用户名: 密码: 验证码:
锂离子电池正极材料锂钒氧系列化合物的制备、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从发现钒氧化物在锂离子电池中作为正极材料具有充放电行为以来,由于其具有深度放电和较大放电容量的特性,已引起科学界的极大关注。本论文重点探讨了新的锂钒氧系列化合物的制备、结构、性能及其相互间的关系。
     本工作用水热合成法成功制备了[Li_6(H_2O)_(16)V_(10)O_(28)]_n、{[LiNa_2(H_2O)_9]_2V_(10)O_(28)}_n、Li_2(H_2O)_(10)(NH_4)_4V_(10)O_(28)和(NH_4)_2[Ni(H_2O)_6]_2V_(10)O_(28)·4H_2O四种晶体,在此基础上采用低温脱水或脱氨的方法制备了新的Li_6V_(10)O_(28)、Li_2Na_4V_(10)O_(28)、H_4Li_2V_(10)O_(28)和H_2Ni_2V_(10)O_(28)系列锂离子活性材料。文中对前四种化合物进行了单晶x射线衍射结构分析,首次发现了[Li_6(H_2O)_(16)V_(10)O_(28)]_n、{[LiNa_2(H_2O)_9]_2V_(10)O_(28)}_n和(NH_4)_2[Ni(H_2O)_6]_2V_(10)O_(28)·4H_2O三种晶体结构;对后四种粉晶化合物进行了粉末x射线衍射及其它结构分析和形貌表征,并对其电化学性能进行了初步测试,首次描述了Li_6V_(10)O_(28)、Li_2Na_4V_(10)O_(28)、H_2Ni_2V_(10)O_(28)、H_4Li_2V_(10)O_(28)结构和性能。在这系列研究中取得了一些有价值的结果。
     单晶X射线衍射结构分析表明,在合成单晶化合物中,由不同的阳离子形成的十钒酸盐化合物,其空间构型是不同的,但它们均能借助分子间氢键作用聚集形成三维有序的超分子结构;单晶中的阳离子均以水合离子或铵离子的结构形式分布在其结构框架之中,占有比未配位的阳离子本身体积大几倍的空间。
     采用晶体低温脱水、脱氨均能得到纳米尺寸的粉晶,同时在晶体内部产生大量缺陷。粉晶团聚颗粒大小约为50nm~10μm,团聚颗粒均由更细小的晶粒和空隙构成,晶粒大小约为10~50nm,空隙大多为小于5nm的缝隙。晶粒的纳米尺寸的高比表面和隧道效应及缺陷的存在有利于离子的电迁移和充放电时锂离子的嵌入与脱嵌。
     脱水、脱氨后的化合物粉晶结构均保持其前驱物的结构框架,即框架中存在较大的离子通道。离子通道有隧道型的,也有层状型的,这为充放电锂离子的嵌入与脱嵌提供了较大的空间。
     用Gaussian03量化计算程序对[Li_6(H_2O)_(16)V_(10)O_(28)]_n化合物中的钒氧簇阴离子V_(10)O_(28)~(6-)结构单元的电荷分布进行了理论计算,首次得到V_(10)O_(28)~(6-)结构单元表面上氧原子电荷分布的理论数据,其理论电荷分布密度在0.450864~0.350250范围内,这数据说明了充放电的锂离子在活性材料中的定向迁移主要来自正负离子的相互作用,同时阻力较小,这将有利于锂离子的嵌入与脱嵌。钒簇阴离子的最高占有轨道和最低空轨道的能级差为3.55ev,该能级差决定钒簇阴离子接受电子的能力。
     采用变温电阻测试和交流阻抗法研究了该系列纯活性材料的导电能力和作为正极材料锂离子在电池正极界面的阻抗及扩散系数。纯活性材料均为典型的n-p离子型半导体,常温下其电导率为10~(-1)~10Sm~(-1)(除H_2Ni_2V_(10)O_(28)的电导率为0.00143Sm~(-1)以外);稳态时正电极界面阻抗为26~125ohm,其对应的扩散系数为10~(-7)~10~(-9)cm~2/s。
     对照充放电曲线和循环伏安曲线讨论了活性材料的电化学氧化还原行为和放电能力,并计算了放电过程的嵌锂量。活性材料均有较大的嵌锂量,其中每摩尔H_2Ni_2V_(10)O_(28)活性材料的最大嵌锂量可达22.340摩尔;在恒电流为0.2mA/cm~2的条件下,H_2Ni_2V_(10)O_(28)活性材料在充放电电压区间为4.5~1.0V时的最大可逆放电容量为333mAh/g,当充放电衰减幅度较小时其可逆放电容量稳定在200mAh/g左右,充放电效率均可达98%以上;当电压区间4.5~0.2V时,H_2Ni_2V_(10)O_(28)活性材料可逆放电容量可达556mAh/g。活性材料的放电能力与材料的空间框架结构有关。所有结果表明,本工作制备的锂钒氧系列活性物质是一类很有希望的锂离子电池正极材料。
Polyoxovanadate cluster compounds have attracted much attention because of low cost and large charge/discharge capability used as cathode material in li-ion batteries. In this work, different decavanadate lithium salt compounds have been prepared, and their structure, propertie and the interactions between them have been discussed detailed.[Li_6(H_2O)_(16)V_(10)O_(28)]_n, {[LiNa_2(H_2O)_9]_2V_(10)O_(28)}_n, Li_2(H_2O)_(10)(NH_4)_4V_(10)O_(28), and (NH_4)_2[Ni(H_2O)_6]_2V_(10)O_(28)·4H_2O single crystals have been successfully synthesized by hydrothermal method. X-ray diffraction method has been used to determine the structure and find that [Li_6(H_2O)_(16)V_(10)O_(28)]_n, {[LiNa_2(H_2O)_9]_2V_(10)O_(28)}_n and (NH_4)_2[Ni(H_2O)_6]_2 V_(10)O_(28)·4H_2O single crystals are firstly discovered in the world. By low temperature pyrogenation method, Li_6V_(10)O_(28), Li_2Na_4V_(10)O_(28), H_4Li_2V_(10)O_(28) and H_2Ni_2V_(10)O_(28) compounds have been obtained, and their three-dimensional structures were determined by x-ray diffraction method. Various measurements