用户名: 密码: 验证码:
酶—卟啉复合体系构建及其传感作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机磷化合物(organophosphorus compounds, OPs)不仅在农业生产中,被广泛应用于杀虫剂和除草剂,还可在军事中用作化学战剂,对生态环境、人身和社会安全构成了严重威胁。传统的检测手段虽然定量准确、灵敏度高,但分析设备多属于大型仪器,价格昂贵,需要专业人员操作,难于满足预防和控制突发事故的需要。因此,农残检测、现实反恐等迫切需要一种灵敏度高、选择性好、小巧、轻便、价格低廉、便于大规模使用的检测手段实现对微痕量OPs快速、灵敏、准确的检测,才能切实保障环境、社会和人身安全。鉴于此,本论文着重研究了植物酯酶-卟啉新型复合敏感材料的制备与筛选,深入研究了其与OPs的作用机理,为最终构建出一种新型的酶-卟啉复合膜阵列式传感系统奠定基础。具体开展的研究工作如下:
     (1)在传统双水相萃取技术的基础上,系统性研究了萃取过程参数(如双水相类型、成相盐、PEG分子量及浓度、系统pH值、中性盐的选择等)对植物酯酶分配行为的影响,开发出一种适于植物酯酶纯化的两步萃取法。第一步萃取中,采用27% PEG1000/ 13% NaH2PO4双水相体系,植物酯酶的纯化因子(PF)和产率(Y)分别为5.26和85.08%。再进行第二步萃取,其体系组成为27% PEG1000/ 13% NaH2PO4/ 6.0% (NH4)2SO4。经过两步萃取后,PF和Y分别达到18.46和83.16%。经过这种方法所得的植物酯酶的纯化倍数是传统盐析法的4.8倍。通过透析法将纯化酶中的(NH4)2SO4去除后,经冷冻干燥最终得到粉末状的植物酯酶纯酶制品。
     (2)以毒性较低的有机磷毒剂模拟剂甲基磷酸二甲酯(dimethyl methyl phosphonate,DMMP)为研究对象,利用紫外-可见吸收光谱,筛选了具有DMMP敏感性的植物酯酶-卟啉复合材料。结果表明,在所研究的复合材料中,对DMMP灵敏度最高的是植物酯酶-H_2TPPS_1(22380.95),其灵敏度远远高于其他任何材料。其次为植物酯酶-CoTPPCl(1318.30),最差的是植物酯酶-CuTPP(0.94×10~(-6))。将植物酯酶-卟啉复合材料所得的灵敏度与卟啉单独检测时的灵敏度进行对比知,将卟啉与植物酯酶相复合后,除了CuTPP外,其他材料的灵敏度均有很大幅度的提高,其中效果最为突出的是H_2TPPS_1,其灵敏度提高了3.42×10~6倍。因此,经过筛选,植物酯酶-H_2TPPS_1、植物酯酶-CoTPPCl、植物酯酶-ZnTPP、植物酯酶-FeTPPCl和植物酯酶-EuTPPCl等五种复合材料可以作为候选材料,用于构建对有机磷毒剂具有高灵敏度的生物传感器。
     (3)为阐明植物酯酶-卟啉复合敏感材料的检测机理,结合酶反应动力学、荧光光谱、UV-Vis吸收光谱等手段,进一步深入研究了卟啉-植物酯酶-OPs相互作用关系。结果表明,H_2TPPS_1和DMMP都是植物酯酶的竞争性抑制剂。它们与底物竞争结合酶的活性部位,影响底物与酶的正常结合。但H_2TPPS_1和DMMP对植物酯酶的抑制常数ki不同,k_(i(H_2TPPS_1)) > k_(i(DMMP))。DMMP与植物酯酶之间的亲和力要大于H_2TPPS_1。因此,当用H_2TPPS_1-植物酯酶复合材料检测DMMP时,DMMP会将H_2TPPS_1从卟啉-植物酯酶复合物上置换下来,引起420 nm处吸收峰的降低,从而实现DMMP的光谱检测。
     (4)采用戊二醛交联法,在玻片基材上制备了固定化植物酯酶-H_2TPPS_1纳米传感膜。结果表明,H_2TPPS_1与固定化植物酯酶作用后会在422 nm处形成一特征峰。把固定化植物酯酶-H_2TPPS_1表面暴露于DMMP中,由于DMMP可以把卟啉从酶的活性位点上置换下来,引起422 nm处吸光度的降低。并且,在DMMP浓度低于9×10~(-7) M的范围内,422 nm处吸光度的变化与DMMP的浓度线性相关。该膜材的纳米结构增加了其对DMMP的敏感性,降低了检测限,使其可以检测浓度低至的4.5×10~(-10) M DMMP。
Organophosphorus compounds (OPs) have been not only used as pesticides and herbicides in current agriculture, but also used as chemical warfare agents, becoming a serious threat to ecological environment, personal and social security. While traditional detecting methods have very high sensitivity, reliability and precision, they require expensive laboratory instrumentation, highly trained personnel and time-consuming analysis. These techniques are unsuitable for rapid warning and field analysis. Therefore, rapid, sensitive, and precise detection of OPs in the environment, public places or workplaces become increasingly important for homeland security and environment monitoring. In this thesis, the study was focused on the preparation and selection of plant-esterase-porphyrin complex. The interaction of the complex with OPs was also investigated to construct a new sensor array system integrating plant-esterase-porphyrin film array finally. Researches were carried out as follows:
     (1) Purification of plant-esterase in an aqueous two-phase system (ATPS) was investigated. The effect of various process parameters such as the type of ATPS, the phase-forming salt, the molecular weight and concentration of PEG, the system pH, and the types and concentrations of neutral salts on partitioning of plant-esterase were evaluated. Using 27% PEG1000/ 13% NaH2PO4, and 27% PEG1000/ 13% NaH2PO4/ 6.0% (NH4)2SO4, plant-esterase was purified by a two-step extraction. Compared to the results obtained with the conventional salting-out method, this method had a comparable yield (83.16% versus the original yield of 80%), but produced plant-esterase that was 4.8 times as pure (18.46-fold). Integrating dialysis into the aqueous two-phase extraction removed (NH4)2SO4 from the purified plant-esterase. Finally, plant-esterase was freeze-dried to convert the product to powder.
