用户名: 密码: 验证码:
晶格氧部分氧化甲烷制取合成气的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前世界能源和化学工业85%以上是建立在石油、煤炭和天然气这三种可燃性矿物资源基础之上。在这三大支柱性能源中,石油资源日益枯竭,价格不断上涨,煤炭资源尽管储量丰富,但使用时污染严重,对环境保护带来严重的挑战,作为优质清洁能源和化工原料的天然气期望在现代经济中扮演更加重要的角色。目前对天然气的开发利用主要集中在对甲烷转化技术的研究。甲烷分子中C-H键能高达435kJ/mol,直接转化为化学品离工业化目标尚远,因此,经“合成气”制备重要化学品和液体燃料的间接转化法成为当今国际上的热门课题之一。
     本文围绕合成气的制备过程,对新颖的“晶格氧部分氧化甲烷制取合成气技术”开展了比较系统的研究,内容主要涉及氧载体与甲烷反应的热力学理论分析和平衡组分模拟、氧载体的实验筛选以及优化,反应动力学参数的确定和机理研究,反应新体系的探索等关键基础问题。
     研究中首先根据氧载体选择的基本原则,初步选取稀土氧化物Ce02和过渡金属Fe2O3、CuO和Mn2O3作为氧载体,通过热力学软件,计算了四种体系的ΔrG°和ΔrH°,根据系统自由能最小原则绘制了不同反应温度氧载体与甲烷反应的平衡组成图。结果发现,所选取的四种氧化物在一定的温度范围内在热力学上均能按理论分析的部分氧化甲烷生成合成气的方向进行,如果要获得理想n(H2)与n(CO)比例的合成气,需要控制较高的反应温度和合适的氧载体与甲烷量比关系。
     以共沉淀法制备了n(Ce)与n(M)摩尔比为1:1的Ce-M-O (M=Fe、Mn、Cu)系列氧载体,XRD表征发现Mn203和Fe203可以较好地分散在Ce02中,而CuO的分散性较差。Ce-M-O氧载体与甲烷反应的热重实验表明,Fe203、CuO和Mn203的加入能够明显地提高氧载体中晶格氧的供给能力,单从增加晶格氧供给能力方面来讲,Ce-Fe-O表现出了最佳的供氧能力。固定床活性评价中,Ce-Cu-O氧载体主要表现出完全氧化甲烷的性质;Ce-Mn-O氧载体虽然在较高的温度下能够较好地实现甲烷的部分氧化,但却使甲烷发生了严重裂解;Ce-Fe-O表现出了最好的部分氧化甲烷性能,产物气中n(H2)/n(CO)能够持续稳定在2左右。综合分析认为,Ce-Fe-O复合氧化物无论从提供晶格氧的总量,还是从实现甲烷部分氧化的性能,以及降低氧载体的生产成本方面来讲,均能承担起“晶格氧部分氧化甲烷制取合成气技术”中氧载体的关键角色。
     由于Ce-Fe-O氧载体有着良好的部分氧化甲烷特性,继续开展了n(Ce)/n(Fe)比对氧载体部分氧化甲烷活性影响的研究。同样采用共沉淀法制备了Ce-Fe-O-X(X=9/1、8/2、7/3、6/4、5/5、4/6、2/8)铈基系列氧载体,利用XRD、H2-TPR等表征手段,结合固定床反应器和热重实验平台,对氧载体的性能进行了评价,结果表明,Ce-Fe-O-7/3的氧载体具有最好的部分氧化甲烷活性。对已经确定了铈铁比例的Ce-Fe-O-7/3氧载体,进行了不同焙烧温度的影响实验,发现800℃的焙烧温度,氧载体表现出了最好的反应性能。为了继续提高氧载体的循环性能,进行了掺杂ZrO2对氧载体的改性研究,结果认为ZrO2的掺杂特别是合适的掺杂量(Ce-Fe-Zr-O(0.05))可使氧载体具有优良的部分氧化甲烷性能和循环使用性能。
     对以Ce-Fe-Zr-O(0.05)为氧载体与甲烷反应的动力学开展了相关研究,结果发现反应的平均表观活化能Em为131.762kJ/mol,而以纯CeO2为氧载体时,反应的平均表观活化能Em为173.517kJ/mol,说明铁和锆的加入显著地降低了CeO2部分氧化甲烷反应的活化能,即Ce-Fe-Zr-O(0.05)氧载体与甲烷之间发生部分氧化的反应与纯CeO2相比更易进行,这一性能的改善与铈铁锆三者间固溶体的形成及相互的间协同作用有关;反应机理研究认为,整个反应过程存在反应初期、中期和后期三个明显阶段。反应初期以甲烷的燃烧-重整机理为主,反应中期是甲烷的直接氧化机理,即CO和H2是氧载体中晶格氧对甲烷部分氧化的一次产物,该阶段是合成气大量生成的重要时期,反应后期则以甲烷裂解为主。
     提出了在“熔融盐体系中利用氧载体的晶格氧实现甲烷部分氧化制取合成气”的新方法,期望这种新体系在炭沉积的消减、反应热场的均匀化,以及对反应热的后续高效利用方面有新的贡献。对不同的熔融盐体系进行了对比和研究,最终设计出适合这种新方法的熔融盐体系为质量比1:1的碳酸钠和碳酸钾混合组分;以Ce-Fe-Zr-O(0.05)为氧载体,开展了熔融盐体系下的甲烷部分氧化实验,结果发现在新体系下同样能够顺利实现合成气的生产,氧载体经空气再生后能够顺利循环使用,而且这种熔融盐新体系有着良好的炭沉积消减作用,并对合成气中H2和CO比例具有较宽范围的调节作用。分析认为,这种新的反应体系既避免了传统反应过程催化剂存在热点的问题,又为反应热的后续有效利用提供了一个全新的利用途径。
Currently, more than 85% of the world's energy and chemical industry is built on the basis of three flammability mineral resources, which are oil, coal and natural gas.In the three pillars of energy, oil resources are depleted day after day, and the price is rising. Although the reserves of coal resources are rich, there is a serious pollution problem when it is used. And as the quality of clean energy and chemical raw materials, natural gas is expected to play a more important role in the modern economic society. At present the development and utilization of natural gas mainly concentrate on the methane conversion technologies. As for the C-H bond of methane molecules reaches 435 kJ/mol, the direct translation methane into chemicals is still far from the goal of industrialization, therefore, the indirect technique of translation "syngas" into important chemicals and liquid fuels becomes a hot topic in the contemporary world.