have been carried out to determine the structure, appearance and propertie of the samples, especially used as cathode materials for lithium ion batteries. Some valuable results obtained are as follows.The structure analysis results indicate that, in these four single crystal compounds, different space frameworks of decavanadate salts are formed by the assemble of different cations, which forms a three-dimensional supermolecular structure by interactions of intermolecular hydrogen bond. All cations are the form of hydration ion and ammonium ion distributed in the framework structure of single crystals, and have much larger space volume than that of themselves.After dehydration or deammonium at low temperature, the obtained powder crystals was nano-sized particles with a large number of defects. The presence of large specific surface, tunnel effect and defects make the transfer of ion, insertion and extraction of Li ion readily during the charge/discharge processes used as cathode materials in Li ion betteries.The powder crystals still remain the primary framework structure after dehydration or deammonium, which provides a large number of ion passage as the model of tunnel or samdwich. It supplys preferable interspace for Li ion inseriton and extraction during charge/discharge processes.
     The negative charge distribution on oxygen is in the range of 0.450864 to 0.350250 obtained by the theoretical calculation with Gaussian03w quantification computational procedure based on the surface atoms of the decavanadate anion in [Li_6(H_2O)_(16)V_(10)O_(28)]_n compound. The results show that the transfer of Li ion has lesser resistance due to the interactions of the cation and anion, it is helpful to the insertion and extraction of Li ion during charge-discharge processes.
     The conductance of the pure material was studied using a resistance versus temperature, and internal resistances of the electrode and diffused coefficient of Li in the bulk of material were determined using exchange impedance spectroscopy techniques in a Li-ion battery model. The conductance of materials at room tempearture are in the range of 10~(-1)~10Sm~(-1), and the diffusing coefficient is in the range of 10~(-7)~10~(-9) cm~2/s.
     The electrochemical behaviors and charge/discharge properties of materials are discussed by cyclic voltammetry and charge-discharge measurements. These materials show high Li-ion insertion capability. The largest Li-ion insertion capacity in H_2Ni_2V_(10)O_(28) reaches 22.34 mole Li. The discharge capacity of H_2Ni_2V_(10)O_(28) material can reaches 333mAh/g at the potential of 4.5~1.0V at 0.2mA/cm~2 discharge current. The large discharge capacity at 4.5~0.2V is 556mAh/g. At the same time, these materials show good reversibility during charge-discharge processes. The excellent electrochemical properities of the materials could be attributed to the framework structure. All the results suggest that the polyoxovanadate cluster compounds would be a promising cathode materials for Li-ion batteries.