     (2) Plant-esterase-porphyrin complexes sensitive for dimethyl methylphosphonate (DMMP), a simulant for organophosphorus agents, were selected with UV-Vis spectroscopy. The results showed that plant-esterase-H_2TPPS_1 had the highest sensitivity of 22380.95. The sensitivity of the plant-esterase-CoTPPCl, EuTPPCl, ZnTPP and FeTPPCl complex was 1318.3, 0.61, 0.17 and 0.05, respectively. Plant-esterase-CuTPP complex has the lowest sensitivity (0.94×10~(-6)). Compared to that got with the porphyrins only, the sensitivity was increased except plant-esterase-CuTPP. Especially for plant-esterase-H_2TPPS_1, the sensitivity was significantly increased by 3.42×10~6. Therefore, five complexes, plant-esterase- H_2TPPS_1, CoTPPCl, EuTPPCl, ZnTPP and FeTPPCl, were selected as sensing material of biosensor for detection of organophosphorus agents.
     (3) To evaluate the mechanism of detection with plant-esterase-porphyrin complexes, the interaction of porphyrin-plant-esterase-OPs were investigated by the combination of UV-Vis absorption spectroscopy, fluorescence spectroscopy and enzyme kinetics methods. It was found that both H_2TPPS_1 and DMMP were competitive inhibitors of plant-esterase. They bind to plant-esterase at the active site, just like the substrate. However, DMMP exhibites higher inhibition potency than H_2TPPS_1 (k_(i(H_2TPPS_1)) > k_(i(DMMP))). Therefore, the addition of DMMP to the performed plant-esterase-H_2TPPS_1 complex resulted in a loss of the 420 nm absorbance band as the porphyrin was displaced from plant-esterase.
     (4) A novel sensing nano-film immobilized plant-esterase-H_2TPPS_1 was prepared for the detection of DMMP. The results showed that the interaction of H_2TPPS_1 with immobilized plant-esterase yielded a characteristic peak at 422 nm. Exposure of the immobilized plant-esterase-H_2TPPS_1 surface to DMMP resulted in a decrease in absorbance intensity at 422 nm due to the displacement of the porphyrin from the active site by DMMP. The nano-structure of the film had a good effect on its sensitivity to DMMP and lowered the detection limit. The loss in absorbance intensity at 422 nm was linearly dependent on DMMP concentration below 9×10-7 M. DMMP concentration as low as 4.5×10~(-10) M can be detected by the sensing nano-film.
引文
[1]姜北,卢泽勤.有机磷化合物的构效关系[J].广西化工, 1997, 26 (2): 20-26.
    [2] Zhihua Ying, Yadong Jiang, Xiaosong Du, Guangzhong Xie, Junsheng Yu, Hua Wang. PVDF coated quartz crystal microbalance sensor for DMMP vapor detection[J]. Sensors and Actuators B, 2007, 125 (1): 167-172.
    [3] A.L. Simonian, T.A. Good, S.-S. Wang, J.R. Wild. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides[J]. Analytica Chimica Acta, 2005, 534 (1): 69-77.
    [4] Yongde Yue, Rong Zhang, Wei Fan, Feng Tang. High-performance thin-layer chromatographic analysis of selected organophosphorous pesticide residues in tea[J]. Journal of AOAC International, 2008, 91 (5): 1210-1217.
