荣.试论进入21世纪我国高炉炼铁技术方针.钢铁,2000,38(5):42-46
    [3]周岚译.我们衡量可持续发展的尺度——2004年世界钢铁业报告.冶金管理,2005,6(1):21-25
    [4]孔德彪.从烧结机大型化看我国烧结业的发展.江苏冶金,1989,2:29-31
    [5]王维兴.2009年前五个月我国烧结生产技术评述http://www.chinasie.org.cn/,2009-8-5
    [6]Thoma M. A.. Intelligent control applications in the process industries. Annual Reviews in Control,2002,26:75-86
    [7]Chin A. H., Rongshun C.. Intelligent control of exit temperature in a gas-fuel can-type combustor. Engineering Application of Artificial Intelligence,2002, 15:391-400
    [8]Jarvensivu M., Saari K.,. Jamsa J.. Intelligent control system of an industrial lime kiln process. Control Engineering Practice,2001,9:589-606
    [9]黄道平,朱学锋,周其节.基于一种集成模型的多变量非线性预测控制.控制理论与应用,1999,16(1):38-42
    [10]姚俊峰,梅炽,彭小奇,等.炼铜转炉优化操作智能决策支持系统的开发与研制.信息与控制,2002,31(2):176-179
    [11]潘丰,须文波.造纸过程集成优化控制系统.计算机测量与控制,2002,10(1):794-797
    [12]李新春,孙艳.综合人工智能优化矿业工程复杂大系统.系统工程学报,2002,17(4):379-384
    [13]胡氢,司纪凯.智能控制技术现状分析及发展.煤矿机械,2006,27(6):921-923
    [14]Liao H. Y., Peng X., Li Y. W.. An ARX Model Based Predictive Control Strategy for Sintering Process. The Ninth International conference on electronic measurement & instruments,2009,3:779-784
    [15]马毅潇,钱东海,赵锡芳,等.基于串级变结构神经网络的机器人补偿控制.上海交通大学学报,1999,33(7):842-846
    [16]赵秀粉,王时龙,简毅,等.基于智能代理的机械制造系统的动态建模.机械设计与制造工程,2002,31(4):50-52
    [17]陈丽安,张培铭,雷德森.人工智能在电气设备中的应用现状与前景展望.电网技术,2000,24(7):21-24
    Pawel Z G, Marian P, Kazmierkowski. A simple direct-torque neuron-fuzzy control of PWM-inverter-fed induction motor drive. IEEE Transactions on Industrial Electronics,2000,47 (4):863-870
    [19]王耀南,王辉,彭建春等.复杂工业过程的综合集成智能控制.信息与控制,1999,28(4):298-304
    [20]吴敏,沈德耀.配煤过程基于神经网络和数学模型的专家系统.控制理论与应用,2000,17(6):868-872
    [21]吴敏,桂卫华.锌浸出过程的专家控制和故障诊断方法.控制理论与应用,2001,18(6):861-866
    [22]卢荣德,陈宗海,王雷.复杂工业过程计算机建模、仿真与控制的综述.系统工程与电子技术.2002,24(1):52-57
    [23]习乃文,黄天正,谢良贤.烧结技术.昆明:云南人民出版社,1993:334-345
    [24]佚名.日本钢管公司福山厂4号烧结机实现无人操作.烧结球团,1997,22(3):49
    [25]程振先.关于烧结自动化的若干问题.烧结球团,1992,17(5):19-21
    [26]陈明仁等.以精料技术进步促马钢炼铁生产发展.矿业工程,1994,14(增刊2):17-21
    [27]唐怀斌.工业控制系统的进展与趋势.自动化与仪器仪表,1996,2:1-6
    [28]白锐,柴天佑,马恩杰.生料浆配料过程综合自动化系统.系统仿真学报,2007,19(11):2594-2598
    [29]Venkataramana R., Gupta S.S., Kapur P.C., Ramachandran N.. Mathematical Modelling and Simulation of the Iron Ore Sintering Process. Tata search,1998, 50-55
    [30]Toshihiro N., Tetsuzo H., Bunichi H., Hiroshi Y., Yamaguchi A., Makoto M.. Development and application of object-oriented comprehensive operation control system for sintering process. Nippon Steel Technical Report, Stainless Steels,1996,12 (8):95-100
    [31]Terpak J., Dorcak L., Kostial I., Pivka L.. Control of burn-through point for agglomeration belt. Metalurgija,2005,44 (5):281-284
    [32]Nath N. K., Mitra K.. Optimization of Coke Rate and Sinter Quality by Genetic Algorithm for Two-layer Sintering of Iron Ore. Materials Science and Technology 2003 Meeting Modeling Control and Optimization in Ferrous and Non-Ferrous Industry,2003,6 (3):109-124