引文
[1] M Armand. Material for advanced batteries[M]. New York: Plenum Press, 1980: 145~151
    [2] B D Pietro, M Patriarca, B Scrosati, et al. On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries [J]. J. Power Source, 1982, 8: 289~299
    [3] T Nagaura, K Tozawa. Lithium ion rechargeable battery[J]. Prog Batteries Sol. Cell, 1990,(9): 209-217
    [4] M Broussely, F Perton, J Labat. Li/Li_xNiO_2 and Li/LiCoO_2 rechargeable systems: comparative study and performance of practical cells[J]. J power Sources, 1993, 43-44: 209-216
    [5] 杨晓西,王铁军,丁静等。锂离子电池及材料的发展近况[J].华南理工大学学报(自然科学版),1999,27(5):52~58.
    [6] Junji Akimoto, Yoshito Gotoh, Yoshinaooosawa. Synthesis and structure refinement of LiCoO_2 single crystals[J]. Journal of Solid State Chemistry, 1998, 141: 298~302.
    [7] E D Jeong, M S Won, Y B Shim. Cathodic properties of a lithium-ion secondary battery using LiCoO_2 prepared by a complex formation reaction[J]. Journal of Power Sources, 1998, 70: 70~77.
    [8] S G Kang, S Y Lang, K S Ryu, et al. Electrochemical and structural properties of HT-LiCoO_2 and LT-LiCoO_2 prepared by the citrate sol-gel method[J]. Solid State Ionics, 1999, 120: 155~161.
    [9] Y Shao-hom, S A Hackney, C S Johnson, et al. Structural features of low-temperature LiCoO_2 and acid-delithiated products[J]. Journal of Solid State Chemistry, 1998, 140: 116~127.
    [10] B Garcia, J Farcy, J P Pereira-Ramos. Electrochemical properties of low temperature crystallized LiCoO_2[J]. J. Electrochem. Soc., 1997, 144: 1179~1184.
    [11] C Wolverton, Z Alex. Prediction of Li intercalation and battery voltages in layered vs. cubic LixCoO_2[J]. J. Electrochem. Soc., 1998, 145(70): 2424~2431.
    [12] L Anders, B Bill. Synthesis of LiCoO2 Starting from carbonate precursors: Ⅰ. The reaction mechanisms[J]. Solid State Ionics, 1997, 96: 173~181.
    [13] M Yoshio, H Tanaka, K Tominaga, et al. Synthesis of LiCoO_2 from ccobalt-organic acid complex and its electrode behaviour in a lithium secondary battery[J]. Journal of Power Sources, 1992, 40: 347~351
    [14] Z S Peng, C R Wan and C Y Jiang. Synthesis by sol-gel process and characterization of LiCoO2 cathodematerials[J]. J. Power Sources, 1998, 2: 215~220.
    [15] S T Myung, N Kumagai, S Komaba, et al. Preparation and electrochemical characterization of LiCoO_2 by the emulsion drying methad[J]. Journal of Applied Electrochemistry, 2000, 30: 1081~1085.
    [16] H W Yan, X J Huang, H Li, et al. Electrochemical synthesized by microwsve energy[J], Solid State Ionics, 1998, 113~115: 11~15.
    [17] 杨书廷,贾俊华,陈红军。微波—高分子网络法合成微米级LiCoO_2[J]。电源技术,2001,25(6):410~412
    [18] D Larcher, M R Palacin, G G Ammtucci, et al. Electrochemically active LiCoO_2 and LiNiO_2 made by cationic exchange under hydrothermal conditions[J]. J Electrochem. Soc., 1997, 144(2): 408~417.
    [19] P N Kumta, D Gallet, A Waghray, et al. Synthesis of LiCoO_2 powders for lithium-ion batteries from precursors derived by rotary evporation[J]. J Power Sources, 1998, 2: 91~98.
    [20] G G Ammtucci, J M Tarascon, D Larcher, et al. Synthesis of electrochemically active LiCoO_2 and LiNiO_2 at 100℃[J]. Solid State Ionice, 1996, 84: 169~180.
    [21] T Hazama, M Miyabayashi. Lithium secondary batteries in Japan[J]. Journal of Power Sources, 1995, 54: 306~309
    [22] L Jacek, N R Philip. The electrochemistry of novel materials[J]. New York: VCH Publisher, Inc., 1994: 116~117.
    [23] K Miura, A Yamada, M Tanaka, Electric states of spinel Li_xMn_2O_4 as acathode of the rechargeable battery]J]. Electrochimica Acta, 1996, 41: 249~256.