     A more systematic study about the novel technology of "partial oxidation of methane to syngas using lattice oxygen" was done, and the contents included the following key issues:thermodynamic theory analysis and equilibrium compositions simulation, experimental choosing and optimization of oxygen carriers, kinetics and reaction mechanism, and the exploration about a new reaction system.
     According to the basic principle of oxygen carrier choice, CeO2, Fe2O3, CuO and Mn2O3 were preliminary chosen as oxygen carriers and A,G°and ArH°of the four systems were calculated by means of thermodynamic analysis. Based on the principle of a system free energy minimum, the equilibrium compositions of oxides-CH4 system at various temperatures were calculated using thermodynamics software and database. The results showed that in theory the four oxides could partially oxide methane to syngas in a certain temperature range. If syngas with ideal n (H2) In (CO) ratio needed to be obtained, the higher temperature and appropriate ratio of methane and oxygen carriers needed to be controlled.
     The Ce-M-O (M=Fe, Mn, Cu) complex oxides in which the ratio of n (Ce)/n(M) is 1:1 were prepared by coprecipitation. The X-ray diffraction (XRD) characterization results of oxygen carriers showed that Mn2O3 and Fe2O3 could spread out in the CeO2, but CuO could not. The TG experiment of Ce-M-0 oxygen carrier reaction with methane illuminated that the capability of supplying lattice oxygen could be significantly improved when Fe2O3, CuO and Mn2O3 were incorporated into CeO2. So, if the capability of supplying lattice oxygen only was taken into account, the Ce-Fe-O oxygen carrier had the best oxygen storage capability (OSC). The activity evaluation experimental results of fixed-bed reactor showed that Ce-Cu-0 had a performance of complete oxidation methane. Although, Ce-Mn-0 could partially oxide methane to syngas at a higher temperature, there was a serious methane pyrogenation. Ce-Fe-O showed the best performance of partial oxidation methane and the ratio of n (H2)/n(CO) was about 2 in product gas. In conclusion, in terms of total lattice oxygen supply or partial oxidation methane or reducing the cost of production oxygen carrier, Ce-Fe-O complex oxides could take on a key role of oxygen carriers being used in "lattice oxygen partial oxidation of methane production of syngas technique"
     As Ce-Fe-O oxygen carrier has a good performance of partial oxidation of methane, the different n (Ce)/n(Fe) ratio of oxygen carrier was sequentially researched. The Ce-Fe-O-X (X=9/1、8/2、7/3、6/4、5/5、4/6、2/8) ceria-based oxygen carriers were prepared by coprecipitation, as the same, using some characterization methods, such as XRD, H2-TPR and so on and combination fixed-bed reactor and TG experimental platform, the oxygen carrier performance was evaluated.The results showed that Ce-Fe-O-7/3 oxygen carrier had a good performance.The activity of Ce-Fe-O-7/3 oxygen carrier at different sintering temperatures was studied, the results showed that 800℃was the most appropriate. In order to improve the circulation performance of oxygen carrier, the experiments of modification on Ce-Fe-O-7/3 oxygen carrier by ZrO2 doping were studied. The results showed that Ce-Fe-Zr-O(0.05) had the best circulation performance in all samples.
     The kinetics of Ce-Fe-Zr-O(0.05) oxygen carrier reaction with methane was studied. It was found that average apparent activation energy(Em) was 131.762kJ/mol, and when using the pure CeO2 as oxygen carrier the Em was 173.517kJ/mol, in other words, the reaction was easier when using Ce-Fe-Zr-O(0.05) as oxygen carrier than pure CeO2, the performance improvement of oxygen carrier was attributed to the form of Ce-Fe-Zr solid solutions and mutual cooperate of Ce4+, Fe3+, Zr4+ions.The reaction mechanism study revealed that there were three distinct stages which were initial stage, middle stage and final stage in the entire process. The reaction initial stage was combustion-reforming mechanism, the reaction middle stage was directly oxidation mechanism in which stage CO and H2 were the direct production of methane and this stage was a important period for obtaining a great deal of syngas, while in the final stage methane pyrogenation occupied dominance.
