用户名: 密码: 验证码:
无轴承开关磁阻电机振动分析与抑制的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用磁轴承与电机定子结构的相似性,将磁轴承中用来提供径向悬浮力的悬浮绕组叠绕在开关磁阻电机定子上,就构成了同时具备驱动和磁悬浮支撑功能的无轴承开关磁阻电机。无轴承开关磁阻电机不仅拓宽了无轴承电机的理论和应用范围,继承和发挥了开关磁阻电机的高速适用特性及其对恶劣环境的适应性,而且由于其直接控制转子的径向位置,因而对由于不对称磁拉力而引起的定子振动和噪声问题有望起到抑制作用。
     本文以12/8结构的定子双绕组无轴承开关磁阻电机为研究对象,着重从定转子几何偏心、转子质量偏心以及控制方式等角度研究了其电磁振动。
     首先,在对前人成果深入研究的基础上,分析了无轴承开关磁阻电机的电磁力,改进了径向电磁力的数学模型。新模型不仅考虑了电机运行过程中的磁饱和以及转子的偏心位移,为电机运行状态的离线分析和电机的设计提供了更为可靠的理论依据;而且解决了以往模型不能用来计算单个定子极所受径向磁拉力的问题,为无轴承开关磁阻电机振动和噪声的预测和控制创造了条件。
     其次,由于电机运行时定转子偏心问题会导致单边磁拉力的出现,这会使开关磁阻电机本来就很严峻的振动和噪声问题更加恶化。本文基于定子周向振动理论和无轴承开关磁阻电机的径向力特点,通过Matlab/Simulink的系统仿真,分析了将无轴承技术引入开关磁阻电机后对不平衡径向力起到的补偿作用,指出无轴承开关磁阻电机较普通开关磁阻电机更适合于应用在要求低噪声的领域。
     接着,由于无轴承开关磁阻电机的旋转和悬浮是电机主绕组电流和悬浮绕组电流共同作用的结果,基于不同的控制策略计算出来的主绕组和悬浮绕组的磁势组合是不相同的,而绕组磁势的不同组合对定子极径向力及定子的振动有直接的影响,本文就从这个角度对现有的几种无轴承开关磁阻电机的控制策略进行了深入的分析。通过计算求得几种控制策略在不同转矩和径向负载情况下理想悬浮时的主绕组和悬浮绕组电流;并对其产生的径向力进行时域和频域分析;指出了利于减小定子振动的控制策略,为无轴承开关磁阻电机不同场合下控制策略的选择提供了依据;实验验证了理论分析的正确性。
     随后,针对由于机械不平衡等原因引起的转子质量偏心问题,本文采用基于最小均方(LMS)算法的自适应凹陷滤波器对转子质量不平衡带来的不平衡激振力进行了补偿。介绍了不平衡振动的产生和特点;详细介绍了自适应滤波器的原理及设计方法,分析了加入该滤波器后系统的稳定性,并对该方案进行了仿真分析及实验验证。
     最后,针对电机实际运行中存在的转子磁偏心情况,从电机本体的角度,研究了主绕组线圈在不同连接方式下转子偏心对气隙磁场和定子振动的影响。提出了利于减小无轴承开关磁阻电机振动和噪声的主绕组线圈联结方式。
Taking the advantage of the similarity of magnetic bearings and motor structure, Bearingless Switched Reluctance Motor (BSRM) concentrates the magnetic suspension winding used to provide radial suspension force in the traditional Switched Reluctance Motor’s (SRM’s) stator, which is capable of rotating and magnetic suspension supporting functions. BSRM not only expands the theory and application scope of bearingless motor, inherits and exerts the high-speed feature of Switched Reluctance Motor (SRM) and its adaptability to harsh environment, but also, by initially controlling the radial position of the rotor, provides a new approach to solve the vibration and noise problems caused by asymmetric magnetic pull.
     This paper takes the 12/8 structure dual-winding BSRM as the object of study, and researches the magnetic vibration from the aspect of stator/rotor geometric eccentricity, rotor mass eccentricity and the controlling mode.
     From the in-depth study upon the previous research results, the mathematical model of BSRM is improved in this paper. The new model not only considers the magnetic saturation and the rotor eccentricity displacement of the motor during the running process, which has provided a more trusty basis to analysis motor’s running state and to design the motor; but also solves the problem that previous models cannot be used to calculate the radial magnetic pull upon a single stator pole, which
     has laid the foundation for the prediction and control of vibration and noises in the BSRM. Secondly, as the unilateral magnetic pull is caused by the problem of stator eccentricity, the serious problem of vibration and noise becomes even worse. Based on theory of circumferential vibration and the characteristics of radial force in BSRM, by the system simulation based on Matlab/Simulink, this paper analyzed the compensation function upon the unbalanced radial force after introducing the bearingless technology into SRM, and points out that BSRM is more applicable in the field with low noise requirement.
     Then, as the rotation and suspension of BSRM is the result of motor main winding current and suspension winding current working together, the different combination of main winding and suspension winding will have direct impact upon the stator radial force and stator vibration. This paper makes an in-depth analysis from this aspect upon the several existing control strategies of the BSRMs. This paper calculates out the main winding and suspension winding currents when motor is ideal suspension with the several control strategies under different torque and radial load; it makes the analysis of time domain and frequency domain upon the generated radial force; it points out the control strategy for reducing the stator vibration, and lays the foundation for the choice of control strategies of BSRM under different situations. Experiments in this paper also verifies the theoretic analysis.
     Later, for the problem of rotor mass eccentricity caused by mechanical imbalance, in this paper, the adaptable filter based on Least-Mean-Square (LMS) algorithm is adopted to compensate the imbalanced radial force. It introduces the generation and features of imbalanced vibration, introduces in detail the theory and design of adaptable filter, analyzes the stability after introducing this filter, and makes the simulation and experiment verification of this plan.