    [5] Luca Campone, Anna Lisa Piccinelli, Conny ?stman, Luca Rastrelli. Determination of organophosphorous flame retardants in fish tissues by matrix solid-phase dispersion and gas chromatography[J]. Analytical and Bioanalytical Chemistry, 2010, 397 (2): 799-806.
    [6] Melinda Gyenge, Huba Kalász, George A. Petroianu, Rudolf Laufer, Kamil Kuca, Kornélia Tekes. Measure of K-27, an oxime-type cholinesterase reactivator by high-performance liquid chromatography with electrochemical detection from different biological samples[J]. Journal of Chromatography A, 2007, 1161 (1-2): 146-151.
    [7] C. Cháfer-Pericás, R. Herráez-Hernández, P. Campíns-Falcó. In-tube solid-phase microextraction-capillary liquid chromatography as a solution for the screening analysis of organophosphorus pesticides in untreated environmental water samples[J]. Journal of Chromatography A, 2007, 1141 (1): 10-21.
    [8] W. David Vermillion, Michael D. Crenshaw. In-line respeciation: an ion-exchange ion chromatographic method applied to the separation of degradation products of chemical warfare nerve agents in soil[J]. Journal of Chromatography A, 1997, 770 (1-2): 253-260.
    [9] Lin-Juan Qu, Hui Zhang, Jian-Hua Zhu, Guo-Sheng Yang, Hassan Y. Aboul-Enein. Rapid determination of organophosphorous pesticides in leeks by gas chromatography-triple quadrupole mass spectrometry[J]. Food Chemistry, 2010, 122 (1): 327-332.
    [10] Rosario Rodil, JoséBenito Quintana. Purificación López-Mahía, Soledad Muniategui-Lorenzo, Darío Prada-Rodríguez. Multi-residue analytical method for the determination ofemerging pollutants in water by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216 (14): 2958-2969.
    [11] E.K. Janghel, M. K. Rai, V. K. Gupta, J. K. Rai. Trace spectrophotometric determination of dichlorvos using diphenyl semicarbazide (DPC) in environmental and agricultural samples[J]. Journal of the Chinese Chemical Societry, 2007, 54 (2): 345-350.
    [12] Arjun S. Bangalore, Jack C. Demirgian, Amrit S. Boparai, Gary W. Small. Effect of spectral resolution on pattern recognition analysis using passive Fourier transform infrared sensor data[J]. Applied Spectroscopy, 1999, 53 (11): 1382-1391.
    [13] Nelli Taranenko, Jean-Pierre Alarie, David L. Stokes, Tuan Vo-Dinh. Surface-enhanced Raman detection of nerve agent simulant (DMMP and DIMP) vapor on electrochemically prepared silver oxide substrates[J]. Journal of Raman Spectroscopy, 1996, 27 (5): 379-384.
    [14] Leland C. Clark. Monitor and control of blood and tissue oxygen tension[J]. Tansactions-American Society for Artifical Internal Organs, 1956, 2 (1): 41-46.
    [15] Leland C. Clark, Champ Lyons. Electrode system for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of Sciences, 1962, 102: 29-45.
    [16] Paul Giang, S. Hall. Enzymatic determination of organic phosphorus insecticides[J]. Analytical Chemistry, 1951, 23 (12): 1830-1834.
    [17] Macro Mascini, Danila Moscone. Amperometric acetylcholine and choline sensors with immobilized enzymes[J]. Analytica Chimica Acta, 1986, 179: 439-444.
    [18] Ruth Tor, Amihay Freeman. New enzyme membrane for enzyme electrodes[J]. Analytical Chemistry, 1986, 58 (6): 1042-1046.
    [19] Masao Gotoh, Eilchi Tamiya, Mariko Momoi, Yasuo Kagawa, Isao Karube. Acetylcholine sensor based on ion sensitive field effect transistor and acetylcholine receptor[J]. Analytical Letters, 1987, 20 (6): 857-870.
    [20] A. Brecht, G. Gauglitz. Optical probes and transducers[J]. Biosensors and Bioelectronics, 1995, 10 (9-10): 923-936.
    [21]胡晓燕.有机磷农药对植物酯酶的抑制及应用研究[J].浙江工业大学硕士学位论文, 2009.
    [22] Reinaldo T. Delfino, Tatiana S. Ribeiro, JoséD. Figueroa-Villar. Organophosphorus compounds as chemical warfare agents: a review[J]. Journal of the Brazilian Chemical Society, 2009, 20 (3): 407-428.
    [23] Jinzhong Zhang, Aimin Luo, Ping Liu, Shaping Wei, Guomin Wang, Shiqiang Wei. Detection of organophosphorus pesticides using potentiometric enzymatic membrane biosensor based on methylcellulose immobilization[J]. Analytical Sciences, 2009, 25 (4): 511-515.