     A new method which was "partial oxidation of methane to syngas using lattice oxygen in molten salt system" was brough forward. The new system has some new contributions in reducing carbon deposition, heat distribution and enhancing reaction heat utilization efficiency. Different molten salt systems were studied; finally, the Na2CO3 and K2CO3 mixed moten salts (weight ratio was 1/1) were appropriate for the new system. When using Ce-Fe-Zr-O(0.05) as an oxygen carrier for partial oxidation methane in molten salt system, the experimental results showed that syngas could also be produced in the new system, and oxygen carrier regenerated through air could be successfully recycled. The new molten salt system has good functions of reducing carbon deposition and adjusting the ratio of n (H2)/n(CO). The new reaction system could not only avoid the catalyst hot-dot, but also could provide a new means for utilization of reaction heat.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359
    [2]International Energy 2001 Edition(EIA, U.S.Department of Energy, Washington, DC, 2003)
    [3]冯孝庭.天然气—宝贵的财富[M].北京:化学工业出版社,2004
    [4]曹月华译.日本天然气工业发展现状[J].天然气地球科学,1997,8(5-6):64-69
    [5]石景译.俄罗斯能源政策及天然气的作用[J],天然气地球科学,1997,8(5-6):26-31
    [6]贺黎明,沈召军.甲烷的转化和利用[M].北京:化学工业出版社,2005
    [7]BP. Statistical Review of World Energy 2007
    [8]http://www.bizing.com/Info/html/Calling/Mine_metallurgy/Mineral_resour/ 20050923486.html
    [9]华泽彭,能源经济学[M],山东东营:石油大学出版社,1991
    [10]雍自权,翟中华,刘树根等.世界石油天然气战略综述[J],天然气工业,2004,24(2):1-4
    [11]KVENVOLDEN K. A Methene hydrate—A major reservoir of carbonin shallow geosphere[J]. ChemGeol,1988,71(1):41-51
    [12]崔民选.2007年中国能源发展报告,北京:水利水电出版社,2007
    [13]刘成林,李景明,李剑等.中国天然气资源研究[J],西南石油学院学报,2004,26(1):9-12
    [14]金韧龙.天然气水合物(可燃冰).浙江大学第八届DMB登攀节学术讲座,2000.11
    [15]http://www.worldenergy.com.cn
    [16]Haggin J. Direct Conversion of Methane to Fuels Chemicals Still Intensely Sought[J]. Chem Eng News,1992,70(17):33-35
    [17]Golden D M, Denson S W. Free-radical and molecule thermochemistry from studies of gas-phase iodine-atom reactions [J], Chem Rev,1969,69:125
    [18]王华,刘中民.甲烷直接转化研究进展[J],化学进展,2004,16(4):593-602
    [19]Rostrup-Nielsen J R. Production of syngas[J]. Catal. Today,1993,18:305-324
    [20]Pena M A, Gomez J P, Fierro J L G. New catalytic routes for syngas and hydrogen production [J]. Appl. Catal., A:General,1996,144:7-57
    [21]Song C S. Tri-reforming:A new process for reducing CO2 emissions [J]. Chemical Innovation,2001,31(1):21-26
    [22]王寿建.天然气综合利用技术[M],北京:化学工业出版社,2003
    [23]Tindall B M, Crews M A. Alternative Technologies to Steam-Methane Reforming[J]. Hydrocarbon Processing,1995,74(11):75-82
    [24]Bradford M C J, Vannice M A V. CO2 Reforming of CH4. Catal Rev-Scieng,1999, 41(1):1-42
    [25]Vernon P D F, Green M L H. Partial oxidation of methane to syngas and carbon dioxide as an oxidizing agent for methane conversion [J]. Catal Today, 1992,13:417-426
    [26]Richardson J T, Paripatyadsr S A. Carbon dioxide reforming of methane with supprted rhodium[J]. Appl,Catal.1990,61:293-309
    [27]Qin D, Lapszewicz J. Study of mixed steam and CO2 reforming of CH4 to syngas on MgO-supported metals[J]. Catal Today,1994,21:551-560
    [28]Rostrup-Nielsen J R, Bak Hansen J H. CO2 reforming of methane over transition metals[J]. Catal,1993,144(1):38-49
    [29]Bitter J H, Seshan K, Lercher J A. The state of Zirconia supported Platinum catalysts for CO2/CH4 reforming[J]. Catal,1997,171:279-298
    [30]Wang H Y, Au C T. Carbon dioxide reforming of methane to syngas over SiO2-supported Rhodium catalysts[J]. Applied CatalysisA:Gerenal,1997,155:239-252
    [31]Bhat R N, Sachtler W M H. Potential of Zeolite supported Rhodium catalysts for the CO2 reforming of CH4[J]. Applied Catalysis A:General,1997,150:279-296