     Finally, for the problem of rotor magnetic eccentricity existing in the actual running of rotor, this paper researches the impact of rotor eccentricity upon airgap magnetic field and stator vibration when the main winding is under different connections. It proposes the combination of main winding that can reduce the vibration and noises of bearingless reluctance motor.
引文
[1] R.Bosch, Development of a Bearingless Electric Motor, Proc. Int. Conf. Electric Machines (ICEM’88), Pisa, Italy, 1988: 373-375.
    [2] J.Bichsel, The Bearingless Electrical Machine, Proc. Int. Symp. Magn. Suspension. Technol. NASA Langley Res. Center, Hampton, 1991: 561-573.
    [3] T.Fukao, The Evolution of Motor Drive Technologies. Development of Bearingless Motors, Proceedings of the Third Power Electronics and Motion Control Conference(IPEMC 2000), Beijing, China, 2000: 33-38.
    [4] A.O.Salazar, A.Chiba, T.Fukao, A Review of Developments in Bearingless Motors, 7th Int. Symp. Magnetic Bearings, ETH Zurich, Switzerland, 2000: 335-340.
    [5] W.Amrhein, S.Silber, K.Nenninger, Developments on Bearingless Drive Technology, 8th Int. Symp. Magnetic Bearings, Japan, 2002: 229-234.
    [6] M.A.Rahaman, T.Fukao, T.Ohishi, Principles and Developments of Bearingless AC Motors, IPEC, Yokohama, Japan, 1995: 1334-1339.
    [7] P.K.Hermann. A radial active magnetic bearing. London Patent No.1 478 868, 20 Nov. 1973.
    [8] P.K.Hermann. A radial active magnetic bearing have a rotating drive. London Patent No.1 500 809, 9 Feb. 1974.
    [9] R.Sch?b,J.Bichsel.Vector control of the bearingless motor, Proc.4 Int. Sym. Magnetic Bearings, ETH Zurich,1994: 327-332.
    [10] O.Ichikawa, C.Michioka, A. Chiba, et al, A Decoupling Control Method of Radial Rotor Position In Synchronouse Reluctance Type Bearingless Motors, Proc. of 1995 International Power Electroncis Conference(IPEC-Yokohama), vol.1, 1995: 346-351.
    [11] C.Huettner, Nonlinear State Control of A Left Ventricular Assist Device(LVAD), 8th International Symposium on Magnetic Bearing, August 25-28, Japan, 2002: 489-494.
    [12] C.Huettner, R.Schoeb, Vibration Control for a Bearingless Slice Motor of an Implantable Blood Pump, 6th International Symposium on Magnetic Suspension Technology, August 25-28, 2001, Torino,Italy.
    [13] C.Hüttner, Regelungskonzepte magnetisch gelagerter Scheibenmotoren, [Ph.D Thesis] ,Zurich:ETH, 2003.
    [14] H.G.Reiter, Verbesserung der Fehlertoleranz lagerloser Elektromotoren, [Ph.D Theis], Zurich:ETH, 2001.
    [15] M.T.Bartholet, T.Nussbaumer, P.Dirnberger, et al, Novel Converter Concept for Bearingless Slice Motor Systems, Industry Applications Conference, 2006, Volume 5, 8-12 Oct, 2006: 2496-2502.
    [16] M.Neff, Magnetgelagertes Pumpsystem für die Halbleiterfertigung, [Ph.D Thesis], Zurich: ETH , 2003.
    [17] R.Schob, N.Barletta, Sensor Arrangement In an Electromagnetic Rotary Driver And a Method for the Operation of a Rotary Drive of This Kind, USA, US PATENT NO.6355998B1,1999.
    [18] R.Schob, N.Barletta, Method and Sensor Arrangement for The Determination of The Radial Position of A Permanent Magnetic Rotor, U.S.A, 310/68B, US6249067B1, Jun. 19,2001.
    [19] H. Grabner, W. Amrhein, S. Silber, et al, Nonlinear Feedback Control of Bearingless Slice Motors, 8th International Symposium On Magnetic Suspension Technology, September 26-28, 2005, Dresden, Germany:152-156.
    [20] H.Grabner, H.Bremer, W.Amrhein, et al. Radial Vibration Analysis of Bearingless Slice Motors, 9th International Symposium on Magnetic Bearingles, August 3-6, 2004, Lexington, Kentucky, USA.
    [21] K.Nenninger, W.Amrhein, S.Silber, Bearingless Single-Phase Motor With Fractional Pitch Windings.Seventh International Symp. on Magnetic Bearings, August 23-25, 2000, ETH Zurich: 371-376.
    [22] S.Silber, W.Amrhein, P.Bosch, et al. Design Aspects of Bearingless Slice Motors, IEEE/ASME Trans. On Mechatronics, 10(6), Dec. 2005: 611-617.
    [23] S.Silber,W.Amrhein, Bearingless Single-Phase Motor With Concentrated Full Pitch Windings In Exterior Rotor Design, Proc. ISMB-6 Cambridge, MA, USA, August 1998: 476-485.
    [24] S.Silber, W.Amrhein, et al. Power Optimal Current Control Scheme for Bearingless PM Motors, 7th International Symp. on Magnetic Bearings, August 26-28, 2002, Japan:71-76.
    [25] S.Silber, W. mrhein.Force and Torque Model For Bearingless PM Motors.International Power Electronics Conference 2000, Tokyo, Japan.
    [26] W.Gruber, W.Amrhein, Design of a Bearingless Segment Motor, 10th International Symposium on Magnetic Bearings, Aug. 21~23, 2006,Martigny, Switzerland.
