用户名: 密码: 验证码:
金刚石线锯切割半导体陶瓷的机理与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体工业的飞速发展,单晶硅、砷化镓和碳化硅等半导体陶瓷材料在此领域得到广泛应用。现代微处理器和其他逻辑芯片的制备要求不断提高,一方面,为了增大芯片产量,降低单元制造成本,要求半导体材料切片的直径不断增大;另一方面,为了提高集成电路(Integrated Circuit,简称IC)的集成度,要求半导体材料切片的刻线宽度越来越细,这对单晶硅和砷化镓等半导体陶瓷材料的切片技术提出了新的要求。
     切片是制造IC的一道重要工序。为解决大直径晶体,如单晶硅和砷化镓等的切片问题,本文研究了往复式金刚石线锯切片技术。该技术具有切缝窄、锯切效率高、切片质量好、对环境污染小、能加工大直径工件和超硬材料等优点。通过对这一切片技术进行深入系统的理论分析和试验研究,揭示了加工工艺参数与加工质量之间的关系,对工艺参数进行了正交优化,获得了最佳工艺参数,为半导体陶瓷材料的高质量、高效切片提供了科学依据和技术支撑。本文完成的主要工作和取得的成果如下:
     (1)对金刚石线锯切割机理进行了研究
     建立了金刚石线锯切割模型,研究了金刚石线锯切割的材料去除过程,通过压痕实验研究了单晶硅在室温状态下硬度和裂纹的产生、扩展及特征,获得了脆塑转变的临界压头压入深度值d c,结合能量脆塑转变理论获得了金刚石线锯切割过程的脆塑转变的临界切深公式。
     (2)对金刚石线锯切割过程中锯丝振动、断裂进行了研究,分析了锯丝振动、断裂与工艺参数之间的关系,为确定试验工艺参数范围提供了判定依据
     建立了锯丝振动模型,研究了工艺参数(锯丝线速度,工件进给速度和锯丝张紧力)和锯丝振动之间的关系;分析了锯丝断裂的原因,研究了工艺参数与锯丝断裂之间的关系,获得了锯丝防断裂的条件;根据锯丝振动、断裂与工艺参数之间的关系,为确定试验工艺参数范围提供了判定依据。
     (3)对金刚石线锯切割单晶硅和砷化镓的工艺进行了研究
     以锯丝线速度、工件进给速度和锯丝张紧力为考虑因素,以砷化镓和单晶硅为切割材料,设计并进行了一系列单因素试验,研究了加工工艺参数对砷化镓和单晶硅切片表面质量的影响,获得了加工工艺参数对表面质量的影响规律;运用Taguchi法对加工工艺参数进行了正交优化,对正交优化的结果进行了分析处理,获得了最佳工艺参数;运用离差分析法,分析了加工工艺参数对目标质量特征参数的影响,获得了加工工艺参数对表面质量的影响程度,对加工工艺参数选择具有指导作用。
     (4)对使用不同切削液的加工表面质量进行了研究
     将加速剂引入金刚石线锯切片加工中,对比分析了使用普通切削液(水)与加速剂后切片的表面质量,试验证明,加速剂的引入大大提高了切片的表面质量;通过对不同配比的加速剂进行金刚石线锯切片试验研究,获得了加速剂溶液的最佳配比参数,为加速剂在金刚石线锯切片加工中的使用提供了技术支持;结合加速剂溶液的物理化学特性以及金刚石线锯切片实验结果,分析了加速剂的作用。
     (5)对金刚石线锯切割过程以及切片表面三维形貌进行了仿真研究
     对单颗磨粒的切割进行了仿真研究,模拟了单颗磨粒的切割过程,分析了切割表面的形貌以及裂纹和损伤。通过研究锯丝磨粒的分布,建立了锯丝模型,对切片表面三维形貌进行了仿真研究,获得了不同加工工艺参数下表面粗糙度的仿真值以及加工参数对表面粗糙度的影响规律,其规律与试验所获得规律一致。
     (6)对金刚石线锯切割表面损伤层进行了研究
     采用X射线衍射仪以及逐层腐蚀法对砷化镓和单晶硅切片表面进行损伤层检测,获得了不同加工工艺参数下的表面损伤层厚度,研究了加工工艺参数对切片的表面损伤层厚度的影响,并获得了加工工艺参数对切片表面损伤层厚度的影响规律。将已测得的不同加工工艺参数下的表面损伤层厚度为样本,对神经网络进行训练学习,建立了BP神经网络的预测模型,实现了对表面损伤层厚度的预测。
With the development of semiconductor industry, semiconductor ceramic material such as single silicon, gallium arsenide and silicon carbide, etc, is extensive used in this field. On one hand, for increasing the yield of chips and decreasing the cost of every unit, the chips’diameter increases continuously; on the other hand, the reticule width becomes thinner to increase the integration level of Integrated Circuit, which meet the requirements of modern chips and other logic chips. These new situations put forward new requirements to the manufacturing technology of single silicon. The slicing is an important process for manufacturing Integrated Circuit. This paper researched the slicing technology of fixed abrasive wire, which has the advantages including narrow cutting kerfs, high cutting efficiency, good slicing quality, little environmental pollution, processing ability for large diameter work piece and super hard material. The relationship between processing parameters and processing quality was revealed by deep and systematic experimental research and theoretical analysis for this slicing technology, the measures to obtain high process quality was put forward, which provided scientific basis and technical support to semiconductor ceramic material's high quality and efficient slicing. The main work is as follows:
     (1)Slicing mechanism of fixed diamond wire saw was studied.