    [32]Erdohely A, Csereny J, Solymost F. Activation of CH4 and its Reduction with CO2 over supported Rh Catalysts.J. Catal,1993,141(1):287-299
    [33]Kunaga To O, Ogasawara S. Reduction of carbon dioxide with methane over Ni-catalysts[J]. React Kinet Catal Lett,1989,39(1):69-74
    [34]徐恒泳,孙希贤,范业梅等.CH4-C02转化制合成气的研究(Ⅰ):催化剂及其催化性能[J].石油化工,1992,21(3):147-153
    [35]Chen H W, Wang C Y, et al.Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts [J]. Catal Today 2004,97,173-180
    [36]Horiuchi T, Mamedov A K, Mirzabekowa S R. Intereaction of carbon dioxide with methane on oxide catalysts[J].Catal Today,1998,42(3):211-215
    [37]Claridge J B, York A P E, Green L H. Comparison of the group V and VI transition metal carbides for methane dry reforming and thermodynamic prediction of their relative stavilities[J]. Catal Lett,1999,57(1-2):65-69
    [38]Krylow O V, York A P E, Brungs A T, et al. New catalyst for the conversion of methane to syngas:molybdenum and tungsten carbide[J]. Catal,1998,180(1):85-100
    [39]Chang J S, Park S E, Chon H. Catalytic activity and coke resistance in the carbon dioxide reforming of methane to syngas over zeolnte-supported Ni Catalysts [J], Appl Catal,1996,145(1-2):111-124
    [40]宫丽红,史克荣,徐恒泳等.甲烷二氧化碳转化制合成气稀土助剂抗积炭性能的研究[J].哈尔滨师范大学自然科学学报,1999,15(2):74-76
    [41]J.Ascencion Montoya, Enrique Romero and Antonio Monzon. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts synthesized by solygel method 16th Meeting of the North American Catalysis Society, The Westin Hotel Copley Place Boston Boston Massachusetts. May 30-june 4,1999
    [42]李基涛,陈旦明,严前古等.助剂对CH4/CO2重整镍基催化剂性能的影响[J].天然气化工,1999,24(3):25-27
    [43]Ross A, Wolf E E. Steam reforming of methane on reduced non-stoichiometric nickel aluminate[J], Appl Catal,1998,40:73
    [44]Wang S B, Lu G Q. Reforming of methane with carbon dioxide over Ni/A12O3 catalysts:Effect of nickel precursor[J]. Appl Catal,1998,169(2):271-280
    [45]许峥,张鎏,张继炎.Ni/y-Al2O3催化剂上CH4-CO2重整体系中积炭-消炭的研究[J],催化学报,2001,22(1):18-22
    [46]路勇,沈师孔.甲烷催化部分氧化制合成气研究进展[J],石油与天然气化工1997,26(1):6-14
    [47]Qing Miao, Applied Catalysis A:General,1977,154(1-2):17-27
    [48]李振花,张翔宇,王保伟等.甲烷部分氧化制合成气反应的研究[J],化学反应工程与工艺,2002,18(1):36-41
    [49]毕先钧,谢小光,洪品杰等.微波场中甲烷部分氧化制合成气[J],催化学报,1999,20(1):73-75
    [50]Tomiainen P M, Chu X, Schmidt L D. Comparison of monolith-supported metals for the direct oxidation of methane to syngas[J], Journal of Catalysis,1994,146(1):1-10
    [51]Boucouvalas Y, Zhang Z, Verykios X E. Partial oxidation of methane to synthesis gas via direct reaction scheme over Ru/TiO2 catalyst[J], Catal Lett,1996,40:189-195
    [52]Dissanayake D, Rosynek M P, Lunsford J H. Are the equilibrium concentrations of CO and H2 exceeded during the oxidation of CH4 over a Ni/Yb2O3catalyst[J], J. Phys. Chem,1993,97:3644-3649
    [53]Hu Y U, Ruckenstein E. Transient kinetic studies of partial oxidation of CH4[J], J Catal,1996,158:260-266
    [54]王海有等.用脉冲反应技术研究甲烷部分氧化制合成气的催化反应机理第八届催化学术会议论文,厦门,1996:213-215
    [55]Zhang et al, Heat transport limitations and reaction scheme of partial oxidation of methane to synthesis gas over supported rhodium catalysts[J], Catal. Lett,1994, 27:131-142
    [56]Tang s, Lin J, Tan K L. Pulse-MS studies on CH4/CD4 isotope effect in the partial oxidation of methane to syngas over Pt/a-Al2O3 [J], Catal.Lett,1998,55:83-86
    [57]Kato H, Yokoyama C, Misono M, Rate-determining step of NO-CH4-O2 reaction catalyzed by Pd/H-ZSM-5[J], Catal.Lett,1997,47:189-191
    [58]Song C S, Pan W. Tri-reforming of methane:a novel concept for catalytic production of industrially useful syngas with desired H2/CO ratios [J].Catal. Today,2004,98: 463-484
    [59]姜洪涛,李会泉,张懿.甲烷三重整制合成气[J].化学进展,2006,18(10):1270-1277
    [60]M. Halmann A. Steinfeld. Thermoneutral tri-reforming of flue gases from coal-and gas-fired power stations[J]. Catalysis Today,2006,115:170-178;