    [24] 吴宇平,方世壁,刘昌炎等。锂离子电池正极材料氧化钴锂的进展[J].1997,21(5):208~209
    [25] K Numata, C Sakaki, S Yamanaka. Synthesis and characterization of layer structured solid solutions in the system of LiCoO_2-Li_2MnO_3[J]. Solid State Ionics, 1999, 117: 257~263.
    [26] H Tukamoto. Electronic conductivity of LiCoO_2 and its enhancement by magnesium dop ing[J]. J. Electrochem. Soc., 1997, 144(9): 3164~3168.
    [27] M Mladenov, R Stoyanova, E Zhecheva, et al. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO_2 electrodes]J]. Electrochemistry Communications, 2001, 3: 410~416.
    [28] Y Jang, B Y Huang, H F Wang, et al. LiAl_yCo_(1-y)O_2(R3m) intercalation cathode for rechargeable lithium batteries[J]. J. Electrochem. Soc., 1999, 146(30): 862~868.
    [29] R Alcantara, J C Jumas, P Lavala, et al. X-ray diffraction, ~(57)Fe Mossbauer and step potential electrochemical spectroscopy stuye of LiFeyCo_(1-y)O_2 compounds[J], Journal of Power Sources, 1999, 81~82: 47~553.
    [30] W W Huang, F Roger. Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo_(1-x)M_xO_2(M=Ni or Ti)[J]. Solid State Ionics, 1996, 86~88: 395~400.
    [31] Haji. Reversibility of LiNiO_2 cathode]J]. Solid State Ionics, 1997, 95: 275~282
    [32] H Arai, S Okada, Y Sakurai, et al. Thermal behavior of Li_(1-y)NiO_2 and the decomposition mechanism]J]. Solid State Ipnics, 1998, 109: 275~282
    [33] S Yamada, M Fujiwiara, M Kanda. Synthasis and Properties of LiNiO2 as cathode material for secondary batteries[J]. Journal of Power Sourdes, 1995, 54: 209~213
    [34] G. X Wang, S zhong, D H Bradhurst, et al. Synthesis and characterization of LiNiO_2 compounds as cathodes for rechargeable lithium batteries[J]. Journal of Power Sources, 1998, 76: 25~35
    [35] Y S Lee, Y K Sun, K S Nahm. Synthesis and characterization of LiNiO_2 cathode material prepared by an adiphic acid-assisted so-gel method for lithium secondary batteries[J]. Solid State Ionics, 1999, 118: 159~168
    [36] A Rougier, P Gravereau, C Delmas. Optimization of the composition of the Li_(l-z)Ni_(l+z)O_2[J]. J. electrochem. Soc., 1996, 143(4): 1168~1175
    [37] I Saadoune, C Delmas. On the LixNi_(0.8)Co_(0.2)O_2 system[J]. Journal of Solid State Chemisty, 1998, 136: 8~15
    [38] 田彦文,高虹,翟玉春等。锂离子蓄电池正极材料LiNiO_2的制备研究[J]。电池,1999,29(3):103~106
    [39] D Caurant, N Barfer, B Garcia, Synthesis by a soft chemistry route and characterization of LiNi_xCo_(l-x)O_2(0≤x≥_1) cathode materials[J]. Solid State Ionics, 1996, 91: 45~54
    [40] 邹正光,麦立强,陈寒元等。锂离子电池正极材料LiNi_xCo_(l-x)O_2的合成[J]。电池,2001,31(3):116~118
    [41] M Yoshimura, K S Han, S Teurimoto. Direct Fabrication of thin-film LiNiO_2 electrodes in LiOH solution by electrochemical-hydrothermal method[J]. Solid state Ionics, 1998, 106: 39~44.