    [24] Aviad Hai, Deborah Ben-Haim, Nina Korbakov, Ariel Cohen, Joseph Shappir, Ruthi Oren. Acetylcholinesterase-ISFET based system for the detection of acetylcholine and acetylcholinesterase inhibitors[J]. Biosensors and Bioelectronics, 2006, 22 (5): 605-612.
    [25] C. Ristori, C. Del Carlo, M. Martin, A. Barbaro, A. Ancarani. Potentiometric detection of pesticides in water samples[J]. Analytica Chimica Acta, 1996, 325 (3): 151-160.
    [26] John C. Fernando, Kim R. Rogers, Nabil A. Anis, James J. Valdes, Roy G. Thompson, Amira T. Eldefrawi, et al. Rapid detection of anticholinesterase insecticides by a reusable light addressable potentiometric biosensor[J]. Journal of Agricultural and Food Chemistry, 1993, 41 (3): 511-516.
    [27] Kim R. Rogers, Marlene Foley, Stephen Alter, Philip Koga, Mohyee Eldefrawi. Light addressable potentiometric biosensor for the detection of anticholinesterases[J]. Analytical Letters, 1991, 24 (2): 191-198.
    [28] Madalina P. Bucur, Andrei F. Danet, Jean-Louis Marty. Improvement of detection limits of acetylcholinesterase based biosensors using an enzyme extract of drosophila melanogaster[J]. Revista de Chime, 2006, 57 (8): 785-789.
    [29] Nikolay A. Pchelintsev, Paul A. Millner. A novel procedure for rapid surface functionalisation and mediator loading of screen-printed carbon electrodes[J]. Analytica Chimica Acta, 612 (2): 190-197.
    [30] F. Ricci, G. Palleschi. Sensor and biosensor preparation, optimization and applications of Prussian Blue modified electrodes[J]. Biosensors and Bioelectronics, 2005, 21 (3): 389-407.
    [31]刘润,郝玉翠,康天放.基于碳纳米管修饰电极检测有机磷农药的生物传感器[J].分析试验室, 2007, 26 (9): 9-12.
    [32] Haode Chen, Xiaolei Zuo, Shao Su, Zhuzhao Tang, Aibo Wu, Shiping Song, et al. An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetylcholinesterase activity[J]. Analyst, 2008, 133 (9): 1182-1186.
    [33] Wei Zhao, Peiyu Ge, Jingjuan Xu, Hongyuan Chen. Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase-inhibition biosensor[J]. Environmental Science & Technology, 2009, 43 (17): 6724-6729.
    [34] Ning Gan, Xin Yang, Donghua Xie, Yuanzhao Wu, Weigang Wen. A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode[J]. Sensors, 2010, 10 (1): 625-638.
    [35]黄志勇,袁园,吕禹泽.蔬菜中有机磷农药残留的两种酶抑制快速检测方法的比较研究[J].食品科学, 2003, 24 (8): 135-137.
    [36]侯明迪.植物酯酶法快速测定有机磷农药残留的研究[J].食品科学, 2002, 23 (7): 111-115.
    [37]栾崇林,马文石,汪军.植物酯酶法检测有机磷农药残留量研究[J].分析试验室, 2006, 25 (9): 103-106.
    [38]温艳霞,李建科,张晓敏,许娟.植物酯酶法检测有机磷农药的敏感性和检测限的研究[J].食品科学, 2006, 27 (9): 186-188.
    [39]李改茹,晋卫军.金属钯/铂卟啉室温燐光探针在生物医学领域的应用研究[J].分析化学, 2002, 30 (12): 1515-1520.
    [40]胡静,吕凤婷,房喻.光学薄膜氧气传感器研究进展[J].化学研究与应用, 2007, 19 (5): 487-464.
    [41] K. Kalyanasundaram. In photochemistry of polypyridine and porphyrin complexes[M]. New York: Academic Press, 1992.
    [42] Yutaka Amao, Ichiro Okura. Optical oxygen sensor devices using metalloporphyrins[J]. Journal of Porphyrins and Phthalocyanines, 2009, 13 (11): 1111-1122.
    [43] Yutaka Amao, Keisuke Asai, Tokuji Miyashita, Ichiro Okura. Photophysical and photochemical properties of optical oxygen pressure sensor of platinum porphyrin-isobutylmethacrylate-trifluoroethylmethacrylate copolymer film[J]. Polymer Journal, 1999, 31 (12): 1267-1269.
    [44] Yutaka Amao, Tokuji Miyashita, Ichiro Okura. Optical oxygen detection based on luminescence change of metalloporphyrins immobilized in poly(isobutylmethacrylate-co-trifluoroethylmethacrylate) film[J]. Analytica Chimica Acta, 2000, 421 (2): 167-174.