    [33]Cumming M.J., Rankin W.J., Siemon J.R., et al. Modeling and simulation of iron ore sintering. In:4th International Symposium on Agglomeration.Toronto, Canada,1985:763-776
    [34]Terpak J., Dorcak L., Kostial I.. Analyse of the combined blast furnace wind parameters. Acta metallurgica slovaca,2001,8 (4):202-207
    [35]Tamure N., Konishi M.. Mathematical Approach for the Optimization of Sintering Process Operation. In IF AC Automation in Mining, Mineral and Metal Process, Tokyo, Japan,1986:203-208
    [36]Li P., Ji Z. C., Tan J. D.. Sintering finish point intelligent control. IEEE/ASME International conference on Advanced Intelligent Mechatronics, 2005,1385-1388
    [37]Corte N. D., Gerbe J. L.. Automation and Modelisation of the Process at the Usinor Dunkirk No.3 Sintering Plant. In 4th International Symposium on Agglomeration, Toronto, Canada,1985:787-804
    [38]Hamada K., Murai T., Jyoko T., et al. An advanced total control system for sintering process. Sumitoma Metals,1992,44 (1):151-160
    [39]Fisher D. J., Coulston B.. Process improvements at Redcar Sinter Plant. Iron making Conference Proceedings,1997,56:383-389
    [40]Mitterlehner J., Loeffler G., Winter F., et al. Modeling and simulation of heat front propagation in the iron ore sintering process. International ISIJ,2004,44 (1):11-20
    [41]Patission F.. Study of Moister Transfer during the Strand Sintering Process. Metal Transactions,1990,2 (21B):37-47
    [42]Upadhyaya G. S.. Some issues in sintering science and technology. Materials chemistry and physics,2001,67:1-5
    [43]袁熙志,周取定.铁矿石烧结过程基本理论的研究.中国铁矿石烧结研究—周取定教授论文集.北京:冶金工业出版社,1997,203-211
    [44]胡长庆,张玉柱.烧结过程中的传输理论.烧结球团,2000,25(3):1-4
    [45]向齐良,吴敏,侯奔,向婕.基于成分预测模型的矿石烧结配料专家优化方法.山东大学学报(工学版),2005,35(4):43-46
    [46]Zheng D. L., Zhao Z. L.. Application of gray linear programming in sintering mixing calculation. Journal of University of Science and Technology Beijing, 2000,7 (4):273-276
    [47]Wang Y. L., Gui W. H., Yang C. H., Chen X. F., Wu M... A multi-objective optimization for the mixture ratio of Pb-Zn sintering process based on an intelligent integrated model. International Conference on Advanced Manufacturing Systems and Manufacturing Automation, Guangzhou,2000, 132-137
    [48]Kanagarajah A., Jelenich L.. Control of sintering process with low capital outlay. Twentieth Australasian Chemical Engineering Conference:Official Proceedings of Conference held at National Convention Centre, Canberra, ACT, Australia:1992,2:434-441
    [49]梁中渝,胡林,邓能运,周久安,余兴元,陶正春.优化烧结矿配料分析.钢铁,2001,36(10):12-14
    [50]吕学伟,白晨光,邱贵宝,欧阳奇,黄玉明.三种优化烧结配料方法的比较.烧结球团,2006,31(2):11-15
    [51]欧阳奇,白晨光,何木光,文光远.考虑性能指标的烧结机操作优化控制模型.烧结球团,2005,30(3):27-29
    [52]杨东进,陈继国,于忠念,向天德.烧结配料优化分析.烧结球团,2000,25(1):14-16
    [53]王炜,陈畏林,贾斌,徐智慧,杨海林.基于线性规划和神经网络的优化烧结配料系统开发.烧结球团,2006,31(1):27-30
    [54]Kostial I., Nemcovsky P., Terpak J.. Optimization of the sintering process. Metallurgica,2001,40 (2):67-70
    [55]松田浩一.模糊推理及神经网络在烧结过程中的应用.第六届国际造块会议论文选(周取定等译),北京:中国金属学会,1994,427-440