    [61]M. Halmann A. Steinfeld. Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coaland gas-fired power stations, and by the carbothermic reduction of iron oxide[J]. Energy 2006,31:3171-3185
    [62]李然家,沈师孔.晶格氧用于甲烷氧化制合成气的研究—氧化铁的氧化还原性能[J].分子催化,2001,15(3):181-186
    [63]E.R. Stobbe, B.A. de Boer, J.W. Geus. The reduction and oxidation behaviour of manganese oxides[J]. Catalysis Today,1999,47:161-167
    [64]潘智勇,董朝阳,沈师孔.两段法甲烷催化氧化制合成气研究[J],燃料化学学报,2000,28(4):348-351
    [65]江启滢,余长春,沈师孔.固定床两段法甲烷部分氧化制合成气工艺条件及稳定 性研究[J],石油与天然气化工,2001,30(6):269-277
    [66]杨志强,余长春,李然家等.采用异形催化剂的两段法CPO制合成气工艺研究[J],石油与天然气化工,2004,33(增刊):9-13
    [67]Kiyoshi Otsuka, Tetsuya Ushiyama, Icamanaka, Partial oxidation of methane using the redox of cerium oxide,1993, Chemistry Letters,1993,1517-1520
    [68]Otsuka, K., Sunada, E., Ushiyama, T., et al. The production of syngas by the redox of cerium oxide[J].Stud. Surf. Sci. Catal.1997,107:531-536
    [69]Kiyoshi Otsuka, Ye Wang, Eiyuh Sunada et al. Direct partial oxidation of methane to syngas by cerium oxide[J], Journal catalysis,1998,175,152-160
    [70]单文娟,含铈符合氧化物及其负载PdO催化剂的CH4催化燃烧性能,辽宁师范大学硕士学位论文,2001年5月
    [71]McCarty J G, Wise H. Perovskite catalysts for methane combustion [J], Catal. Today, 1990,8 (2):231-248
    [72]P. Briot, M. Primet, Catalytic oxidation of methane over palladium supported on alumina:effect of aging under reactants[J], Appl. Catal,1991,68:301-314
    [73]敖先权,王华,魏永刚.Na2C03-K2CO3熔盐法同时制取合成气和金属锌[J].过程工程学报.2008,8(3):86-91
    [74]敖先权,王华,魏永刚.太阳能熔融盐热化学循环制氢和合成气反应体系研究[J].太阳能学报
    [75]Xianquan Ao, Hua Wang, Yonggang Wei.Comparative study on the reaction of methane over a ZnO bed in the absence and presence of CO2. Journal of Natural Gas Chemistry.2008,17(1):81-86
    [76]李国祥,阳霞,丁玲.非贵金属复合氧化物CO助燃剂及其研究进展[J],天津化工2004,18(6):15-17
    [77]巩小敏,宋永吉,任晓光等.铟一锡复合氧化物粉末的制备及甲烷催化燃烧性能研究[J],功能材料,2005,36(10):1597-1599
    [78]刘成文,罗来涛,赵旭.Ce1-xEuxOy固溶体的制备及甲烷燃烧催化性能研究[J],中国稀土学报,2006,24(4):429-433
    [79]万李,吴晓东,樊俊等.制备方法对钯一铈锆固溶体催化剂的结构与性能的影响[J],中国稀土学报,2004,22(4):522-526
    [80]冯长根,胡玉才,王丽琼.铈锆氧化物同溶体对全钯三效催化剂性能的影响[J],应用化学,2003,20(2):159-162
    [81]丁华.Ceo.5Zr0.5 O2固溶体的制备与其催化甲苯燃烧的性能[J],辽宁化工,2006,35(3):145-147
    [82]Voorhoeve R.J.H.; Remeika J.P., Freeland, P. E., et al. Science,1972,177:353
    [83]Libby W F. Promising catalyst for auto exhaust [J]. Science,1971,171(3):499
    [84]Pedersen L A, Libby W F. Unseparated rare earth cobalt oxides as auto exhaust catalysts [J]. Science,1972,176(7):1355
    [85]戴洪兴,何洪,李佩珩等.稀土钙钛矿型氧化物催化剂的研究进展[J],中国稀土学报,2003,21(spec.issue):1-15
    [86]李然家,余长春,代小平等.钙钛矿型Lao.8sro.2Fe03中的晶格氧用于甲烷选择氧化制取合成气[J],催化学报,2002,23(6):549-554
    [87]张志翔,孙建林,王凤荣等.用于天然气催化部分氧化制合成气的钙钛矿型催化材料的研究[J],天然气化工,2007,32(3):26-37
    [88]Fomrasiero P. Modifieation of the Redox behavior of CeO2 induced by structural doping with ZrO2[J], Jounral of Catalysis,1996,164(1):173-183
    [89]Nunna J G. Physicochemical PropertiesCe-containing TWCs and the effect of Ce on catalyst activiy[J], Joural of Catalysis,1992,133(2):309-324
    [90]Minachev K M. The Catalysis Activity of Rare Earth Oxides in:Catalysis [M]. Amsterdam:North-Holland Press,1973
    [91]Takasu Y, Nishibe S, Mastuda Y. Catalytic behavior of rare earth oxides in the oxidation of nitrogen oxide [J], J. Catal,1977,49:236-239
    [92]Minachev K M, Khodakov Y S, Nakhshunov V S. Activity and mechanism of the catalytic action of rare-earth oxides in low—temperature ethylene hydrogenation [J]. J. Catal,1977,49:207-215
    [93]M Fathi, E Bjorgum, T Viig, et al. Partial oxidation of methane to syngas:Elimination of gas phase oxygen [J]. Catal today,2000,63:489-497
    [94]王毓娟,揭雪飞,董新法等.Ce02在氧化催化反应中的作用[J].电源技术2002,1(26):43-46
    [95]Ricken M, Noelting J, Riess I. et al. Specific heat and phase diagram of nonstoichiometric ceria (CeO2-x)[J]. J Solid State Chem,1984,54,89-99
    [96]Laachir A, Perrichon V, Badri A, et al. Reduction of CeO2 by hydrogen[J], J Chem Soc Faraday Trans,1991,87,1601.