     The hardness of single silicon and the cracks' generation, extension and characteristics at normal temperature was studied by Vickers hardness tester. The slicing mechanism was researched binding experiment results.
     (2)The relationships between the vibration, fracture of the wire saw and the process
     parameters were researched, and the process parameters’scope was defined. The effect factors of wire sawing process were analyzed, the wire saw's vibration model was built and the relationship between process parameters, including linear velocity of wire saw, the work piece feed rate and the tension force, and vibration of wire saw was studied. The fracture of wire saw, such as formation cause, the relationship with process parameters and the conditions to form was researched. All of the above initially defined the process parameters' scope for the experimental study.
     (3)The process for slicing single silicon and gallium arsenide by fixed diamond wire saw was studied.
     A single factor experiment for slicing single silicon and gallium arsenide was designed and carried on, which used linear velocity of wire saw, the work piece feed rate and the tension force as the factors. The effects of the process parameters to the surface quality of single silicon and gallium arsenide was researched based on this experiment. An orthogonal test was designed by Taguchi method, through which an orthogonal optimum for process parameters was made. Influence of characteristic parameters of surface quality and process parameters was analyzed, based on which the best process parameters' scope was defined.
     (4)The working mechanism of cutting fluid was revealed by analyzing and contrasting different cutting fluid.
     The accelerator was introduced into the cutting process. The cutting surface quality under different situations such as the water and the accelerator was compared. The evidence showed that the accelerator can improve the surface quality greatly than the water. The ratio of the accelerator was researched, and the best ratio was got.
     (5)The simulation study of the slicing process and 3-D surface topography was carried on.
     Simulation study of single abrasive slicing single silicon was made, which simulated the slicing process of single abrasive, chip shape and crack damages on the surface of single silicon was analyzed. The wire saw model was built though the study of saw abrasive's distribution; the simulation study of 3D topography of the slicing surface was carried on, from which the simulation value of surface roughness could be obtained.
     (6)The damage layer of slicing was researched.
     The damage layer of slicing surface for the single silicon and gallium arsenide was detected by X-ray diffractometer, by which thickness of surface damage layer under different process parameters was obtained and the influence between process parameters and the thickness of surface damage layer was studied; the thickness of surface damage layer was predicted by neuron algorithm.
引文
[1]种宝春.内圆切片机张力对切片质量的影响[J].电子工业专用设备, 2002, 31(3):156-158.
    [2]樊瑞新,卢焕明.线切割单晶硅表面损伤的研究[J].材料科学与工程, 1999, 17(2):55-57.
    [3]康仁科,田业冰,郭东明等.大直径硅片超精密磨削技术的研究与应用现状[J].金刚石与磨料磨具工程, 2003, (4):13-18.
    [4]吴明明,周兆忠,巫少龙.单晶硅片的制造技术[J].机械加工与自动化,2004, (5):7-9.
    [5]陈秀芳,李娟,马德营等.金刚石线锯切割大直径单晶[J].功能材料,2005,36(10): 1575-1577.
    [6] H. Mech. Machine and method for cutting brittle materials using a reciprocating cutting wire [P]. US Patent: 3831576, 1974.
    [7] H. Mech. Machine for cutting brittle materials [P]. US Patent: 3841297, 1974.