    [56]Gong C. L., Feng Y., Wang J. Z., Song Y. X... A Fuzzy-PID Control System of PTFE Sintering Furnace Based on Lonworks. Prceedings of the 26th Chinese control conference,2007,5:266-268
    [57]Yong H. K., Wook H. K.. An application of min-max generalized predictive control to sintering process. Control Engineering Practice,1998,32(6): 999-1007
    [58]范晓慧,黄天正,陈荩.烧结过程控制专家系统(Ⅲ)-透气性中心控制策略和烧结终点预报策略.中南工业大学学报,1998,29(6):535-537
    [59]郭立新,李浩,黄秋野,陈伟.烧结机模糊控制规则设计及其仿真.东北 大学学报(自然科学版),2006,27(10):1075-1078
    [60]李智,姚驻斌.免疫遗传算法在烧结矿配料优化中的应用.上海金属,2004,24(6):24-28
    [61]Feng Q., Li T., Fan X. H., Tao J.. Adaptive prediction system of sintering through point based on self-organizing artificial neural network. Transactions of the Nonferrous Metals Society of China,2000,10 (6):804-807
    [62]郗安民,刘晓超.烧结终点位置的模糊控制.冶金设备,2000,1:19-21
    [63]申燕,郭文军,王福利等.模糊控制在烧结终点控制中的应用.冶金自动化,1998,2:24-27
    [64]魏峻青.烧结终点的模糊控制.烧结球团,1998,23(3):44-48
    [65]Josef Ebner等.奥钢联林茨钢铁公司用模糊逻辑控制改善烧结厂生产操作.武钢技术,1998,8:16-19
    [66]Arbeithuber C., Jorgl H. P., Raml H.. Fuzzy control of an iron ore sintering plant. Control Engineering Practice,1995,3(12):1669-1674
    [67]刘玉长,桂卫华,周孑民.基于软测量技术的模糊烧结终点控制研究.烧结球团,2002,27(2):27-31
    [68]杨寅华.烧结过程的模糊控制系统设计.计算机应用与软件,2006,23(6):24-26
    [69]佐佐木丰等.烧结能耗控制系统的开发.川崎制铁技报,1987,19(2):21-25
    [70]Wasiu A.. Iron and steel quality production level process:[ph D Dissertation]. California state university Dominguez hills, No.1466443,2009
    [71]谢安国,陆钟武.神经网络BP模型在烧结工序能耗分析中的应用.冶金能源,1998,17(5):8-10
    [72]深川卓美.Sinter Operation Control System with Artificial In川崎制铁技报,1991,3:203-209
    [73]Takumi F., Syunji I., et al. Sintering operation control system with artificial intelligence. Kawasaki Steel Giho, (in Japanese),1991,23 (3):203-208
    [74]Zhang J. H., Xi A. G., Shen F. M.. Multi-objective optimization and analysis model of sintering process based on BP neural network. Journal of Iron and Steel Research,2007,14 (2):1-5
    [75]杜玉晓,吴敏,桂卫华.面向生产目标的铅锌烧结过程智能集成建模与优化控制技术.中国有色金属学报,2004,14(1):142-148
    [76]杜玉晓,吴敏,桂卫华.铅锌烧结过程智能集成优化控制技术.控制与决策,2004,19(10):1091-1096
    [77]Cheng W. S.. Prediction system of burning through point (BTP) based on adaptive pattern clustering and feature map. Proceedings of 2006 International Conference on Machine Learning and Cybernetics,2006,7:3089-3094
    [78]王亦文,桂卫华,王雅琳.基于最优组合算法的烧结终点集成预测模型.中国有色金属学报,2002,12(1):191-195
    [79]天贸钢铁网.正确认识中国钢铁业现状和发展方向http://tieba.baidu.com/f?kz=262590778,2009-3-12
    [80]王维兴.中国高炉炼铁技术进展.钢铁,2005,40(10):8-12
    [81]Chin K.S., Zhou S.Q., Krishnamurthy R., et al. An intelligent approach of knowledge searching within internet-based distributive knowledge integrated environment. Engineering Applications of Artificial Intelligence,2002, (15): 607-618
    [82]葛红,毛宗源.一种新的数据分析方法:人工免疫网络.计算机工程与应用,2002,13:6-10
    [83]冯瑞,张浩然,邵惠鹤.基于SVM的软测量建模.信息与控制,2002,31(6):567-571
    [84]朱学峰.软测量技术及其应用.华南理工大学学报,2002,30(11):61-67
    [85]杨会志.BP网络与RS理论在浮选生产数据分析中的应用.计算机工程于应用,2002,7:218-220