    [97]周长军,林伟,朱月香等.SnCuO催化剂上甲烷的催化燃烧性能[J],催化学报, 2003,24(3):229-232
    [98]Tang X F, Li Y G, Huang X M, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature[J], Appl. Catal.B:Enviro,2006,62(3-4):265-273
    [99]李丽娜,陈耀强,龚茂初等.Fe2O3/YSZ-γ-Al2O3催化剂在甲烷催化燃烧中的催化性能研究[J],高等学校化学学报,2003,24(12):2235-2238
    [100]李然家,余长春,代小平等,以晶格氧为氧源的甲烷部分氧化制合成气[J],催化学报,2002,23(4):381-387
    [101]何方,熔融盐循环热载体无烟燃烧技术的基础研究,昆明:昆明理工大学博士论文,2005
    [102]Imamura S, Shono M, Okamoto N, et al. Effect of cerium on the mobility of oxygen on manganese oxides[J], Applied Catalysis General,1996,142(2):279-288
    [103]Hasegawa S, Yasuda K, Mase T. Surface active sites for dehydrogenation reaction of isopropanol on manganese dioxide[J], J Catal,1977.46:125-131
    [i04]卢冠忠,汪仁.氧化铈在非贵金属氧化物催化剂中的作用[J],催化学报,1991,12(4):261-267
    [105]Xin J Y, Wang H, He F, et al. Thermodynamic and equilibrium composition analysis of using iron oxide as oxygen carrier in nonflame combustion technology. Journal of Natural Gas Chemistry.2005,14:248.
    [106]李文兵,袁章福,刘建勋,等.含钛矿物加碳氯化反应的热力学分析[J],过程工程学报,2004,4(2);121
    [107]汪正范.色谱定性与定量[M]北京:化学工业出版社,2001
    [108]刘振海等.化学分析手册.第八分册:热分析[M]北京:化学工业出版社,2000
    [109]H X Dai, C.F Ng, C T Au. SrCl2-Promoted REOX (RE=Ce, Pr, Tb) Catalysts for the Selective Oxidation of Ethane:A Study on Performance and Defect Structures for Ethene Formation [J], Journal of Catalysis,2001,199(2):177-192
    [110]马红钦,谭欣,朱慧铭等.La1-xCexFeO3钙钛石高变催化剂的XPS研究[J],中国稀土学报,2003,21(4):445-448
    [111]Alifanti M, Baps B, Blangenois N, etal,[J], Chem Mater,2003,15(2):395-403
    [112]Wan H L, Zhou X P, Weng W Zh, etal. Catalytic performance, structure, surface properties and active oxygen species of the fluoride-containing rare earth (alkaline earth)-based catalysts for the oxidative coupling of methane and oxidative dehydrogenation of light alkanes[J], Catal Today,1999,51(1):161-175
    [113]王来来,吕士杰,马忠乾等.钙钛矿型稀土-过渡金属复合氧化物催化剂的稳定性及XPS研究[J],分子催化,1993,7(4):317-322
    [114]杨向光,刘社田,叶兴凯等.复合氧化物LaMn1-xFexO3(x=0-1)的XPS研究,物理化学学报,1995,11(8):681-687
    [115]H. C. Yao, Y. F. Yu Yao. Ceria in automotive exhaust catalysts Ⅰ oxygen storage [J]. J. Catal.,1984,86(2):254-265
    [116]Susana Larrondo, Maria Adelina Vidal, Beatriz Irigoyen, Preparation and characterization of Ce/Zr mixed oxides and their use as catalysts for the direct oxidation of dry CH4 [J]. Catal Today,2005,107-108:53
    [117]Radu Craciun, Brian Nentwick, Konstantin Hadjiivanov, et al. Structure and redox properties of MnOx/Yttrium-stabilized zirconia(YSZ) catalyst and its used in CO and CH4 oxidation,2003,243(1):67-79
    [118]徐秀峰,索掌怀,李大力等.MnOx/Al2O3、MnOx/BaO-Al2O3催化剂的制备、表征及其对甲烷低温燃烧的催化活性[J],分子催化,2001,15(4):259-262
    [119]刘成文,罗来涛,赵旭.Cel_XEuxOy固溶体的制备及甲烷燃烧催化性能研究[J],中国稀土学报,2006,24(4):429-433
    [120]Hong Lv, Heng-yong Tu, Bin-yuan Zhao, et al. Synthesis and electrochemical behavior of Ce1-xFexO2-δ as a possible SOFC anode materials[J]. Solid State Ionics 2007,177:3467-3472
    [121]Apostolescu N, Geiger B, Hizbullah K, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Appl. Catal B:Environ,2006, 62(1-2):104-114
    [122]Alessandro Trovarelli, Catalytic Properties of Ceria and CeO2-Containing Materials[J]. Catal. Rev,1996,38:439-520
    [123]Tetsuya Ozaki, Toshiyuki Masui, Ken-ichi Machida, Redox Behavior of Surface-Modified CeO2-ZrO2 Catalysts by Chemical Filing Process[J] Chem. Mater. 2000,12,643-649
    [124]Sirichaipraserta K, Luengnaruemitchaib A, Pongstabodeea S. Selective oxidation of CO to CO2 over Cu-Ce-Fe-O composite-oxide catalyst in hydrogen feed stream [J]. Int. J. Hydrogen Energy,2007,32:915-926.