    [8] W. Ebner. Applications of a new diamond wire saw [J]. Technical, 1976, 25(12):833.
    [9] J. R. Anderson. Wire saw for low damage low kerfs loss wafering [C]. Fourteenth IEEE Photovoltaic Specialists Conference, 1980:309-311.
    [10] S. Ito, R. Murata. Study on machining characteristics of diamond abrasive wire [J]. Journal of Mechanical Engineering Lab, 1987, 41(5):236-244.
    [11] H. Tokura, S. Nakayama, M. Yoshikawa. Cutting performance of diamond planted wire tools [J]. Journal of Japan Society of Precision Engineering, 1992, 58(12):2013-2018.
    [12] Kao. I; Prasad. V; Chiang. F.P; Bhagavat. M, et al. Modeling and experiments on wiresaw for large silicon wafer manufacturing [J]. Silicon Materials Science and Technology, 1998, (1):607-618.
    [13] J. Li, I. Kao, V. Prasad. Modeling stresses of contacts in wire saw slicing of polycrystalline and crystalline ingots: Application to silicon wafer production [J]. ASME Journal of Electronic Packaging, 1998, (120):123-128.
    [14] M. Bhagavat, I. Kao. Computational model for free abrasive machining of brittle silicon using a wiresaw [J]. ASME Design Engineering Division, 1999, DE-104:21-30.
    [15] M. Bhagavat, V. Prasad, I. Kao. Elastic-hydrodynamic interaction in the free abrasive from wafer slicing using a wiresaw: modeling and finite element analysis [J]. ASME Journal of Tribology, 2000, 122(2): 394-404.
    [16] Sahoo. R. K., V. Prasad, I. Kao, etc. Towards an integrated approach for analysis and design of wafer slicing by a wire saw [J]. ASME Journal of Electronic Packaging, 1998, (120): 35-40.
    [17] H. Suwabe, K. Ishikawa, A. Kitajima. A study on slurry actions and slicing characteristics of multi-wire-saw [J]. Proceedings of ASPE, 2001, (25): 477-480.
    [18] K. Ishikawa, H. Suwabe, S. Itoh, et al. A basic study on behavior of slurry actions at multi-wire-saw [J]. Proceedings of Advances in Abrasive Technology, 2002, (5): 89-92.
    [19] K. Ishikawa, H. Suwabe, S. Itoh. Study on slurry in slicing characteristics at multi-wire-saw [J]. Proceedings of ASPE, 2003, (30): 475-478.
    [20] S. Wei. High-resolution wafer surface topology measurement and vibration analysis in modern wiresaw manufacturing [D]. Ph D Dissertation, State University of New York, 2000.
    [21] H. Oishi, K. Asakawa, J. Matsuzaki, et al. Development of water-soluble coolant for multi-wire saw slicing of 400mm-diameter silicon [C]. 14th Annual Meeting of the American Society for Precision Engineering. Monterey, California, 1999.
    [22] M. A. Costantini, A. M. Caster. Decontamination and recovery of abrasive from wafer production [C]. 12th Annual National Technical Conference of American Filtration and Separation Society on Advancing Filtration and Separation Solutions for the Millennium. Boston, Massachusetts, 1999.
    [23] S. Nishijima, Y. Izumi, S. Takeda, etc. Recycling of abrasives from wasted slurry by superconducting magnetic separation [J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 1596-1599.
    [24]孟剑锋.环形电镀金刚石线锯加工技术及加工质量研究[D]. [博士学位论文],山东:山东大学, 2006
    [25]周锐.环形电镀金刚石线锯在陶瓷材料中的应用[D]. [硕士学位论文],山东:山东大学, 2005
    [26]闫占辉.硅晶片超精密加工的研究现状[J].半导体技术,2005, 30(11):31-34
    [27] M. Kojima, J. Tomisawa. Development of high precise and efficient slicing technology by using unidirectional multi-wire-saw [J]. Journal of Japan Society of Precision Engineering, 1990, 56(6): 1052-1055.
    [28] Sumitomi Metal Industries [P], Ltd. US Patent: 5455382.
    [29] M. Tasaka, T. Aihara. Heat transfer and press drop characteristics of very compact heat sinks for LSI [C]. Proc.49th National Congress of Italian Thermo technical Association. International Session, 1994:2097-2100.
    [30] Kojima. Multi-wire saw for cutting silicon [J]. Sumitomo Search, 1993, (52):228-230.