    [45] Yutaka Amao, Keisuke Asai, Tokuji Miyashita, Ichiro Okura. Novel optical oxygen pressure sensing materials: Platinum porphyrin-styrene-trifluoroethylmethacrylate copolymer film[J]. Chemistry Letters, 1999, 28 (10): 1031-1032.
    [46] Yutaka Amao, Tokuji Miyashita, Ichiro Okura. Metalloporphyrins immobilized in styrene-trifluoroethyl-methacrylate copolymer film as an optical oxygen sensing probe[J]. Journal of Porphyrins and Phthalocyanines, 2001, 5 (5): 433-438.
    [47] Yutaka Amao, Keisuke Asai, Tokuji Miyashita, Ichiro Okura. Novel optical oxygen sensing material: platinum porphyrin-styrene-pentafluorostyrene copolymer film[J]. Analytical Communications, 1999, 36 (11-12): 367-369.
    [48] Yutaka Amao, Tokuji Miyashita, Ichiro Okura. Optical oxygen sensing based on the luminescence change of metalloporphyrins immobilized in styrene-pentafluorostyrene copolymer film[J]. Analyst, 2000, 125 (5): 871-875.
    [49] Yutaka Amao, Keisuke Asai, Ichiro Okura, Hiromi Shinohara, Hiroyuki Nishide. Platinum porphyrin embedded in poly(1-trimethylsilyl-1-propyne) film as an optical sensor for trace analysis of oxygen[J]. Analyst, 2000, 125 (11): 1911-1914.
    [50] Yutaka Amao, Ichiro Okura, Hiromi Shinohara, Hiroyuki Nishide. An optical sensing material for trace analysis of oxygen: Metalloporphyrin dispersed in poly(1-trimethylsilyl-1-propyne) film[J]. Polymer Journal, 2002, 34 (6): 411-417.
    [51] Gaetano DiMarco, Maurizio Lanza. Optical solid-state oxygen sensors using metalloporphyrin complexes immobilized in suitable polymeric matrices[J]. Sensors and Actuators B, 2000, 63 (1-2): 42-48.
    [52] Chen-Shane Chu, Yu-Lung Lo. High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes[J]. Sensors and Actuators B, 2007, 124 (2): 376-382.
    [53] Heru Supriyatno, Masahiro Yamashita, Katsuhiko Nakagawa, Yoshihiko Sadaoka. Optochemical sensor for HCl gas based on tetraphenylporphyrin dispersed in styrene-acrylate copolymers: Effects of glass transition temperature of matrix on HCl detection[J]. Sensors and Actuators B, 2002, 85 (3): 191-300.
    [54] Yoshiteru Itagaki, Katsuyuki Deki, Shun-Ich Nakashima, Yoshihiko Sadaoka. Development of porphyrin dispersed sol-gel films as HCl sensitive optochemical gas sensor[J]. Sensors and Actuators B, 2006, 117 (1): 302-307.
    [55] Alan D.F. Dunbar, Tim H. Richardson, Jordan Hutchinson, Chris A. Hunter. Langmuir-Schaefer films of five different free base tetraphenylporphyrins for optical-based gas sensing of NO2[J]. Sensors and Actuators B, 2008, 128 (2): 468-481.
    [56]侯长军,段玉娟,霍丹群,任桂香.卟啉传感器检测挥发性有机化合物的研究进展[J].传感器与微系统, 2008, 27 (7): 1-4.
    [57] Alan D.F. Dunbar, Tim H. Richardson, Alex J. McNaughton, Ashley Cadby, Jordan Hutchinson, Chris A. Hunter, et al. Optical changes induced in Zn porphyrin solutions and LB films by exposure to amines[J]. Journal of Porphyrins and Phthalocyanines, 2006, 10 (7): 978-985.
    [58] S. Carturan, M. Tonezzer, A. Quaranta, G. Maggioni, M. Buffa, R. Milan. Optical properties of free-base tetraphenylporphyrin embedded in fluorinated polyimides and their ethanol and water vapours sensing capabilities[J]. Sensors and Actuators B, 2009, 137 (1): 281-290.
    [59] J. Spadavecchia, R. Rella, P. Siciliano, M.G. Manera, A. Alimelli, R. Paolesse, et al. Optochemical vapour detection using spin coated thin film of ZnTPP[J]. Sensors and Actuators B, 2006, 115 (1): 12-16.
    [60] Corrado Di Natale, Danio Salimbeni, Roberto Paolesse, Antonella Macagnano, Arnaldo D′Amico. Porphyrins-based opto-electronic nose for volatile compounds detection[J]. Sensors and Actuators B, 2000, 65 (1-3): 220-226.