    [125]Hofstad K H, Hoebink J H B J, Holmen A, et al. Partial oxidation of methane to syngas over rhodium catalysts [J]. Catal. Today,1998,40:157-170
    [126]Kang Z C, Eyring L. Lattice oxygen transfer in fluorite-type oxides containing Ce, Pr, and/or Tb [J]. J. Solid State Chem.,2000,155:129-137
    [127]Kang Z C, Eyring L, Hydrogen production from methane and water by lattice oxygen transfer with Ceo.7Zr0.25Tb0.05O2-x [J]. J.Alloys Compd.,2001,323:97-101
    [128]Sadykov V A, Kuznetsova T G, Alikina G M, et al. Ceria-based fluorite-like oxide solid solutions as catalysts of methane selective oxidation into syngas by the lattice oxygen:synthesis, Characterization and performance [J]. Catal. Today,2004, 93-95:45-53
    [129]Sadykov V A, Lunin V, Kuznetsova T, et al. Methane selective oxidation into syngas by the lattice oxygen in ceria-based solid electrolytes promoted by Pt[J]. The 7th Natural gas conversion VII. Dalian Shi,2004,241-246
    [130]Fang He, Hua Wang and Yongnian Dai. Application of Fe2O3/Al2O3 Composite Particles as Oxygen Carrier of Chemical Looping Combustion[J]. Journal of Natural Gas Chemistry,2007,16:155-161
    [131]Yun Guo, Guanzhong Lu, Zhigang Zhang, etal. Preparation of CexZr1-xO2 (x=0.75, 0.62) solid solution and its application in Pd-only three-way catalysts [J]. Catalysis Today,2007,126:296-302
    [132]Msakuni Ozawa, Mareo Kimura, Akio Isogai. The application of Ce-Zr oxide solid solution to oxygen storage promoters in automotive catalysts [J]. Journal of Alloys and Compounds,1993,193(1-2):73-75
    [133]Murota T, Hasegawa T, Aozasa S, et al. Production method of cerium oxide with high storage capacity of oxygen and its mechanism [J]. Journal of Alloys and Compounds,1993,193(1-2):298-299
    [134]H. Vidal, J. Kaspar, M. Pijolat, etal. Redox behavior of CeO2-ZrO2 mixed oxides:I. Influence of redox treatments on high surface area catalysts[J]., Applied Catalysis B: Environmental,2000,27:49-63
    [135]Jose'I. Gutie'rrez-Ortiz, Beatriz de Rivas, Rube'n Lo pez-Fonseca, Juan R. Gonzalez-Velasco. Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions [J]. Applied Catalysis B:Environmental,2006,65:191-200
    [136]Eleonora Aneggi, Carla de Leitenburg, Giuliano Dolcetti, etal. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2[J]. Catalysis Today,2006,114:40-47
    [137]Baohua Yue, Renxian Zhou, Yuejuan Wang. Influence of transition metals (Cr, Mn, Fe, Co and Ni) on the methane combustion over Pd/Ce-Zr/Al2O3catalyst[J]. Applied Surface Science,2006,252:5820-5828
    [138]郑育英,黄慧民,邓淑华等.水热法制备高纯超细Ce02-ZrO2复合氧化物[J],无机化学学报,2005,21(8):1227-1230
    [139]田久英,卢菊生,杜百祥.制备方法对CexZrl-xO2固溶体结构及性能的影响[J],稀土,2006,27(4):26-29
    [140]Sonia Letichevsky, Claudio A. Tellez, Roberto R. Obtaining CeO2-ZrO2 mixed oxides by coprecipitation role of preparation conditions[J]. Appl. Catal. B:Environ,2005,58: 203-210
    [141]Fornasiero P, Balducci G, Di Monte R, Kaspar J, Sergo V, Gubitosa G, Ferrero A, Graziani M. Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2 [J]. J. Catal.1996,164:173
    [142]Lin Y S, Chang C H, R Gopalan. Improvement of thermal stability of porous nanostructured ceramic membrane [J]. Ind Eng Chem Res,1994,33:860
    [143]Boaro M, Vicario M, Carla de L, Dolcetti G, Trovarelli A. The use of temperature-programmed and dynamic/transient methods in catalysis; characterization of ceria-based, model three-way catalysts [J], Catal Taday,2003,77(4):407-417
    [144]SONG Hong-en. Thermobalance[M]. Beijing, Metrology Book Concern,1985(in Chinese)
    [145]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985
    [146]陆昌伟,奚同庚.热分析质谱法[M].上海:上海科学技术文献出版社,2002
    [147]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001
    [148]陈文胜,吴强.利用热重法(TG)确定煤的活化能[J],黑龙江科技学院学报,2005(5):269-271
    [149]Cumming John W. Reactivity assessment of coals via a weighted mean activation energy[J]. Fuel,1984,63:1437
    [150]华一新编著.冶金过程动力学[M].冶金工业出版社,北京,2004
    [151]Prettre m, Eichner Ch, Perrin M, Trans Faraday Soc,1946,15:429
    [152]A.T.Ashcroft, A.K. Cheetham, J.S.Foord, etal, Partial oxidation of methane to syngas using carbon dioxide[J], Nature,1991,352(6332):225-226;
    [153]Dissanayake D, Rosynek M P, et al, Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst [J] J Catal,1991,132:117-127