    [27] W.Amrhein, S.Silber, K.Nenninger, et al.Development on Bearingless Drive Technology, 8th International Symposium on Magnetic Bearing, August 26-28, 2002, Mito, Japan.
    [28] W.Amrhein, S.Silber, K.Nenninger, Levitation Forces in Bearingless Permanent Magnet Motors, IEEE Trans on Magnetics, 35(5), September 1999: 4052-4054.
    [29] K.Nenninger, W.Amrhein, S.Silber,et al. Magnetic Circuit Design of A Bearingless Single-Phase Slice Motor. 8th International Symp. on Magnetic Bearings, August 26-28, 2002, Mito, Japan:265-270.
    [30] J.Cai, G.Henneberger, Radial Force of bearingless wound-rotor induction motor, In: 8th International Symposium on Magnetic Bearings, Mito, Japan, August 2002: 41-46.
    [31] D.Vydra, Bearingless Disc-Slice Motor,8th International Symposium On Magnetic Suspension Technology, September 26-28, 2005, Dresden, Germany:197-201.
    [32] B.Steele,L.Stephens, A Test Rig for Measuring Force and Torque Production in a Lorenz, Slotless Self Bearing Motor, ISMB, August 23-25,2000,ETH Zurich :407-412.
    [33] C.J.Gemmato, M.D.Forrester, T.J.Myers, et al. Thirty-Five Years of Mechanical Circulatory Support at the Texas Heart Institute, Mechanical Circulatory Support at THI, Volume 32, Number 2, 2005.
    [34] A.Chiba, D.T.Power and M.A.Rahman, Characteristics of a bearingless induction motor, IEEE Trans, Magnetics,1991,27(6):5199-5201.
    [35] A.Chiba, R.Furuichi, Y.Aikawa, et al. Stable operation of induction-type bearingless motors under loaded conditions, IEEE Trans, Industry Application,1997, 33(4):919-924.
    [36] A.Chiba, T.Deido, T.Fukao, et al. An Analysis of Bearingless AC Motors, IEEE Transactions on Energy Conversion, 9(1), March 1994:61-68.
    [37] A. Nakajima, T.Hoshino, K. Asami, et al. Small Bearingless Motor With 2-Axis Actively Controlled Flywheel, 8th International Symposium On Magnetic Suspension Technology, September 26-28, 2005, Dresden, Germany:143-146.
    [38] A.Chiba, T.Fukao, M.A.Rahman, Performance Characteristics and Parameter Identification for Inset Type Permanent Magnet Bearingless Motor Drive, Extended Summary for IEEE-PES Meeting at Denver-2004-Panel Session on High Speed Drive.
    [39] D.G.Dorrell, J.Amemiya, A.Chiba, et al. Analytical modelling of a Consequent-Pole Bearingless Permanent Magnet Motor. The Fifth International Conference On Power Electronics and Drive Systems, 2003. PEDS 2003. Volumel,17-20 Nov. 2003 Page(s): 247-252.
    [40] T.Takenaga, Y.Kubota, A.Chiba, et al. A principle and A Design of A Consequent-Pole Bearingless Motor. 8th International Symposium on Magnetic Bearing, August 26~28, 2002: 259-264.
    [41] J.Amemiya, A.Chiba, D.G.Dorrell, et al. Basic Characteristics of a Consequent-Pole-Type Bearingless Motor. IEEE Trans. On Magnetics, 41(1), Jan. 2005:82-89.
    [42] K.Asami, A.Chiba, M.A.Rahman, et al. Stiffness Analysis of a Magnetically Suspended Bearingless Motor With Permanent Magnet Passive Positioning, IEEE Trans. On Magnetics, 41(10):3820-3822.
    [43] K.Inagaki, A.Chiba, M.A.Rahman, T.Fukao, Performance Characteristics of Inset-Type Permanent Magnet Bearingless Motor Drives, PESWM,January 2000 Singapore: 23-27.
    [44] K.Oguri, M.Watada, S.Torii, D.Ebihara, Design Optimization of Magnetic Bearing Composed of Permanent Magnets for the Bearingless Motor. ISMR,August 23-25,2000,ETH Zurich:365-370.
    [45] M.Ooshima, A.Chiba, A.Rahman, T.Fukao, An Improved Control Method of Buried-Type IPM Bearingless Motors Considering Magnetic Saturation and Magnetic Pull Variation, IEEE Trans on Energy Converstion, 19(3), Sep. 2004: 569-574.
    [46] M.Takemoto, H.Suzuki, A.Chiba, T.Fukao and M.A.Rahman, Improved analysis of a bearingless switched reluctance motor, IEEE industry application meeting, 1999: 773-775.
    [47] M.Ooshima, S.Miyazawa, A.Chiba, F.Nakamura, T.Fukao, Performance Evaluation and Test Results of a 11,000r/m,4kW Surface-Mounted Permanent Magnet-Type Bearingless Motor, ISMB,August 23-25,2000,ETH Zurich :377-382.
    [48] M.Ooshima, A.Chiba, T.Fukao, et al.Design and Analysis of Permanent Magnet-Type Bearingless Motors, IEEE Trans on Industrial Electronics, 43(2), APRIL 1996: 292-299.
    [49] M.Ooshima, S.Miyazawa, Y.Shima, A.Chiba, F.Nakamura, T.Fukao, Increase in Radial Force of A Bearingless Motor with Buried Permanent Magnet-Type Rotor, Proc. of the Fourth International conference on MOVIC,vol.3, 1998:1077-1082.
    [50] K.Shimada, M.Takemoto, A.Chiba and T.Fukao, A stable rotation in switched reluctance type bearingless motors, IEEE Technical Meeting on Linear Drive,LD,1997:97-116.