    [61] J.A.J. Brunink, C. Di Natale, F. Bungaro, F.A.M. Davide, A. D′Amico, R. Paolesse, et al. The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors[J]. Analytica Chimica Acta, 1996, 325 (1-2): 53-64.
    [62] Martin Gouterman. Study of the effects of substitution on the absorption spectra of porphin[J]. The Journal of Chemical Physics, 1959, 30 (5): 1139-1161.
    [63] Brandy J. Johnson, Brian J. Melde, Cassandra Thomas, Anthony P. Malanoski, Iwona A. Leska, Paul T. Charles, et al. Fluorescent silicate materials for the detection of paraoxon[J]. Sensors, 2010, 10 (3): 2315-2331.
    [64] Huantian Cao, Jinhee Nam, H. James Harmon, Donna H. Branson. Spectrophotometric detection of organophosphate diazinon by porphyrin solution and porphyrin-dye cotton fabric[J]. Dyes and Pigments, 2007, 74 (1): 176-180.
    [65]朱隆懿,孙羽,王倩,吴师.金属卟啉对杂环及DNA分子识别的研究进展[J].有机化学, 2009, 29 (11): 1700-1707.
    [66] Milan Balaz, Klaus Bitsch-Jensen, Angela Mammana, George A. Ellestad, Koji Nakanishi, Nina Berova. Porphyrins as spectroscopic sensors for conformational studies of DNA[J]. Pure and Applied Chemistry, 2007, 79 (4): 801-809.
    [67] H. James Harmon. Spectroscopic determination of acetylcholine esterase-inhibitor complex: Determination of conformational shifts of proteins[J]. Biosensors and Bioelectronics, 2001, 16 (9-12): 1035-1041.
    [68] Krishna Persaud, George Dodd. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose[J]. Nature, 1982, 299: 352-355.
    [69] Julian W. Gardner, Philip N. Bartlett. A brief history of electronic noses[J]. Sensors and Actuators B, 1994, 18 (1-3): 210-211.
    [70] Fredrik Winquist, Peter Wide, Ingemar Lundst?m. An electronic tongue based on voltammetry[J]. Analytica Chimica Acta, 1997, 357 (1-2): 21-31.
    [71] Eyal Capua, Roberto Cao, Chaim N. Sukenik, Ron Naaman. Detection of triacetone trperoxide (TATP) with an array of sensors based on non-specific interactions[J]. Sensors and Actuators B, 2009, 140 (1): 122-127.
    [72] Bartosz Wyszynski, Takamichi Nakamoto. Linking biological and artificial olfaction: biomimetic quartz crystal microbalance odor sensors[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4 (3): 334-338.
    [73] H.C. Hao, K.T. Tang, P.H. Ku, J.S. Chao, C.H. Li, C.M. Yang, et al. Development of a portable electronic nose based on chemical surface acoustic wave array with multiplexed oscillator and readout electronics[J]. Sensors and Actuators B, 2009, 146 (2): 545-553.
    [74]朱婧,彭承琳,张锦华,黄戎.压电传感器及其在生物医学中的应用研究[J].医疗卫生装备, 2006, 27 (7): 27-29.
    [75] Carlos Martinez-Hipatl, Severino Munoz-Aguirre, Georgina Beltran-Perez, Juan Castillo-Mixcoatl, Javier Rivera-De la Rosa. Detection of volatile organic compounds by an interferometric sensor[J]. Sensors and Actuators B, 2010, 147 (1): 37-42.
    [76] Cesar Elosua, Candido Barian, Ignacio R. Matias, Francisco J. Arregui, Elena Vergara, Mariano Laguna. Optical fiber sensing devices based on organic vapor indicators towards sensor array implementation[J]. Sensors and Actuators B, 2009, 137 (1): 139-146.
    [77] A. ?etkus, A. Olekas, D. Senulien?, M. Falasconi, M. Pardo, G. Sberveglieri. Analysis of the dynamic features of metal oxide sensors in response to SPME fiber gas release[J]. Sensors and Actuators B, 2010, 146 (2): 539-544.
    [78]张强,管自生.电阻式半导体气体传感器[J].仪表技术与传感器, 2006, (7): 6-9.
    [79] A.D. Wilson, D.G. Lester, C.S. Oberle. Application of conductive polymer analysis for wood and woody plant identifications[J]. Forest Ecology and Management, 2005, 209 (3): 207-224.
    [80]温艳霞,兰文礼,李建科.大豆酯酶的分离、纯化及性质研究[J].食品科学, 2008, 29 (5): 292-294.
    [81]周艳明,刘丹,胡睿,鄂巍,汪霞,李湘宁,等.有机磷农残检测用植物酯酶的分离纯化及酶学性质的研究[J].食品科技, 2008, 33 (3):52-56.
