用户名: 密码: 验证码:
固体推进剂火箭发动机综合特性预示研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以某远程火箭研究工作为背景,为解决固体火箭发动机设计、性能分析、工作过程数值仿真和优选推进剂需要,对固体火箭发动机工作过程中的能量特性、燃烧特性、热物性参数确定和软件平台开发等展开了深入研究,主要内容如下:
     1.完整推导了适于固体火箭发动机能量特性预示的Gibbs最小自由能法;分析了固体火箭发动机中各种可能存在的损失,引入实际因素分析法和综合因素归纳法,较好的解决了比冲实测值与理论值存在的较大偏差问题,大大提高了固体火箭发动机能量特性参数的预示精度。
     2.针对细粒度AP分散性较差,会产生一定的团聚效应现象,通过引入工艺粒径,建立了适用于含细粒度AP的CMDB推进剂燃速预示公式;提出了催化剂在燃烧表面附近气相中进一步影响自由基团裂解行为的催化机理假说,合理构造了有物理意义的催化影响因子,建立了能够反映催化剂种类、含量的AP-Al-HTPB推进剂催化燃速预示公式,显著提高了燃速预示的精度,拓宽了燃速预示的适用范围。
     3.总结研究了适于固体火箭发动机高温高压下多组分混合气体热物性参数的计算方法,最后,采用Lennard-Jones势能法和Svehla多项式法,解决了固体火箭发动机工作过程数值仿真中单组分和多组分混合气体的热物性参数确定问题,为提高固体火箭发动机工作过程数值仿真精度创造了条件。
     4.以Microsoft Access数据库为平台,首次完全采用数据库结构建立和完善了涵盖配方、组元、产物组分热输运等庞杂的数据信息库。以Visual C++为开发工具,采用MFC ODBC数据访问接口技术,开发了基于数据库的人机界面友好、实际使用方便、专业性强的固体推进剂火箭发动机综合特性预示软件SRPS,为开展相关研究工作提供了应用平台,提高了理论预示方法的通用性和便捷性。
     5.结合SRPS软件平台,成功完成了某远程火箭武器总体方案论证和性能预估工作,将比冲修正误差提高到2.0%以内,为有效减小距离散布提供了合理控制结构参数公差的理论判据,同时,为真实模拟某远程火箭Y-300发动机工作过程提供了准确的热物性参数,大大缩短了某远程火箭武器型号的研制周期,有效的降低了研制成本。
     通过本文的研究,在能量特性、燃烧特性和热物性参数确定方面获得了较好的计算模型和处理方法,得到了令人满意的校验结果,结合开发的SRPS软件平台,为从事该领域的研究人员开展基础理论研究和工程应用提供了理论指导和技术支持。
Based on related development work of a certain remote rocket, In order to solve the problems of solid rocket engine design, performance analysis, numerical simulation of working process and optimization propellant, the further research on energy characteristic, combustion characteristic and thermal physical parameters determine in the working process of solid rocket engine and software platform development were carried out in this dissertation, its'main contents were as follows:
     1. The Gibbs free energy minimization method for energy characteristic calculation of solid rocket engine was concretely educed. The various possible losses of solid rocket engine s were analyzed, the problem of obvious deviation between measured value and theoretical value for solid rocket engine was solved by introducing actual factor analysis and the induction of comprehensive factor, the prediction precision of performance of solid rocket engine was greatly improved.
     2. Some phenomenon of agglomeration would occurred for fine-grained AP has a poor dispersion, so a burning rate prediction model for CMDB propellant with fine-grained AP was established by introducing process particle size; In addition, catalytic mechanism hypothesis was proposed, which the catalyst would further effected the cracking behavior of free radical clusters in the gas phase near the combustion surface, the catalystic impact factors with physical meaning were constructed, a catalystic burning rate prediction model of AP-Al-HTPB propellant which could reflect type and content of the catalyst was also established. Finally, the prediction precision of the burning rate was significantly improved, the prediction scope of the burning rate was also broadened.
     3. Summarized the methods for calculating thermal physical parameters of multi-com-ponent gas with high pressure and high temperature in the solid rocket engine. By introducing the methods of Lennard-Jones potential energy and Svehla polynomia, the thermal physical parameters of one-component or multi-component gas in numerical simulation of working process of solid rocket engine were well determined, some conditions were created for improving numerical simulation precision in the working process of solid rocket engine.
     4. With the platform of Microsoft Access database, the information database covered with numerous and jumbled data such as formula, component, thermal transport of the product composition was established and improved, which was firstly and fully used the database structure. Choosing Visual C++ as development tools, using MFC ODBC data access interface technology, the software SRPS based on database for synthetical performance prediction of solid propellant rocket engine was developed, which has a friendly interface, convenience in practice and high specialization. The application platform for related development work of solid propellant rocket engine was provided. The generality and convenience of theoretical prediction methods were improved.