    [42] C C Chang, N K Prashant. Particulatr sol-gel synthesis and electrochemical characterization of LiMO_2(M=Ni, Ni_(0.75_Co_(0.25)) powders[J]. Journal of Power Sources, 1998, 75: 44~55
    [43] J Molenda, P Wilk, J Marzec. Transport properties of the LiNi_(l-y)Co_yO_2 system[J]. Solid State Ionics, 1999, 119: 19~22
    [44] 郭鸣风,叶劲草,张洪有。锂离子电池用正极材料LiCo_(l-x)Ni_xO_2的研究[J]。电源技术,1999,23(增刊):47~48
    [45] M Yoshio, Y Todorow, K Yamato, et al. Preparation of LiyMnxNivxO2 as a cathode for liyhium-ion batteries[J]. Journal of Power Sources, 1998, 74: 46~53
    [46] R Kanno, H Kubo, Y Kawamoto, et al. Phase relationship and lithium deintercalation in lithium nickel oxides[J]. Journal of Solid State Chemistry, 1994, 110: 216~225
    [47] Q M Zhong, U V Sacken. Crystal structures and electrochemical properties of LiAl_yNi_(l-y)O_2 Solid solution[J]. Journal of Power Sources, 1995, 54: 221~223
    [48] G X Wang, S Zhong, D H Bradhurst, et al. LiAl_δNi_(l-δ)O_2 solid solutions as cathodic materials for rechargeable lithium batteries[J]. Solid State Ionics, 1999, 116: 271~277
    [49] M E Spahr, N Petr, SBernhard, et al. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials[J]. J Electrochem. Soc., 1998, 145(4): 1113~1121
    [50] B J Neudecker, R A Zuhr, B S Kwak, Lithium manganese nickel oxides Li_x(Mn_yNi_(l-y)2_xO_2 I. Synthesis and characterization of thin films and buik phases[J]. J. Electrochem. Soc., 1998, 145(12): 4148~4159
    [51] 高虹。LiNi_yM_(l-y)O_2(M=Co、Mn、Ti、0<y>1)的制备和性能[J]。电源技术,2001,25(4):264~277
    [52] Y Nitta, K Okamura, Haraguchi. Crystal structure atudy of LiNi_(l-x)Mn_xO_2[J]. Joumal of Power Sources, 1995, 54: 511~515.
    [53] 应皆荣,万春荣,姜长印等。用溶胶凝胶法在LiNi_(0.8)Co_(0.2)O_2表面包裹SiO_2[J]。电源技术,2001,25(6):401~404.
    [54] 唐致远,李建刚,薛建军。LiNiO_2的制备与改性的探讨[J]。电池,2001,31(1):10~13
    [55] R J Gummow, M M Thackeray. Characterization of Li/Li_xCo_(1-x)Ni_yO_2 electrodes for rechargeable lithium cell[J]. J. Electrochem. Soc., 1993, 140: 3365~3372
    [56] 陈得钧。电池的近期发展与锂离子电池[J]。电池,1996,26(3):139~143
    [57] E Ferg, R J Gummow, M M Thackeray. Partially immersed cylindrical horizontally revolving electrodes for the production of conducting polymers[J]. J. Electrochem. Soc., 1994, 141: 147~153
    [58] V Manev, A Momchilov, A Nassalevska, et al. New approach to the improvement of Li_(l+x)V_3O_8 performance in rechargeable lithium batteries[J]. J. Power Sources, 1995, 54(2): 501~507
    [59] K Jin, M Masatoshi, M Takashi, et al. Preparation and lithium insertion behavior of oxygen-deficient Li_(l-x)V_3O_(8-δ)[J]. J. Power Sources, 1997, 66: 135~139
    [60] 刘素琴,黄可龙,雷磊等。低温合成锂离子二次电池正极材料Li_(l+x)V_3O_8及其性能[J]。应用化学,2000,17(4):383~386
    [61] H Y Xu, H wang, Z Q Song. Novel chemical method for synthesis of LiV_3O_8 nanorods as cathode materials for lithium ion batteries[J]. Electrochimica Acta, 2004, 49: 349~353.[91]
    [62] 刘建睿,王猛,尹大川等。锂离子蓄电池正极材料粒钒氧化物研究进展[J]。电源技术,2001,25(4):308~311
    [63] 刘恩辉,李新海,侯朝辉等。溶胶—凝胶法合成锂离子电池正极材料LiV_3O_8[J]。应用化学,2004,21(4):410~415
    [64] C Tsang, A Manthiram. Synthesis of nanocrystalline VO_2 and its electrochemical behavior in lithium batteries[J]. J. Electrochem. Soc., 1997, 28~30: 520~524
    [65] S Denis, E Baudrin, F Orsini, et al. Synthesis and electrochemical properties of numerous classes of vanadates[J]. J. Power Sources, 1997, 81~82: 79~84
    [66] J L Acosta, E Morales, M Paleo, et al. Polymeric composites based on vanadium oaldes as cathodes for rechargeable lithium batteries-I. Microstructural and electrical characterization[J]. J. Eur. Polym., 1996,(4): 179~183
    [67] H K Park, W H Smyrl. V_2O_5 xerogel films as intercalation hosts for lithium[J]. J. Electrochem. Soc., 1994, 143(3): L25~L26
    [68] D Wang, Z Liao, X Feng. et al. A study of the incorporation reaction of lithium into V_6O_(13) in a rechargeable lithium battery[J]. J. Power Sources, 1989, 26: 347~353
    [69] N H Amsterdam. Solid solution Li_(l+x)V_3O_8 as cathodes for high rate secondary Li batteries[J]. Solid State Ionics, 1984, 13: 311~318
    [70] G T K Fey, K S Wang, S M Yang. New inverse spinel cathode materials for rechargeable lithium batteries[J]. J. Power Sources, 1997, 68(10): 159~165.