    [82]周艳利,李建科.农残检测用大豆酯酶同工酶的分离及特性研究[J].中国粮油学报, 2008, 23 (6): 72-75.
    [83]翁霞,孟玲,刘长江.用于农药残留测定的植物酯酶部分纯化的研究[J].化学与生物工程, 2006, 23 (2): 22-24.
    [84] Radoslaw Dembczyriski, Wojciech Bialas, Krzysztof Regulski, Tomasz Jankowski. Lysozyme extraction from hen egg white in an aqueous two-phase system composed of ethylene oxide-propylene oxide thermoseparating copolymer and potassium phosphate[J]. Process Biochemistry, 2010, 45 (3): 369-374.
    [85] Radhouane Kammoun, Hichem Chouayekh, Hajeur Abid, Belgacem Naili,Samir Bejar. Purification of CBS 819.72α-amylase by aqueous two-phase systems: Modelling using responsed surface methodology[J]. Biochemical Engineering Journal, 2009, 46 (3): 306-312.
    [86] H.S.C. Barbosa, A.V. Hine, S. Brocchini, N.K.H. Slater, J.C. Marcos. Dual affinity method for plasmid DNA purification in aqueous two-phase systems[J]. Journal of Chromatography A, 2010, 1217 (9): 1429-1436.
    [87] K. Van Asperen. A study of house fly esterase by means of a sensitive colorimetric method[J]. Journal of Insect Physiology, 1962, 8 (4):401-414.
    [88] Marion M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72 (1-2):248–254.
    [89] Murray P. Deutscher. Methods in enzymology: guide to protein purification[M]. New York: Academic Press, 1990.
    [90] Marco Rito-Palomares, Miguel Hernandez. Influence of system and process parameters on partitioning of cheese whey proteins in aqueous two phase systems[J]. Journal of Chromatography B, 1998, 711 (1-2):81–90.
    [91] T. T. Franco, A. T. Andrews, J. A. Asenjo. Conservative chemical modification of proteins to study the effects of a single protein property on partitioning in aqueous two-phase systems[J]. Biotechnology and Bioengineering, 1996, 49 (3):290–299.
    [92] T. Arakawa, L. O. Narhi. Solvent modulation in hydrophobic interaction chromatography[J]. Biotechnology and Applied Biochemistry, 1991, 13 (2): 151–172.
    [93] Reh G, Nerli B, Pico G. Isolation of alpha-1-antitrypsin from human plasma by partitioning in aqueous biphasic systems of polyethyleneglycol-phosphate[J]. Journal of Chromatography B, 2002, 780 (2): 389–396.
    [94] M. Isabel Del-Val, Cristina Otero. Biphasic aqueous media containing polyethylene glycol for the enzymatic synthesis of oligosaccharides from lactose[J]. Enzyme and Microbial Technology, 2003, 33 (1):118–126.
    [95] O. Cascone, B. A. Andrews, J. A. Asenjo. Partitioning and purification of thaumatinin aqueous two-phase systems[J]. Enzyme and Microbial Technology, 1991, 13 (8): 629–635.
    [96] Daniel Pereira da Silva, Marcela Zanella Ribeiro Pontes, Maria Aparecida de Souza, Michele Vitolo, Jo?o Batista de Silva, Adalberto Pessoa-Junior. Influence of pH on the partition of glucose-6-phosphate dehydrogenase and hexokinase in aqueous two-phase system[J]. Brazilian Journal of Microbioly, 2002, 33: 196–201.
    [97]胡佳,杜晓松,谢光忠,应智花,刘忠祥,蒋亚东.测定DMMP的PMPS-QC M传感器的研究[J].传感技术学报, 2008, 21 (1): 1-4.
    [98] Wenqi Zheng, Ning Shan, Lianxiang Yu, Xingqiao Wang. UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins[J]. Dyes and Pigments, 20087, 77 (1): 153-157.
    [99] Yinghui Zhang, Dongming Chen, Tianjing He, Fanchen Liu. Raman and infrared spectral study of meso-sulfonatophenyl substituted porphyrins (TPPSn, n=1, 2A, 2O, 3, 4)[J]. Spectrochimica Acta Part A, 2003, 59 (1): 87-101.
    [100] Danqun Huo, Limin Yang, Changjun Hou, Huanbao Fa, Xiaogang Luo, Yi Lu, et al. Molecular interactions of monosulfonate tetraphenylporphyrin (TPPS1) and meso-tetra(4-sulfonatophenyl) porphyrin (TPPS) with dimethyl methylphosphonate (DMMP)[J]. Spectrochimica Acta Part A, 2009, 74 (2): 336-343.
    [101] Bong Ho Lee, Min Bae Park, Byung Soo Yu. Inhibition of electric eel acetylcholinesterase by porphin compounds[J]. Bioorganic & Medicinal Chemistry Letters, 1998, 8 (12): 1467-1470.