    [31] Masayasu Kojima. Development of wire-sawing technology for manufacturing compact heat sinks for VLSI Paekages [J]. Journal of japan Soeiety of Preeision Engineering.1998,32(2):90-97.
    [32] Willeke G P. Thin crystalline silicon solar cells [J] . Solar Energy Materials & Solar Cells , 2002 , 72:191-200.
    [33] L.Q. Zhu, I. Kao. Galerkin-based model analysis on the vibration of wire-slurry system in wafer slicing using a wiresaw [J]. Journal of Sound and.Vibration, 2005, (283): 589-620.
    [34] Hideo Takino , Toshimitsu Ichinohe, et al. Cutting of polished single-crystal silicon by wire electrical discharge machining [J].Precision Engineering , 2004, (8): 314-319
    [35] Hideo Takino , Toshimitsu Ichinohe, et al. High-quality cutting of polished single-crystal silicon by wire electrical discharge machining [J]. Precision Engineering 2005, (29):423-430
    [36] Okada A, Uno Y, Okamoto Y, et al. A New Slicing Method of Monocrystalline Silicon Ingot by WEDM [J]. International Journal of Electrical Machining, 2003, (8):21-26
    [37] W.Y. Peng, Y.S. Liao. Study of electrical discharge machining technology for slicing silicon ingots. [J]. Journal of Materials Processing Technology 2003, (140):274-279
    [38]刘志东汪炜等.单晶硅高速走丝电火花线切割试验研究[J]. 2008,40(6):758-762
    [39]汪炜刘志东等.低电阻率单晶硅电火花/电解复合切割加工表面完整性研究[J]. 2007, (6):6-9
    [40] Schmid F, Smith M B. Method and apparatus to produce a radial cut profile [P], US Patent No.5842462 (1998)
    [41] Schmid F, Smith M B, Khattak C P. Shaped blades [P], US Patent No.5438973 (1995)
    [42] Chiba Y, Tani Y, Enomoto T, Sato H. Devel opment of a High-Speed ManufacturingMethod for Electrop lated DiamondWire Tools [J]. Annals of the CIRP, 2003, 52(1): 28-284.
    [43] Toshiyuki Enomoto, Yutaka Shimazaki, Yasuhiro Tani, Mari Suzuki, Yuichi Kanda . Development of a Resinoid Wire Containing Metal Powder for Slicing a Silicon Ingot [J]. Annals of the CIRP, 1999, 48(1):273-276.
    [44] Sung CM. Brazed diamond grid a revolutionary design for diamond saws [J] , Diamond and related materials, 1999, (8):1540-1543.
    [45]郑嘉葳,左培伦.晶圆切割技术-固定磨粒钻石根据切割研究[J] ,机械工业快讯(台湾), 2005, (5): 37-41
    [46] Diamond wire saw. Cut Tool Eng, 1995, 59(12): 123.
    [47] T. Enomoto. Development of a Retinoid Diamond Wire Containing Metal Powder for Slicing a Slicing Ingot [J]. Annals of the CIRP, 1999, 48(1): 273-276.
    [48] M. Fujidawa, T. Oku. Precision sawing with wire saw [J]. Annals of the CIPP, 1983, 32(1): 87-90.
    [49] K. Ishikawa, H. Suwabe, K. kanayama, et al. Study on machining characteristics of wire tool with electrodeposited diamond grains [J]. Transactions of Japan Society of Mechanical Engineers, 1994, 60(573): 1815-1820.
    [50] H. Ogawa. Cutting performance of bonded abrasives type diamond wire saw [C]. Proceedings of Conference of JSGE, 1997:369-370.
    [51]孙建章,吕玉山,李艳杰.电镀金刚石长丝锯制造的实验研究[J].机械设计与制造, 1999, (6): 56-57.
    [52]葛培琪.固结磨料金刚石锯丝制造技术[J].金刚石与磨料磨具工程, 2006,156(6): 12, 13,27.
    [53]张凤林,袁慧等.硅片精密切割多线锯研究进展[J].金刚石与磨料磨具工程, 2006,156(6): 14-18.
    [54] W. I. Clark, A. J. Shih, C. W. Hardin, et al. Fixed abrasive diamond wire machining-partⅠ: process monitoring and wire tension force [J]. International Journal of Machine Tools and Manufacture, 2003, 43(5): 523-532.