    [71] A L Picciotto, M M Thackeray. Insertion/extraction reactions of new with LiV_2O_4[J]. Mater Res Bull, 1985, 20: 1409~1420.
    [72] M S Whittingham, J Guo, R Chen. The hydrothermal synthesis of new oxide materials [J]. Soild State Ionics, 1995, 75: 257-268
    [73] T Chirayil, P Y Zavalij, M S Whittingham. A new vanadium dioxide cathode [J]. J. Electrochem. Soc, 1996, 143: L193-L195
    [74] N Kumagai, T Fujiwara, K Tanno, et al. Phase and electrochemical characterization of quaternary Li-Mn-V-O spinel as positive materials for rechargeable lithium batteries[J]. J. Electrochem. Soc, 1996, 143: 1007-1013
    [75] F Leroux, B E Koene, L F Nazar. Electrochemical lithium intercalation into a polyaniline/V_2O_5 nanocomposite[J]. J. Electrochem. Soc, 1996, 143: L1 181-183
    [76] A D Wadsley. Crystal chemistry of non-stoichiometric pentavent vanadium oxides: crystal structure of Li_(1+x)V_3O_8[J]. Acta Cryst., 1957, 10: 261-267
    [77] J O Besenhard, R Schollom. The discharge reaction mechanism of molybdenum (VI) oxide electrode in organic electrolytes [J]. J. Power Sources, 1977, 1(3): 267-276
    [78] J Kawakita, T Niura, T Kishi. Charging characteristics of Li_(1+x)V_3O_8[J]. Solid State Ionics, 1999, 7: 687-694
    [79] G Pistoia, S Panero, M Tocci. Solid solutions Li_(1+x)V_3O_8 as cathodes for high rate secondary Li batteries[J]. Solid State Ionics, 1984, 13:311-318
    [80] J Kawakita, T kato, Y Katayama, Lithium insertion behavior of Li_(1+x)V_3O_8 with different degrees of crystallinity[J]. J. Power Sources, 1999, 18: 448-453
    [81] M Winter, J O Besenhaad, M E Spahr, Insertion electrode materials for rechargeable lithium batteries[J]. Adv Mater., 1998, 10(10): 725-763
    [82] J Kawakita, K Makino, Y Katayama, et al. Preparation and lithium insertion behavior of Li_yNa_(1.2-x)V_3O_8[J]. Solid State Ionics, 1997, 99: 165-171
    [83] J X Dai, S F Y Li, Z Q Gao, et al. Low-temperature synthesized LiV_3O_8 as a cathode material for rechargeable lithium batteries [J]. J. Electrochem. Soc, 1998, 145(9): 3057-3062
    [84] J Kawakita, T Miura, T Kishi. Charging characteristics of Li_(1+x)V_3O_8 [J]. Solid State Ionics, 1997, 118: 141-147
    [85] G Pistoia, M Pasquali, M Tocci. Thermodynamic study of lithium insertion in vanadium oxide(V_6O_(13)) and lithium vanadate(Li_(1+x)V_3O_8)[J]. J Power Sources, 1985(15): 13-15
    [86] Y Aishui, K Naoaki, Z L Liu, et al. Anew method for preparing lithium oxides and their electrochemical performance in secondary lithium batteries [J]. J Power Sources, 1998,74: 117-121
    [87] K West, B Zachhau-chriatiansen, S Skaarup, et al. Comparison of LiV_3O_8 cathode materials prepared by different mothode[J], J Electrochem Soc, 1997, 144(3): 820-825
    [88] K Naoaki, Y Aishui. Uitrosonically treated LiV_3O_8 as cathode material for secondary lithium batteries[J]. J Electrochem Soc, 1996, 144(3): 830-835
    [89] H Y Xu, H Wang, Z Q Song, et al. Novel chemical method for synthesis of LiV_3O_8 nanarods as cathode materials for lithium ion batteries [J]. Electrochemica Acta, 2004,49: 349-353
    [90] G Fey, W Li, J R Jahn. LiNiVO_4: A 4.8V volt electrode material for lithium cell [J]. J. Electrochem. Soc, 1994, 141(9):2 279-2 282.