    [102] Brandy J. White, H. James Harmon. Interaction of monosulfonate tetraphenyl porphyrin, a competitive inhibitor, with acetylcholinesterase[J]. Biosensors and Bioelectronics, 2002, 17 (6-7): 463-469.
    [103] Shampa Chatterjee, T. S Srivastava. Spectral investigations of the interaction of some porphyrins with bovine serum albumin[J]. Journal of Porphyrins and Phthalocyanines, 2000, 4 (2): 147-157.
    [104] Yaheng Zhang, Ying Li, Lijun Dong, Jiazhong Li, Wenying He, Xingguo Chen, et al. Investigation of the interaction between naringin and human serum albumin[J]. Journal of Molecular Structure, 2008, 875 (1-3): 1-8.
    [105] Wenying He, Ying Li, Hongzong Si, Yuming Dong, Fenling Sheng, Xiaojun Yao, et al. Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin[J]. Journal of Photochemistry and Photobiology A, 2006, 182 (2): 158-167.
    [106] Neelam Seedher, Sonu Bhatia. Reversible binding of celecoxib and valdecoxib with human serum albumin using fluorescence spectroscopic technique[J]. Pharmacological Research, 2006, 54 (2): 77-84.
    [107] Ranjan Kumar Nanda, Nilmoni Sarkar, Rintu Banerjee. Probing the interaction of ellagic acid with human serum albumin: A fluorescence spectroscopic study[J]. Journal of Photochemistry and Photobiology A, 2007, 192 (2-3): 152-158.
    [108] Maurice R. Eftink, Camillo A. Ghiron. Fluorescence quenching studies with proteins[J]. Analytical Biochemistry, 1981, 114 (2): 199-227.
    [109] Joseph R. Lakowcz, Gregorio Weber. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules[J]. Biochemistry, 1973, 12 (21): 4161-4170.
    [110] J. B. F. Lloyd, I. W. Evett. Prediction of peak wavelengths and intensities in synchronously excited fluorescence emission spectra[J]. Analytical Chemistry, 1977, 49 (13): 1710-1715.
    [111]朱铿,童沈阳.荧光黄与蛋白质相互作用的研究[J].高等学校化学学报, 196, 17 (4): 539-542.
    [112] E. A. Burstein, N. S. Vedenkina, M. N. Ivkova. Fluorescence and the location of tryptophan residues in protein molecules[J]. Photochemistry and Photobiology, 1973, 18 (4): 263-279.
    [113] Pavel Kubát, Kamil Lang, Pavel Anzenbacher. Modulation of porphyrin binding to serum albumin by pH[J]. Biochimica et Biophysica Acta, 2004, 1670 (1): 40-48.
    [114] Yanjun Hu, Yi Liu, Jiabo Wang, Xiaohe Xiao, Songsheng Qu. Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36 (4): 915-919.
    [115] Yanjun Hu, Yi Liu, Ruming Zhao, Jiaxin Dong, Songsheng Qu. Spectroscopic studies on the interaction between methylene blue and bovine serum albumin[J]. Journal of Photochemistry and Photobiology A, 2006, 179 (3): 324-329.
    [116] Philip D. Ross, S. Subramanian. Thermodynamics of protein association reactions: forces contributing to stability[J]. Biochemistry, 1981, 20 (11): 3096-3102.
    [117] William DeW. Horrocks, William E. Collier. Lanthanide ion luminescence probes. Mearsurement of distance between intrinsic protein fluorescences and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium(III) in the calcium-binding protein parvalbumin[J]. Journal of the American Chemical Society, 1981, 103 (10): 2856-2862.
    [118] Larry A. Sklar, Bruce S. Hudson, Robert D. Simoni. Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrance studies[J]. Biochemistry, 1977, 16 (5): 819-828.
    [119] Atif Mahammed, Harry B. Gray, Jeremy J. Weaver, Karn Sorasaenee, Zeev Gross. Amphiphilic corroles bind tightly to human serum albumin[J]. Bioconjugate Chemistry, 2004, 15 (4): 738-746.
    [120] Bernard Valeur, Jean-Claude Brochon. New trends in fluorescence spectroscopy[M]. Berlin: Springer Press, 1999.
    [121] Wenying He, Ying Li, Chunxia Xue, Zhide Hu, Xingguo Chen, Fenling Sheng. Effect of Chinese medicine alpinetin on the structure of human serum albumin[J]. Bioorganic & Medicinal Chemistry, 2005, 13 (5): 1837-1845.
    [122]张国文,王安萍,蒋婷,阙青民.荧光光谱法研究橙皮苷与牛血清白蛋白相互作用特征[J].分析试验室, 2008, 27 (1): 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700