    [51] N.Fujie, R.Yoshimatsu, A.Chiba, et al.A Decoupling Control Method of Buried Permanent Magnet Bearingless Motorsconsidering Magnetic Saturation, IPEC-Tokyo2000, S-10-6:395-400.
    [52] A.O.Salazar, A.Chiba ,T.Fukao, A Review of developments in the bearingless motors, Proc. 7th. Symp. Magnetic Bearings, Zurich, Switzerland, 2000: 335-340.
    [53] S.J.Kim, T.Shimonishi, H.Kanebako, et al. Design of A Hybrid-Type Short-Span Self-bearing Motor, 7th International Symp. on Magnetic Bearings, August 23-25, 2000, ETH Zurich:259-364.
    [54] D.G.Dorrell,M.Ooshima,A.Chiba.Force Analysis of a Buried Permanent-Magnet Bearingless Motor, Electric Machines and Drives Conference, 2003, IEMDC'03.
    [55] T.Ohishi, Y.Okada, K.Dejima, Analysis and Design of a Concentrated Wound Stator for Synchronous-Type Levitated Motor, Fourth Proc. ISMB. ETH Zurich, Aug.1994: 201-206.
    [56] Y.Okada, T.Shimonishi, S.J.Kim, et al. Development of Hybrid Type Self-bearing Slice Motor for Small and High Speed Rotary Machines, Industry Applications Conference, Chicago, IL, USA, 2001:2005-2012.
    [57] W.Baoguo, et al. Modeling and Analysis of Levitation Force Considering Air-gap Eccentricity in a Bearingless Induction Motor, Proc. of the fifth International Conference on Electrical Machine and Systems, 2001: 934-937.
    [58]曹建荣,虞烈,谢友柏,磁悬浮电动机的状态反馈线性化控制,中国电机工程学报,2001,21(9):22-26.
    [59]年珩,贺益康,感应型无轴承电机磁悬浮力解析模型及其反馈控制,中国电机工程学报, 2003,23(11):139-144.
    [60] Z.Yuan, H.Yikang, N.Heng. The integrated mathematic model of a permanent magnet type bearingless motor. the 8th International Conference on Electrical Machines and Systems, Vol.2, 2005: 898-902.
    [61]年珩,贺益康,永磁型无轴承电机控制系统研究,电力电子技术,2007,41(02):85-87.
    [62] N.Heng, H.Yikang, H.Lei, et al. Sensorless operation of an inset pm bearingless motor implemented by the combination approach of mras and HF signal injection. IEEE Sixth World Congress on Intelligent Control and Automation. Dalian. 2006.
    [63]邓智泉,王晓琳,张宏荃等,无轴承异步电机的转子磁场定向控制,中国电机工程学报,2003,23(03):89-92.
    [64]邓智泉等,无轴承异步电机悬浮子系统独立控制的研究,中国电机工程学报,2003,23(09):107-111.
    [65]贺益康,年珩,阮秉涛,感应型无轴承电机的优化气隙磁场定向控制,中国电机工程学报,2004,24(6):116-121.
    [66]邓智泉,仇志坚,王晓琳,严仰光,无轴承永磁同步电机的转子磁场定向控制研究,中国电机工程学报,2005,25(01):104-108.
    [67]仇志坚,邓智泉,王晓琳,孟令孔,计及偏心及洛伦兹力的永磁型无轴承电机建模与控制研究,中国电机工程学报,2007,27(09):64-70.
    [68]孟令孔,邓智泉,王晓琳,仇志坚,无轴承永磁同步电机悬浮子系统的LQG/LTR控制器设计,航空学报, 2007,28(02):385-390.
    [69]廖启新,邓智泉,王晓琳,无轴承薄片电机磁体形状优化设计及系统实现,中国电机工程学报,2007,27(12):28-32.
    [70]邓智泉,杨钢,张媛,曹鑫,王晓琳,一种新型的无轴承开关磁阻电机数学模型,中国电机工程学报,2005,(09):139-146.
    [71]范冬,邓智泉,杨钢,曹鑫,王晓琳,无轴承开关磁阻电机的功率变换器研究,微特电机,2007,27(05):10-12.
    [72]邓智泉,严仰光,无轴承交流电机的基本理论和研究现状,电工技术学报,2000,15(2):29-35.
    [73] M.Ohsawa, S.Mori, T.Satoh, Study of the Induction Type Bearingless Motor, 7th Int. Symp. Magnetic Bearings, ETH Zurich, Switzerland, 2000: 389-394.
    [74]王宝国,王凤翔,磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析,中国电机工程学报,2002,22(5):105-108.
    [75] A.Chiba, D.T.Power, M.A.Rahman, Analysis of No-load Characteristics of a Bearingless Induction Motor, IEEE Trans. Industry Application, 1995, 31(1): 77-83.
    [76] B.Wenshao, H.Shenghua, W.Shanming, et al. A Kind of Generalized Analytical Model on Magnetic Suspension Force of Bearingless Motor and its Application, 2nd IEEE Conference on Industrial Electronics and Applications 2007 (ICIEA 2007), Harbin, China, May 2007: 1663-1668.
    [77] D.Zhiquan, W.Xiaolin, Y.Yangguang, An Independent Controller of Radial Force Subsystem for Super-high-speed Bearingless Induction Motors, Proceedings of the ninth international symposium on magnetic bearings (ISMB-9), Lexington, Kentucky, USA, August 3-6, 2004.
    [78]邓智泉,王晓琳,李冰等,无轴承异步电机悬浮子系统独立控制的研究,中国电机工程学报,2003,23(9):107-111.
    [79] A.Chiba, T.Fukao, Optimal Design of Rotor Circuits in Induction Type Bearingless Motors, IEEE Trans. Magnetics, 1998, 34(4): 2108-2110.