    [154]Hickman D A, Schmidt L D. Production of syngas by direct catalytic oxidation of methane[J], Scinece,1993,259:343-352;
    [155]Rongchao Jin, Yanxin Chen, Wenzhao Li, etal, Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalyst[J], Applied Catalysis A:General,2000,201 (1):71-80
    [156]Yaoqiang Chen, Changwei Hu, Maochu Gong, etal. Chemisorption of methane over Ni/A12O3 catalysts,[J], Journal of Molecular Catalysis A:Chemical,2000,152:237-244
    [157]沈师孔,李春义,余长春.Ni/Al2O3催化剂上甲烷部分氧化制合成气反应机理[J],催化学报,1998,19(4):309-314
    [158]李春义,余长春,沈师孔.Ni/Al2O3催化剂表面状态对CH4氧化反应的影响[J],物理化学学报,1999,15(12):1098-1104
    [159]Yong Lu, Jinzhen Xue, Changchun Yu, etal Mechanistic investigations on the partial oxidation of methane to syngas over a nickel-on-alumina catalyst[J], Applied Catalysis A:General,1998,174:121-128
    [160]N.N.Nichio, M.L.Casella, G.F.Santori, etal, Stability promotion of Ni/α-Al2O3 catalysts by added via surface organometallic chemistry on metals Application in methane reforming processes[J], Catalysis Today,2000,62:231-240
    [161]徐占林,毕颖丽,甄开吉等.六铝酸盐CaMAl11O19-δ催化二氧化碳重整甲烷制取合成气研究[J],石油与天然气化工,1999,28(4):234~236
    [162]Hei M J, Chen H B, Yi J, etal, CO2-reforming of methane on transition metal surfaces[J], Surface Science,1998,417(1):82-96
    [163]I.Toyoshima and G.A.Somorjai,Heats of chemisorption of O2,H2,CO,CO2,and N2 on polycrystalline and single crystal transition metal surfaces,[J],Catal.Rev.,1979,19 (1):105-159
    [164]傅利勇,谢卫国,吕绍洁等.CH4,C02,和O2制合成气反应中载体对催化剂积炭性能的影响[J],中国科学(B辑),2000,30(1):84-89
    [165]E. Odier, Y. Schuurman, C. Mirodatos. Non-stationary catalytic cracking of methane over ceria-based catalysts:Mechanistic approach and catalyst optimization [J]. Catalysis Today,2007,127:230-237.
    [166]TuwKorts. Hydrocarbon formation from methane by alow temperature two-step reaction sequence[J], Catal,1992,138:101-114
    [167]谢刚.熔融盐理论与应用[M].北京:冶金工业出版社,1998:6-40
    [168]吴耀明,苏明忠,杜森林.‘化工进展[J].1995(5):5-9
    [169]M. Raugei, S. Bargigli, S. Ulgiati. A multi-criteria life cycle assessment of molten carbonate fuel cells (MCFC)-a comparison to natural gas turbines [J]. International Journal of Hydrogen Energy,2005,30:123-130,
    [170]M. Lusardi, B. Bosio, E. Arato. An example of innovative application in fuel cell system development:CO2 segregation using Molten Carbonate Fuel Cells [J]. Journal of Power Sources,2004,131:351-360
    [171]Jun Matsunami, Shinya Yoshida, Yoshinori Oku, et al. Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization[J]. Solar Energy,2000, 68(3):257-261
    [172]Gong Jin, Hiroyuki Iwaki, Norio Arai, et al. study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts [J], Energy,2005, 30:1192-1203
    [173]Nobuyuki Gokon, Yoshinori Oku, Hiroshi Kaneko, et al. Methane reforming with CO2 in molten salt using FeO catalyst[J], Solar Energy,2002,72(3):243-250
    [174]Jiajian Peng, Youquan Deng, Direct catalytic conversion of methane in molten salt medium system under mild conditions [J], Applied Catalysis,2000,201:L155-L157
    [175]Satoshi Shimano, Shukuji Asakura, The redox combustion of carbon mono-xide for recovering pure carbon dioxide by using molten (Na+,K+)2(CO2-3,SO2-4) mixtures[J]. Chemosphere 2006,63:1641-1647
    [176]He Fang, Wang Hua,Dai Yongnian, Thermodynamic Analysis and Experi-mental Investigation into Nonflame Combustion Technology with Thermal Cyclic Carrier [J], CHEM.RES.CHINESE U 2004,20(5):612-616
    [177]敖先权,王华,魏永刚.熔融碱金属碳酸盐特性及其在能源转化技术中的应用[J].化工进展,2007,26(10):1384-1390
    [178]辛嘉余,王华,何方等.几种碳酸盐熔融体的粘度计算[J].工业加热,2006,35(1):22-24
    [179]Atul Sheth, Yaw D. Yeboah, Anuradha et al, Catalytic gasification of coal using eutectic salts:reaction kinetics with binary and ternary eutectic catalysts[J]. Fuel. 2003,82(3):305-317
    [180]Douglas W. McKee, Clifford L. Spiro, Philip G. Kosky. Eutectic salt catalysts for graphite and coal char gasification[J] Fuel.1985,64(6):805-809
    [181]白宗庆,陈皓侃,李文等.甲烷在活性炭上裂解制氢研究[J],燃料化学学报,2006,34(1):66-70
    [182]白宗庆,陈皓侃,李文等.流化床中甲烷在活性炭上裂解制氢研究[J],天然气化工,2006,31(1):1-4
    [183]Huhn F, Klein J, Jiintgen H. Investigations on the alkali-catalysed'steam gasification of coal:kinetics and interactions of alkali catalyst with carbon[J]. Fuel,1983, 62(2):196-199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700