    [86]杨晓玲,张素伟,吴裕树,等.基于数据仓库的数据分析系统研究.山西电子技术,2002,5:16-19
    [87]陈宗海,王雷.基于混合智能技术的非线性对象优化控制模型.系统工程与电子技术,2002,24(8):90-93
    [88]Kim S. S., George J.. Vachtsevanos. An intelligent approach to integration and control of textile process. Information Science,2000,13:181-199
    [89]崔德光,程朋,项天成.CIMS管理信息系统设计开发中的集成化建模方法.计算机集成制造系统CIMS,2000,6 (6):37-40
    [90]Thoma M. A.. Intelligent control applications in the process industries. Annual Reviews in Control,2002,26:75-86
    [91]Narendra K. S.. Cheng Xiang.Adaptive control of discrete-time systems using multiple models. IEEE Trans. Automat. Contr.,2000,45(9):1669-1686
    [92]Ren L., Irwin G. W.. Flynn D.Nonlinear identification and control of a turbo generator an on-line scheduled multiple model/controller approach. IEEE Trans. Energy Conversion,2005,20(1):237-245
    [93]Chen L. J., Narendra K. S.. Intelligent control using neural networks and multiple models. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA,2002,1357-1362
    [94]Cherkassky V., Ma Y.. Multiple Model Regression Estimation.IEEE Trans. Neural Networks,2005,16(4):785-798
    [95]Lainiotis D. G.. Optimal adaptive estimation structure and parameter adaptation. IEEE trans. Automat.Contr.,1971,16(2):160-170
    [96]Lainiotis D. G., Deshpande J. G., Upadhyay T. N.. Optimal adaptive control:a non-linear separation theorem. Int. J. Control,1972,15(5):877-888
    [97]Narendra K. S.. Parameter adaptive control-the end...or the beginning. Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL,1994,2117-2125
    [98]欧阳奇,白晨光,何木光,文光远.考虑性能指标的烧结机操作优化控制模型.烧结球团,2005,30(3):27-29
    [99]《铅锌冶金学》编委会.铅锌冶金学.北京:科学出版社,2003,99-100
    [100]傅菊英,姜涛,朱德庆,烧结球团学.长沙:中南工业大学出版社,1996,25-26
    [101]向齐良,吴敏,向婕,冯国辉.烧结过程烧结终点的预测与智能控制策略的研究与应用.信息与控制,2006,35(5):662-668
    [102]Wang A. M., Song Q.. Prediction of R in Sinter Process based on Grey Neural Network Algebra微计算机信息,2007,65:248-251
    [103]范晓慧,王海东,黄天正等.以透气性为中心的烧结过程状态控制专家系统.烧结球团,1998,23(2):13-15
    [104]李桃.烧结过程智能实施操作指导系统的研究:[博士学位论文].长沙:中南大学,2000,30-35
    [105]张舒,高为民.人工神经网络在烧结矿指标预测中的应用.烧结球团,2001,26(4):6-10
    [106]Cheng W. S.. The theory analysis and data track of the material balance system. The 2007 International conference on information acquisition,2007, 310-314
    [107]谌晓文,邬捷鹏.基于BP神经网络的烧结终点预测模型.烧结球团,2006,31(4):21-25
    [108]何悦盛,叶春,杨波等.BP网络在电站故障诊断系统中的应用研究.电力自动化设备,2002,22(5):7-9
    [109]钱士刚.工业过程烧结矿FeO预报模型的研究:[硕士学位论文].长沙:中南工业大学,1995,24-32
    [110]陈祥光.人工神经网络技术及应用.北京:中国电力出版社,2003,9,176-200
    [111]Bazaraa M.S., Jarvis J.J. and Sherali H.D. Linear Programming and Network Flows (second edition). New York:John Wiley,1990,132
    [112]王道群.线性规划在烧结矿配料中的应用.冶金丛刊,2005,157(3):5-9
    [113]牛秦洲,叶恒舟,吴一峰.烧结厂烧结配料专家系统设计.桂林工学院学报,2002,22(4):391-395
    [114]Wook H. K., Yong H. K., Sang J. L. and Paek K. N.. Event-based modeling and control for the burn through point in sintering processes. IEEE Transactions on Control Systems Technology,1999,7(1):31-41