    [80] D.Akamatsu, A.Chiba, T.Fukao, et al., An Improved Rotor Resistance Identification for Bearingless Induction Motors, IEEE International Conference on Electric Machines and Drives 2005 (IEMDC05), San Antonio, USA, May 2005: 1981-1987.
    [81] T.Tera, Y.Yamauchi, A.Chiba, et al., Performances of Bearingless and Sensorless Induction Motor Drive Based on Mutual Inductances and Rotor Displacements Estimation, IEEE T. Ind. Electron, 2006, 53(1): 187-194.
    [82]王晓琳,无轴承异步电机基本控制策略研究与实现,[博士学位论文],南京,南京航空航天大学,2003.
    [83]张宏荃,无轴承异步电机非线性解耦控制的研究,[博士学位论文],南京,南京航空航天大学,2004.
    [84]王晓琳,邓智泉,张宏荃等,无轴承异步电机研究与实现,航空学报,2003,24(3):259-262.
    [85]王晓琳,邓智泉,严仰光,一种新型的五自由度磁悬浮电机,南京航空航天大学学报,2004,36(2):210-214.
    [86]张宏荃,邓智泉,王晓琳等,无轴承异步电动机的系统实现,哈尔滨工业大学学报,2004,36(11):1490-1493.
    [87]张宏荃,由文博,邓智泉等,无轴承异步电机的单DSP控制,中小型电机,2005,32(4):26-30.
    [88]仇志坚,邓智泉,王晓琳,无轴承永磁同步电动机的独立控制研究,中国电机工程学报,2006,26(1):115-119.
    [89]仇志坚,邓智泉,严仰光,无轴承永磁同步电动机的原理与实现,电工技术学报,2004, 19(11):8-13.
    [90]仇志坚,邓智泉,王晓琳等,计及偏心及洛仑兹力的永磁型无轴承电机建模与控制研究,中国电机工程学报,2007,27(9):64-70.
    [91] M.Oshima, S.Miyazawa, T.Deido, et al., Characteristics of a Permanent Magnet Type Bearingles Motor, IEEE Trans. Industry Application, 1996, 32(2): 363-370.
    [92] N.Fujie, R.Yoshimatsu, A.Chiba, et al., A Decoupling Control Method of Buried Permanent Magnet Bearingless Motors Considering Magnetic Saturation, IPEC-Tokyo, Tokyo, Japan, 2000:395-400.
    [93] M.Ooshima, S.Miyazawa, A.Chiba, et al., A Rotor Design of a Permanent Magnet-type Bearingless Motor Considering Demagnetization. IEEE Proc. Power Conversion Conf. Nagaoka, 1997: 655-660.
    [94]王凤翔,郑柒拾,王宝国.不同转子结构无轴承电动机的磁悬浮力分析与计算.电工技术学报,2002,17(5):6-10.
    [95] Zhu HQ, Fang L, Suspension Principle and Digital Control for Bearingless Permanent Magnet Slice Motors, Proceedings of IEEE 5th International Power Electronics and Motion Control Conference (IPEMC 2006), Shanghai, China, Aug. 2006: 818-821.
    [96]廖启新,李立,邓智泉,无轴承永磁薄片电机磁悬浮机理研究,微特电机,2006,34(12):1-3.
    [97]陈姝,邓智泉,王晓琳等,无轴承薄片电机系统被动悬浮特性的研究,电子机械工程,2007,23(5):1-5.
    [98]詹琼华,开关磁阻电动机,武汉,华中理工大学出版社,1992.
    [99]刘迪吉,张焕春,傅丰礼等,开关磁阻调速电动机,北京,机械工业出版社,1994.
    [100]王宏华,开关磁阻电动机调速控制技术,北京,机械工业出版社,1995.
    [101]吴建华,开关磁阻电机设计与应用,北京,机械工业出版社,2000.
    [102]童怀,磁阻电机动态特性的非线性分析与计算机仿真,北京,科学出版社,2000.
    [103] T.J.E.Miller, Switched Reluctance Motors and Their Control, UK, Magna Physics Publishing and Clarendon Press. Oxford, 1993.
    [104] T.J.E.Miller, Electronic Control of Switched Reluctance Machines, UK, Reed educational and professional publishing Ltd, 2001.
    [105] S.R.MacMinn, W.D.Jones, A Very High Speed Switched Reluctance Starter/Generator for Aircraft Engine Application, Proceedings of the IEEE 1989 National Aerospace and Electronics Conference, 1989: 1758-1764.
    [106] S.R.MacMinn, J.W.Somber, Control of a Switched Reluctance Aircraft Engine Starter- generator Over a Very Wide Speed Range, Proceedings of IECEC'89, 1989: 631-638.
    [107] C.A.Ferreira, S.R.Jones, William S. Heglund et al., Detailed Design of A 30-kW Switched Reluctance Starter Generator System for A Gas Turbine Engine Application, IEEE Trans. on Ind. Applicat., 1995, 31(3): 553-561.
    [108] A.Radum, E.Richter, A Detail Power Inverter Design for a 250KW Switched Reluctance Aircraft Engine Starter/Generator, SAE, Aerospace Atlantic Conference and Exposition, Apr. 1993: 20-23.
    [109] D.E.Cameron, J.H.Lang, The Control of High-Speed Variable Reluctance Generator in Electric Power Systems, IEEE Trans. on Ind. Applicat., 1993, 29(6): 1106-1109.
    [110] A.V.Radum, C.A.Ferreira, E.Richter, Two Channel Switched Reluctance Starter/generator Results, IEEE Trans. on Ind. Applicat., 1998, 34(5): 1026-1034.