    [55] W. I. Clark, A. J. Shih, R. L. Lemaster, et al. Fixed abrasive diamond wire machining-partⅡ: experiment design and results [J]. International Journal of Machine Tools and Manufacture, 2003, 43(5): 533-542.
    [56] J. Sugawara, H. Hara, A. Mizoguchi. Development of fixed-abrasive-grain wire saw with less cutting loss [J]. Science Technical Review, 2004, 58(7):7-10.
    [57]联邦德国Hecker und Koch公司.用金刚石线锯切割的机床[J]. Blech. Rohre Profile, 1989, 36(4): 348.
    [58]取访部仁.金刚石电镀环形金属线材工具的开发,焊接法及焊接接头的评价[J] .精密工学会志, 1993, 59(579):939-944.
    [59]高伟.环形电镀金刚石线锯的制造及其切割技术与机理的研究[D].济南:山东大学, 2002.
    [60]刘建国,刘昌英.环形固结金刚石线锯切割单晶硅与陶瓷的实验研究[J].现代制造技术与装备, 2006, (4):27-28,32
    [61] Craig W. Hardin,Jun Qu. Fixed Abrasive Diamond Wire Saw Slicing of Single Crystal Silicon Carbide Wafers [J]. Materials and Manufacturing Processes. 2004,19(2): 355-367
    [62] Z. J. Pei. A study on surface grinding of 300mm silicon wafers [J]. International Journal of Machine Tools and Manufacture, 2002, (42):385-393.
    [63]蒋民华.大尺寸优质SiC晶体生长及其应用进展[J].中国建材, 2003, (10):14.
    [64]刘力.砷化镓单晶生长技术进展迅速[N].中国有色金属报, 2006-3-4
    [65]李积和.大直径硅单晶材料的技术进展[N].科技日报(新材料周刊), 2003-5-9.
    [66] L.G. Zhao, D.W. Zuo, Y.L.Sun, Yu Li Sun.Progress of research in slicing technology oflarge-scale silicon wafers [J]. Key Engineering Material.2008(375-376):1-5
    [67] L.G. Zhao, D.W. Zuo, Y.L.Sun, M.Wang .The Analysis on the Stability of Diamond Wire Saw Cutting Process of the Silicon [J]. Key Engineering Material.2009(407-408): 684-689
    [68]魏听,杜宏伟,袁慧等.晶片材料的超精密加工技术现状[J].组合机床与自动化加工技术, 2004, (3):75-79.
    [69]刘志杰,郑安生.半导体材料[M].北京:化学工业出版社, 2004.
    [70] S. Malkin. Grinding technology: theory and application of machining with abrasive [J]. Ellis Horwood, Chichester, 1989.
    [71]陈明君,董申,张飞虎等.陶瓷材料的超精密磨削加工[J].工具技术, 1999, 33(9): 3-4.
    [72]李伯民,赵波等.实用磨削技术[M].北京:机械工业出版社, 1996.
    [73]任敬心.磨削原理[M].重庆:西南大学出版社, 1998.
    [74]陈明君,董申,李旦等.单晶硅脆性材料塑性域超精密磨削加工的研究[J].航空精密制造技术, 2000, 36(2): 8-11.
    [75] P. S. Pizani, R. Jasinevicuis. Ductile and brittle modes in single point diamond turning of silicon probed by Raman scattering [J]. Journal of materials Science Letters, 1999, (18): 1185-1187.
    [76]汪久根, Z. Rymuza.硅晶体纳米压痕实验与应力场分析[J].摩擦学学报, 2001, 21(6): 488-490.
    [77]罗熙淳,梁迎春,董申等.单晶硅纳米加工机理的分子动力学研究[J].航空精密制造技术, 2000, 36(3): 21-24.
    [78] M. Huerta, S. Malkin. Grinding of glass: the mechanics of the process [J]. American Society of Mechanical Engineers, 1975, (75): 9-12.
    [79] D. M. Pai, E. Patterman, M. C. Shaw. Grinding swarf Wear [J], 1989, 13(2): 329-339.
    [80] B. Zhang, H. Tokura, Yoshikawa. Study on surface cracking of alumina scratched by single-point diamonds [J]. Journal of Materials Science, 1988, (23): 3214-3224.
    [81] S. Malkin, T. W. Hunag. Grinding mechanisms of ceramics [J]. Annals of the CIRP, 1996, (45): 569-579.