    [115]Joo. E. M., Liao J., Lin J.. Fuzzy neural networks-based quality prediction system for sintering process. IEEE Transactions on Fuzzy Systems,2000,18 (4):314-324
    [116]俞忠原,陈一民.工业过程控制计算机系统.北京:北京理工大学出版社,1995,112
    [117]李桃,冯其明,范晓慧,等.基于自组织神经网络的烧结终点自适应预报系统的开发.计算机工程与应用,2001,37(6):127-129
    [118]李桃,范晓慧,姜桃,等.基于热状态参数的烧结终点自适应预报.烧结球团,2000,25(2):1-3
    [119]张杰,阳宪惠.多变量统计过程控制.北京:化学工业出版社,2000,43
    [120]高隽.人工神经网络原理及仿真实例.北京:机械工业出版社.2003,8
    [121]陈祥光.人工神经网络技术及应用.北京:中国电力出版社.2003,9
    [122]张吉礼.模糊-神经网络控制原理与工程应用.南京工业大学学报,2005,27(6):90-94
    [123]陆锦军.预测模糊协调控制在纯滞后系统中的应用.哈尔滨:哈尔滨工业大学出版社,2003,90-94
    [124]张立炎,徐华中,钱积新.一类混杂系统建模和优化控制的研究.控制工程,2005,12(5):409-411
    [125]李秀改,高东杰.一类混杂系统模型预测控制.信息与控制,2002,31(1):1-4
    [126]Li G.. The application of modified neural network ART1 in the fault diagnosis of air engine. Microcompuer information,2005,9 (1):156-158
    [127]许敏,李少远.基于多步预测性能指标的模糊控制器参数优化设计.控制与决策,2004,19(12):1327-1342
    [128]Sun D. Q., Wei H.. Linear Multi-step Fuzzy Logic Systems. Control Theory and Applications,2001,18 (6):851-857
    [129]张日东,王树青.基于神经网络的非线性系统多步预测控制.控制与决策,2005,20(3):332-337
    [130]Wang H. D., Qiu G. Z., Sheng S. H.. Modeling and control of dioxin formation during iron ore sintering. Transactions of Nonferrous Metals Society of China (English Edition),1999,18 (2):651-654
    [131]Barea R., Mochon J., Cores A., Martin D., Ramon. Fuzzy control of micum strength for iron ore sinter. ISIJ International,2006,687-693
    [132]Hu J.Q., Rose E. Generalized predictive control using a neuro-fuzzy model. International Journal of Systems Science,1999,12 (3):117-122
    [133]欧阳奇,白晨光,何木光,文光远.考虑性能指标的烧结机操作优化控制模型.烧结球团,2005,30(3):27-29
    [134]Ho S. L., Yang S. Y., Guangzheng N., etc.. A Tabu Method to Find the Pareto Solutions of Multiobjective Optimal Design Problems in Electromagnetics. IEEE Transactions on Magnetics,2002,38(2):1013-1016
    [135]Ben-Tal A., Fandel G., Gal T.. Characterization of Pareto and Lexicographic Optimal Solutions, Multiple Criteria Decision Making Theory and Application. Lecture Notes in Economics and Mathematical Systems, Springer-Verlag,1980,177:1-11
    [136]高桂革.最优控制理论的发展与展望.上海电机学院学报,2005,8:99-102
    [137]Lu J., Fang S. C.. Solving nonlinear optimization problems with fuzzy relation equation constraints. Fuzzy Sets and Systems,2001,119:1-20
    [138]Zadeh L. A.. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics, 1973,3:28-44
    [139]Masatoshi S., Katsuhiro Y.. An interactive fuzzy satisficing method for multi-objective non-convex programming problems with fuzzy members through co-evolutionary genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics-Part A,2001,31(3):459-467
    [140]吴清烈,徐南荣.基于满意度大规模含整变量多目标决策方法.控制与决策.1996,11(4):439-445
    [141]Cuzzola F.A.,Geromel J.C.,Morari M..An improved approach for constrained robust model predictive Control.Automatica,2002,38:1183-1189
    [142]杨寅华.烧结过程的模糊控制系统设计.计算机应用与软件,2006,23(6):24-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700