    [111]刘闯,朱学忠,曹志亮等,6kW开关磁阻起动/发电系统设计及实现,南京航空航天大学学报,2000,32(3):245-250.
    [112]李声晋,卢刚,马瑞卿等,开关磁阻组合起动机/发电机设计及试验,中国电机工程学报,2000,20(2):10-14.
    [113] A.Chiba, K.Chida, T.Fukao, Principles and Characteristics of a Reluctance Motor with Windings of Magnetic Bearing, Proc. PECTokyo, 1990: 919-926.
    [114] M.Takemoto, A.Chiba, T.Fukao, A Feed-forward Compensator for Vibration Reduction Considering Magnetic Attraction Force in Bearingless Switched Reluctance Motors, Seventh International Symposium on Magnetic Bearings, ETH Zurich, 2000: 395-400.
    [115] M.Takemoto, K.Shimada, A. Chiba, et al., A Design and Characteristics of Switched Reluctance Type Bearingless Motors, 4th International Symposium on Magnetic Suspension Technology, NASA/CP-1998-207654, May 1998: 49-63.
    [116] M.Takemoto, A.Chiba, T.Fukao, A New Control Method of Bearingless Switched Reluctance Motors Using Square-wave Currents, Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting, Singapore, CD-ROM, Jan. 2000: 375-380.
    [117] M.Takemoto, A.Chiba, T.Fukao, A Method of Determining Advanced Angle of Square-wave Currents in a Bearingless Switched Motor, IEEE Trans. Ind. Applicat., Nov./Dec. 2001, 37(6): 1702-1709.
    [118] M.Takemoto, A.Chiba, H.Suzuki, et al., Radial Force and Torque of a Bearingless Switched Reluctance Motor Operating in a Region of Magnetic Saturation. IEEE Trans. on Industry Application, Jan./Feb. 2004, 40(1): 103-112.
    [119] A.Chiba, T.Fukao, C.Michioka, Switched Reluctance Rotator, Patent USA, US005880549A, Mar.9, 1999.
    [120] A.Chiba, T.Fukao, C.Michioka, Switched Reluctance Rotator, Patent USA, US005880549A, Mar.9, 1999.
    [121] Y.Shuang, D.Zhiquan, Y.Yangguang, New Formulae Based on Fourier Extension for Bearingless Switched Reluctance Motors, Proceedings of the eighth international symposium on magnetic bearings (ISMB-8), Mito, Japan, Aug. 26-28, 2002: 53-58.
    [122]何炜,一种磁悬浮开关磁阻电机的自适应控制器,大电机技术,2004,34(5):57-60.
    [123]吴建兵,孙玉坤,吉敬华,磁悬浮开关磁阻电动机研究,微电机,2007,40(7):79-85.
    [124]项倩雯,孙玉坤,磁悬浮开关磁阻电动机转子径向偏心时的仿真,微特电机,2007,35(8):18-20.
    [125]范冬,杨艳,邓智泉等,无轴承高速开关磁阻电机设计中的关键问题,电机与控制学报,2006,10(6):547-552.
    [126]张媛,邓智泉,无轴承开关磁阻电机控制系统的设计与实现,航空学报,2006,27(1):77-81.
    [127] J.Jinghua, S.Yukun, Z.Huangqiu, et al., Magnetic Field Analysis of Bearingless Switched Reluctance Motor Using Finite Element Method, Proceedings of the Eighth International Conference on Electric Machines and Systems (ICEMS 2005), Nanjing, China, Sep. 2005: 2121-2123.
    [128]杨钢,无轴承开关磁阻电机实验平台的开发与研制,[硕士学位论文],南京,南京航空航天大学,2003.
    [129]邓智泉,杨钢,张媛等,一种新型的无轴承开关磁阻电机数学模型,中国电机工程学报,2005,25(9):139-146.
    [130]杨钢,无轴承开关磁阻电动机的基础研究,[博士学位论文],南京,南京航空航天大学,2008.
    [131]杨钢,邓智泉,曹鑫等.无轴承开关磁阻电机平均悬浮力控制策略,航空学报,2009,30(3):505-511.
    [132]曹鑫,邓智泉,杨钢等.无轴承开关磁阻电机麦克斯韦应力法数学模型,中国电机工程学报,2009,29(3):78-83.
    [133]杨艳,邓智泉,曹鑫等.无轴承开关磁阻电机径向电磁力模型,电机与控制学报,2009,13(3):377-382.
    [134]曹鑫,邓智泉,杨钢等,新型无轴承开关磁阻电机双相导通数学模型,电工技术学报,2006,21(4):50-56.
    [135]叶霜,无轴承开关磁阻电机的基础研究,[硕士学位论文],南京,南京航空航天大学,2003.
    [136] X.Cao, Z.Deng, G.Yang, and X.Wang, Independent control of average torque and radial force in bearingless switched-reluctance motors with hybrid excitations, IEEE Trans. Power Electron., 24(5), May.2009: 1376-1385
    [137]杨钢,邓智泉,曹鑫,罗建震,王晓琳,适用于无轴承开关磁阻电机的功率变换器设计,航空学报,2008,29(1):110-116.
    [138]曹鑫,无轴承开关磁阻发电系统的基础研究,[硕士学位论文],南京,南京航空航天大学,2006.
    [139]王秋蓉,葛宝明,无轴承开关磁阻电机磁场及力特性分析,电机与控制学报,2007,11(3):217-226.
    [140]王秋蓉,葛宝明,无轴承开关磁阻电机的转矩与径向力特性分析,北京交通大学学报,2007,31(2):107-110.
    [141] G.Yang, Z.Deng, X.Cao, X. Wang, et al., Optimal winding arrangements of a bearinglessswitched reluctance motor, IEEE Trans. Power Electron., 23(6), 2008: 3056-3066.