    [82]陈明君,董申,李旦等.脆性材料超精密磨削时脆转变临界条件的研究[J].高技术通讯,2000,2:64-67
    [83]赵奕,周明,董申等.脆性材料塑性域超精密加工的现状[J].高技术通讯, 1999, 4:59-62,47
    [84]万珍平,刘亚俊,汤勇等.对称楔形压头作用下玻璃裂纹的产生及扩展规律[J].华南理工大学学报(自然科学版),2004, 32(7):65~69
    [85]许雪峰,彭伟,黄亦申等.硅片塑性方式电泳磨削试验研究[J].电加工. 1998, (4):30-33
    [86] Bifano T G, Dow T A, Scattergood R.O. Ductile-regime grinding. A new technology for machining brittle materials [J]. Journal of Engineering for Industry. 1991,113:184-189
    [87]陈明君,李旦,董申等.光学非球面器件塑性域的超精密加工方法[J].高技术通讯,2000,10:98-99, 97
    [88]孟剑峰,李剑峰,葛培琪等.脆性材料磨削模式与表面粗糙度[J].工具技术, 2004, 38(11):40-42
    [89]孟剑峰,李剑峰,孟磊.硬脆材料锯磨去除机理的研究[J].工具技术, 2004, 38(4):8-10
    [90]张景绘,王超.工程随机振动理论[M].西安:西安交通大学出版社, 1988.
    [91] J. A. WICKERT AND C. D. MOTE. Classical vibration analysis of axially moving continua [J]. ASME Journal of Applied Mechanics, 1990, (57):738-744.
    [92] J. A. WICKERT AND C. D. MOTE. Response and discretization methods for axially moving materials [J]. ASME Applied Mechanics Reviews, 1991, (44):738-744.
    [93] S. Wei, I. Kao. Vibration analysis of wire and frequency response in the modern wiresaw manufacturing process [J]. Journal of Sound and Vibration, 2000, 231(5): 1383-1395.
    [94]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社, 2004
    [95]李东升,杨德仁.单晶硅材料机械性能研究及进展[J].材料科学与工程, 2000, 18(3): 100-104.
    [96]峨嵋半导材料研究所译.砷化镓及其应用[M].北京:国防工业出版社, 1975
    [97]柯宏发,张耀辉,赵燕.工程陶瓷磨削表面粗糙度数学模型的研究[J].机械工程师, 1998, (4): 5-6.
    [98]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社, 2003
    [99]茆诗松,王金玉.田口思想及方法的研究[J].自然杂志,1991,14(3):163-169
    [100]李军.硬脆材料超精密加工关键技术研究[D]. [博士学位论文],北京:中国科学院, 2007
    [101]姜同川.正交试验设计[M].济南:山东科学技术出版社, 1985.
    [102]李人宪.有限元法基础[M].北京:国防工业出版社, 2002.
    [103]庄茁,张帆. Abaqus非线性有限元分析与实例[M].北京:科学出版社, 2005.
    [104]黄艾香,周天孝.有限元理论与方法[M].北京:科学出版社, 2009
    [105]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社, 2006
    [106]赵腾伦. ABAQUS 6.6在机械工程中的应用[M].北京:中国水利水电出版社, 2007
    [107]王金昌,陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006
    [108]罗华飞. MATLAB GUI设计学习手记[M].北京:北京航空航天大学出版社, 2009
    [109]王家文,李仰军. MATLAB 7.0图形图像处理[M].北京:国防工业出版社, 2006.
    [110]楼顺天,于卫,闰华梁.MATLAB程序设计语言[M].西安:西安电子科技大学出版社. 1997
    [111]张建中,杨传铮.晶体的射线衍射基础[M].南京:南京大学出版社, 1992.
    [112]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社, 1998.
    [113] Simon Haykin.神经网络与机器学习[M].北京:机械工业出版社, 2009.
    [114]哀曾任.人工神经元网络及应用[M],北京:清华大学出版社, 2000.
    [115]高隽.人工神经网络原理及仿真实例[M],北京:机械工业出版社, 2003.
    [116]飞思科技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社, 2005
    [117]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003, 65-68.
    [118]张立明.人工神经网络的模型及应用[M],复旦大学出版社, 1992.
    [119]阎平凡,张长水.人工神经网络与模拟进化计算[M].清华大学出版社, 2000.
    [120]闻新. MATLAB神经网络仿真与应用[M].北京:科学出版社, 2003
    [121]张德丰. MATLAB神经网络仿真与应用[M].北京:电子工业出版社, 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700