    [91] S Denis, E Baudria, M Touboul, et al. Synthesis and electrochemical properties of amorphous vanadates of general formula RVO_4(R=In,Cr,Fe,Al,Yvs.Li)[J]. J. Electrochem. Soc, 1997, 144(12): 4099-4109.
    [92] G Fey, K S Chen. Synthesis characterization and cell performance of LiNiVO_4 athode materials prepared by a new solution precipitation method[J]. J. Power Sources, 1999, 81-82: 467-471
    [93] S Denis, E Baudria, F Orsini, et al. Synthesis and electrochemical properties of numerous classes of vanadates[J]. J. Power Sources, 1999, 81-82: 79-84.
    
    [94] C H Lu, S J Liou. Preparation of submicrometre LiNiVO_4 powder by solution route for lithium ion secondary batterises [J]. J. Mater. Sci. Letters, 1998, 17: 733-735.
    
    
    [95] M N Obrovac, O Mao, J R Dahn. Structure and electrochemistry of LiMO_2(M=Ti, Mn, Fe, Co, Ni), prepared by mechanochemical synthesis[J]. Solid State Ionics, 1998,112: 9-19
    [96] S Chitra, P Kalyani, B Yebka, et al. Synthesis, characterization and electrochemical studies of LiNiVO_4 cathode material in rechargeable lithium batteries[J]. Materials Chamistry and Physics, 2000, 32-37
    
    [97] Y Ito. Phase relations of the lithium vanadate-nickel oxide(LiVO_3-NiO) system and some properties of lithium nickel vanadate (LiNiVO_4)[J]. Nippon Kagaku Kaishi, 1979, 111: 1483-1 487
    [98] C Lu, W Lee, S Liou, S Lion, et al. Hydrothermal synthesis of LiNiVO_4 cathode material for lithium ion batteries[J]. J. Power Sources, 1999, 81-82: 696-699.
    [99] G T K Fey, C Kuo-Song, Synthesis, characterization, and cell performance of LiNiVO_4 cathode materials prepared by a new solution precipitation method[J]. J. Power Sources, 1999, 80: 467-471.
    [100] S N Hua, G L Zhong, Electrochemical behaviour of vanadinm bronze Li_6V_5O_(15) cathode in a secondary lithium battey[J] J Power Sources. 1996, 63: 93-96
    [101] G Pistoia, M Pasquali, L A Picciotto, et al. Further electrochemical studies on Li/LiV_2O_4 secondary cells[J]. 1991, 34: 199-206
    [102] K West, B Zachhau-Christiansen, M J Ostergard, T Jacobsen. J Power Sources. 1987, 20:165
    
    [103] B Garcia, M Millet, T P Pereira-ramos, et al. Electrochemical behaviour of chemially lithiated LiV_2O_5 phases[J]. J. Power Sources, 1999, 81-82: 670-674
    [104] J Barker, M Y Saidi, J L Swoyer. Performance Evaluation of the electroactive material, γ -LiV_2O_5, made by a carbothermal reduction method[J]. Journal of the Electrochemical Society, 2003, 150(9): A1267-A1272
    
    [105] K F Zhang, G Q Zhang, X Liu, et al. Large scale hydrothermal synthesis and electrochemisyrt of ammonium vanadium bronze nanobelts[J]. Journal of Power Sources, 2005,
    [106] R Koksbang, B J arkcr, H Shi, et al. Cathode materials for lithium rocking chair batteries[J]. Solid State Ionics, 1996, 84: 1-21
    [107] G Vitins, K West. Lithium intercalation into layered LiMnO_2[J]. J. Eletrochem. Soc, 1997, 144(8): 2587-2592
    [108] 陈立泉。锂离子电池最新动态和进展[J]。电池,1998,289(6):255-257.
    [109] C Masquelier, A K Padhi, K S Nanjundaswamy, et al. New cathode material for rechargeable lithium batteries: The 3-D framework structures Li_3Fe_2(XO4)_3(X=P, As)[J]. Journal of Solid State Chemistry, 1998, 135: 228~234
    [110] A S Anderson, J O Thomas. The source of first-cycle capacity loss in LiFeO_4[P]. 10th Inthernational Meeting on Lithium Batteries[C]. Como, Italy, 2000.