    [142] F.C.Lin and S.M.Yang, Instantaneous shaft radial force control with sinusoidal excitations for switched reluctance motors, in Proc. IEEE IAS Annu. Meeting, Seattle, WA, Oct. 2004: 424-430.
    [143] F.C.Lin and S.M.Yang, Radial force control of a switched reluctance motor with two-phase sinusoidal excitations, in Proc. IEEE IAS Annu.Meeting, Tampa, FL, Oct. 2006:1171-1177.
    [144] F.C.Lin and S.M.Yang, Self-bearing control of a switched reluctance motor using sinusoidal currents, IEEE Trans. Power Electron.,22(6), 2007: 2518-2526.
    [145] W.Liu and S.Yang, Modeling and control of a self-bearing switched reluctance motor, in Fourtieth IAS Annual Meeting, vol.4, Hong Kong, 2005: 2720-2725.
    [146] F.C.Lin and S.M.Yang, An approach to producing controlled radialforce in a switched reluctance motor, IEEE Trans. Ind. Electron., 54(4), Aug. 2007: 2137-2146.
    [147] B.B.Choi and M.Siebert, A bearingless switched reluctance motor for high specific power applications, presented at the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhib., Sacramento,CA, Jul. 2006.
    [148] L.Chen, W.Hofman, Analytically computing winding currents to generate torque and levitation force of a new bearingless switched reluctance motor, in 12th International Power Electronics and Motion Control Conference, Portoroz Slovenia, 2006: 1058-1063.
    [149] L.Chen, W.Hofman, Performance characteristics of one novel switched reluctance bearingless motor drive, in Power Conversion Conference 2007 (PCC '07), Nagoya, 2007: 608-613.
    [150] D.H.Lee, H.Wang, J.W.Ahn, Modeling and Control of Novel Bearingless Switched Reluctance Motor,Energy conversion congress and exposition(ECCE), 2009: 276-281.
    [151] C.R.Morrison, Bearingless switched reluctance motor, U.S. Patent 6727618 B1, Apr. 27, 2004.
    [152] C.R.Morrison, M.W.Siebert, and E.J.Ho, Electromagnetic forces in a hybrid magnetic-bearing switched-reluctance motor, IEEE Trans. Magnet., vol. 44, No.12, Dec. 2008: 4626-4638.
    [153] D.E.Cameron, J.H.Lang, S.D.Umas, The Origin of Acoustic Noise in Variable-Reluctance Motors, in proc. IEEE IAS Ann. Mtg., H2792-0, 1989: 108-115.
    [154] C.Y.Wu, C.Pollock, Time Domain Analysis of Vibration and Acoustic Noise in the Switched Reluctance Drive, in IEE Sixth International Conference on Electrical Machines and Drives, London, UK, 1993: 558-563.
    [155] C.Y.Wu, C.Pollock, Analysis and Reduction of Vibration and Acoustic Noise in the Switched Reluctance Drive, in proc. IEEE IAS Ann. Mtg., 93CH3366-2: 106-113.
    [156] C.Pollock, C.Y.Wu, Acoustic Noise Cancellation Techniques for Switched Reluctance Drives, Conference Record of the 1995 IEEE Industrial Application Society, 30th IAS Annual Metting, Vol.1, Orlando, USA, Oct.8-12,1995: 448-455.
    [157] A.Michaelides, C.Pollock, Reduction of Noise and Vibrations in Switched Reluctance Motors: New Aspects, in proc.IEEE IAS Ann. Mtg., 96CH25977: 771-778.
    [158] D.E.Cameron, J.H.Lang, S.D.Umas, The Origin and Reduction of Acoustic Noise in Doubly Salient Variable-Reluctance Motors, IEEE Trans. On Industry Applications, 28(6), November/December 1992: 1250-1255.
    [159] R.Rabinovici, Torque Ripple, Vibration, and Acoustic Noise in Switched Reluctance Motors, in HAIT Journal of Science and Engineering B, Vol.2, Issues 5-6, 2005:776-786.
    [160] P.Pillay, W.Cai, Investigation into Vibration in Switched Reluctance Motor, in IEEE Trans. On Industry Applications, 35(3), May/June 1999: 589-596.
    [161] W.Cai, P.Pillay, Resonant Frequencies and Mode Shapes of Switched Reluctance Motors, in IEEE Trans. On Energy Conversion, 16(1), March 2001: 43-48.
    [162] W.Cai, P.Pillay, A.Omekanda, An Analytical Model to Predict the Modal Frequencies of Switched Reluctance Motors, IEEE IEMDC, Boston, MA, June 2001: 203-207.
    [163] W.Cai, P.Pillay, Z.Tang, A.Omekanda, Vibration Measurements in the Switched Reluctance Motor, 2001 Industry Application Society Annual Meeting, Chicago, Illinois, USA, Sept.30-Oct.4,2001.
    [164] Y.Tang, Characterization, Numerical Analysis, and Design of Switched Reluctance Motors, in IEEE Trans. On Industry Applications, 33(6), November/December 1997: 1544-1552.
    [165] M.N.Anwar, I.Husain, Radial Force Calculation and Acoustic Noise Prediction in Switched Reluctance Machines, in IEEE Trans. On Industry Applications, 36(6), November 2000: 1589-1597.
    [166] W.Cai, P.Pillay, K.Reichert, Accurate Computation of Electromagnetic Forces in Switched Reluctance Motors, in proc. The 5th Conference on Electrical Machines & Systems, Shengyang, China, Aug 18-20,2001.
    [167] W.Cai, P.Pillay, Z.Tang, Impact of Stator Windings and End Bells on Resonant Frequencies and Mode Shapes of Switched Reluctance Motors, in IEEE Trans. On Industry Applications, 38(4), July/August 2002: 1027-1036.