    [111] A S Anderson, J O Thomas, B Kalska, et al. Thermal stability LiFeO_4 based cathodes[J]. Electrochem and Solid State Letts., 2000, 3: 66~68
    [112] Y Asami, K Tsuchiya, H Nose, et al. Development of coin-type lithium-ion rechargeable batteries[J]. J. Power Sources, 1995, 54: 146~150
    [113] 黄友元,周恒辉,陈继涛等。层状嵌锂多元过渡金属氧化物的研究[J]。化学进展,2005,17:406~410
    [114] M T Pope, A Muller. Polyoxometalate chemistry-an old field with new dimensions in several disciplines[J]. Angew. Chem. Int. Ed. Engl. 1991, 30: 34~48
    [115] V W Way, K W G lemperer, Y O M aghi. A new structure type in polyoxoanion chemistry: synthesis and structure of yhe V_5O_(14)~(3-)[J]. J. Am. Chem.. Soc., 1989, 111: 4518~4519
    [116] H K Chac, W G Klemperer, V W Day. An Organometal Hydroxide Route to [(C_5Me_5)Rh]_4(V_6O_(19))[J]. Inorg. Chem., 1989, 28: 1423~1424
    [117] V W Day, W G Klemperer, D J Malthbie, Where are the protons in H_3V_(10)O_(28)~(3-)[J]. J. Am. Chem. Soc., 1987, 109: 2991~2992
    [118] D Hou, K S Hagen, C I Hill. Pentadecavanadate, V_(15)O_(42)~(9-), a new highly condensed fully oxidized isopolyvanadate with kinetic stability in water[J]. J. Am. Chem.. Soc., 1992, 114: 5864~1424
    [119] 郭丽,吴益华,鲁宇浩。锂蓄电池正极材料V_2O_5干凝胶的研究进展[J]。电源技术,2003,27(6):558~561
    [120] 季振国。半导体物理[M]。浙江大学出版社(第一版),2005,89~90
    [121] 张华香,童庆松,林素英等。微波烧结法制备Li_(l+x)V_3O_8的电化学性能[J]。研究与设计,2005,29(2):71~74
    [122] I V Kozhevnikov. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions[J]. chem. Rev. 1998, 98: 171~198
    [123] A Muller. Polyoxometalates: Very Large Clusters-Nanoscale Magnets[J]. chem. Rev. 1998, 98: 239~272
    [124] J T Rhule, C L Hill, D A Judd. Polyoxometalates in Medicine[J]. Chem. Rev. 1998, 98: 327~358
    [125] Y Toshihiro. Photo- and Electrochromism of Polyoxometalates and Related Materials[J]. Chem. Rev. 1998, 98: 307~326
    [126] M M Zhang, M M Chen. Three-dimensional supramolecular arrays supported by decavanadate clusters: syntheses and crystal structures of (NH_4)_2[M(dod)(H_2O)_4]_2 V_(10)O_(28)·6H_2O, (M=Zn, Mn)[J]. Inorg. Chem. Commun. 2003, 6: 206~209
    [127] G. M Sheldrick, SHELXL97. University of Gottingen, Germany. 1997.
    [128] International Tables for X-ray crystallography(Kynoch press: Birmingharm, England; Present distributor: Kluwer Academic publishers, Dordrecht, 1974), vol. Ir: 72~98
    [129] S Nakamura, T J Ozeki. Chem. Soc.[J]. Dalton Trans, 2001: 472~480.
    [130] S J Wery, A J M. Gutiertez-Zorria, A. Luque, Influence of protonation on crystal packing and thermal behaviour of tert-butylammonium decavanadates[J]. Polyhedron, 1996, 15: 4 555~4 564
    [131] Production by MDI company, USA. 2004.
    [132] http:/srdata.nisp.gov/xp
    [133] S Y Chung, J T Bloking, Y M Chiang. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Mater. 2002, 2: 123~128
    [134] Choi H. & Chang Y. Y. Incorporation of Decavanadate Ions into Silica Gels and Mesostructured Silica Walls[J]. Chem. Mater, 2003, 15, 3261~3267.
    [135] 曹楚南,张鉴清。电化学交流阻抗谱导论[M]。北京,科学出版社,2002:78~86
    [136] S I Pyun, J S Bae, The ac impedance study of electrochemical lithium intercalation into porous vanadium oxide electrode[J]. Electrochem Acta, 1996, 41: 919~925
    [137] J. Laugier and B. Bochu. Laboratoire des Materiaux et du Genie Physique de l'Ecole Superieure de Physique de Grenoble, 2005, France

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700