    [168] Y.Tang, Vibration Analysis and Reduction in Switched Reluctance Motors, Ph.D.Thesis, Clarkson University, Sept.2, 2002.
    [169] M.N.Anwar, Design of Switched Reluctance Machines for Low-Acoustic-Noise and Wide-Speed-Range Operation, Ph.D.Thesis, Akron University, May, 2001.
    [170] C.Yongxiao, W.Jianhua, H.Jun, Analytical Calculation of Natural Frequencies of Stator of Switched Reluctance Motor, in 8th Intl. Conf. On Electrical Machines and Drives (Conf. Publ. No.444), 1997: 81-85.
    [171] N.R.Garrigan, W.L.Soong, C.M.Stephens, A.Storace, T.A.Lipo, Radial Force Characterestics of a Switched Reluctance Machine, IEEE annual meeting,Industry Application conference Vol.4, 1999: 2250-2258.
    [172] B.Fahimi, G.Suresh, J.Mahdavi, M.Ehsani, Design Considerations of Switched Reluctance Motor: Vibration and Control Issues, IEEE annual meeting,Industry Application conference Vol.4,1999: 2259-2266.
    [173] R.Krishnan, P.Vijayraghavan, State of the Art: Acoustic Noise in Switched Reluctance Motor Drives, in IEEE Trans. On Industry Applications, 1998: 929-934.
    [174] R.S.Colby, F.M.Mottier, T.J.E.Miller, Vibration Modes and Acoustic Noise in a Four-Phase Switched Reluctance Motor, in IEEE Trans. On Industry Applications, 32(6), November/December 1996: 1357-1364.
    [175] A.M.Michaelides, C.Pollock, Modeling and Design of Switched Reluctance Motors With Two Phases Simutaneously Excited, in IEE Proc.-Electr. Power Appl., 143(5), Sept 1996: 361-370.
    [176] M.Besbes, C.Picod, F.Camus, M.Gabsi, Influence of Stator Geometry upon Vibratory Behavior and Electromagnetic Performances of Switched Reluctance Motors, in proc.Electirc Power Applications, 145(5), Sept 1998: 462-467.
    [177] S.A.Long, Z.Q.Zhu, D.Howe, Vibration Behavior of Stators of Switched Reluctance Motors, in proc.IEE, Electric Power Applications, 148(3), May.2001:257-264.
    [178] J.W.Ahn, S.G.Oh, J.W.Moon, Y.M.Hwang, A Three-Phase Switched Reluctance Motor With Two-Phase Excitation, in IEEE Trans. On Industry Applications, 35(5), Sept/Oct. 1999: 1067-1075.
    [179]孙剑波,詹琼华,一种利于开关磁阻电机降噪的新散热筋结构,电工技术学报, 20(9),Sep.2005:34-38.
    [180]吴建华,陈永校,王宏华,开关磁组电机定子固有频率的计算,中国电机工程学报,17(5),Sep.1997:326-329.
    [181]王宏华等,开关磁阻调速电机定子振动抑制,电工技术学报,13(3),Jun.1998:9-17。
    [182]吴建华,基于物理模型开关磁组电机定子模态和固有频率的研究,中国电机工程学报, 23(8),Aug.2004:109-114.
    [183]唐超,开关磁组电机振动和噪声的研究与实践,硕士学位论文,南京,南京航空航天大学,2005.
    [184]汤蕴璆,电机内的电磁场.北京:科学出版社,1981.
    [185] N.R.Garrigan, W.L.Soong, C.M.Stephens, et al. Radial force characteristics of a switched reluctance machine, IEEE Industry Applications Conference, October 1999: 2250-2258.
    [186] I.Husain, A.V.Radun, J.Nairus, Unbalanced force calculation in switched-reluctance machines. IEEE Transactions on magnetics,2000,36(1): 330-338.
    [187] A.V.Radun, Design considerations for the switched reluctance motor, IEEE Industry Applications Society Annual Meeting, October 1994:290-297.
    [188] S.J.Yang.低噪声电动机.北京:科学出版社,1985.
    [189]王磊.主动磁悬浮轴承的振动补偿研究.南京:南京航空航天大学,2007.1.
    [190]赵旭升等.新型永磁偏置磁轴承的不平衡补偿研究.微特电机,2005.11.
    [191]孙岩桦,罗岷,虞烈.基于自适应陷波器的电磁轴承不平衡补偿方法.振动工程学报,2000,13(4):610-615.
    [192] H.Chen, Q.Song, Windings Arrangement of a Three-phase Switched Reluctance Machine, Electric Machines and Drives Conference, 2003. IEMDC’03. IEEE International, Wisconsin, USA, 2003: 1665-1668.
    [193]詹琼华,吴莹,郭伟,开关磁阻电机绕组连接方式的研究,电机与控制学报,2002, 6(2):93-95.
    [194] D.Panda, V.Ramanarayananm, Mutual Coupling and its Effect on Steady-State Performance and Position Estimation of Even and Odd Number Phase Switched Reluctance Motor Drive, IEEE Trans. Magnetics, Aug. 2007, 43(8): 3445-3456.
    [195] M.Farshad, J.Faiz, C.Lucas, Development of Analytical Models of Switched Reluctance Motor in Two-Phase Excitation Mode:Extended Miller Model, IEEE Transactions on Magnetics, Jun. 2005, 41(6): 2145-2155.
    [196] A.K.Jain, Two Phase Modeling, Experimental Characterization, and Power Converter with Fast Demagnetization for Switched Reluctance Motor Drives, Ph.D. dissertation, Dept. Elect. Eng, University of Minnesota, Minneapolis, Minnesota, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700