     5. With the platform of SRPS software, the general scheme demonstration and performance prediction of remote rocket weapon were successfully completed, the correcting errors of specific impulse was increased to 2.0%, a theoretical criterion of rationally controlling structure parameters tolerance for effectively reducing range dispersion was given, at the same time, thermal physical parameters for numerical simulation of working process of remote rocket Y-300 engine were given accurately, finally, the cycle and cost of development was greatly reduced.
     Some good calculation models and approaches for energy characteristic, combustion characteristic and thermal physical parameters determine in the working process of solid rocket engine were obtained through this research, the check results were satisfactorily too, combined with the development platform of SRPS software, some theoretical guidance and technical support were provided, which were used fundamental research and engineering application.
引文
[1]李葆萱.固体推进剂性能[M].西安:西北工业大学出版社,1990.
    [2]张景春.固体推进剂化学与工艺学[M].长沙:国防科技大学出版社,1987.
    [3]张端庆.固体火箭推进剂[M].北京:兵器工业出版社,1991.
    [4]候林法.复合固体推进剂[M].北京:宇航出版社,1994.
    [5]李彦彬,张志峰,马岑睿,高峰.战术导弹固体火箭发动机推进剂发展综述[J].飞航导弹.2007:53-56.
    [6]董师颜,张兆良.固体火箭发动机原理[M].北京:北京理工大学出版社,1996.
    [7]余瑞星.固体火箭发动机网络信息管理系统[D].西安:西北工业大学硕士论文,2003.
    [8]张炜,朱慧.固体推进剂性能计算原理[M].长沙:国防科技大学出版社,1996.
    [9]Brinkely. Calculation of equilibrium composition of systems of many constituents. J. Chem. Phys.1947,15:107-110.
    [10]White, Johnson, Dantzig. Chemical equilibrium in complex mixtures. J. Chem. Phys. 1958,28,751.
    [11]Sanford Gordon, Bonnie J, Mcbride.Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks and chapman jorquet detonations[R]. NASA-SP-273.
    [12]Daines, Davis. Status review of solid propellant rocket motor performance prediction [C].AIAA-81-1377.
    [13]王伯羲,冯增国.火药燃烧理论[M].北京:北京理工大学出版社.
    [14]Summerfield M, Sutherland G S. The burning mechanism of ammonium perchlorate propellant[M]. Process in astronautics and rocketry, New York,1960,1,141-182.
    [15]Hermance C E. A model of composite propellant combustion including surface heterogeneity and heat generation[J]. AIAA,1966,4(9):1629-1637.
    [16]Hermance C E. A detailed model of the combustion of composite solid propellants. Proc. ICRPG/AIAA 2nd Solid propulsion Conf,1967:89-103.
    [17]Beckstead M W, Derr R L, Price D F. A model of composite solid propellant combustion based on multiple flames[J]. AIAA,1970,8(12):2200-2207.
    [18]Burke S P, Sehumenn T E W. Deflusion flames. Ind. Eng. Chem,1928,20:998.
    [19]Kumar R N. Condensed phase details in the time-independant combustion of AP composite propellants. Combust. Sci. Technol.1973,8:133-148.
    [20]Kumar R N. Composite propellants combustion modeling studies.12th International Symp. Space Technol. Sci.1977:543-544.
    [21]Sammons G D. Scientific report:multiple flame combustion model fortran computer program. Rocketclyne division, Rockwell international, Report R-4827,1974.
    [22]彭培根.固体火箭推进剂燃烧力学[M].长沙:国防科技大学出版社,1986.
    [23]Glick R L. Statistical analysis of nonmetalized composite solid propellant combustion. CPIA Publication 248,1973,1:157-184.
    [24]Glick R L, Condors J A. Statistical analysis of polydisperse heterogeneous propellant combustion:steady state.13th JANNAF Combust Meeting. CPIA publication 281, 1976,2.
    [25]Condors J A, Osborn J R. The effect of oxidizer particle size distribution on the steady and nonsteady combustion of composite propellants[R]. AD-A056842.
    [26]徐温干,吴心平,李葆萱.呈正/负压强指数的复合固体推进剂稳态燃烧模型[J].推进技术,1992,(4):39-48.
    [27]徐温干,李葆萱,王克秀.含负压力指数复合固体推进剂的稳态燃烧机理[J].宇航学报,1983,(3):1-18.
    [28]赵银,田德余,江瑜.含铝复合固体推进剂的燃烧模拟计算[J].航空动力学报,1987,2(2):147-152.
    [29]赵银,田德余,江瑜.AP复合固体推进剂燃烧模型[J].宇航学报,1988,(4):15-23.
    [30]张小平,刘剑洪,贵大勇.价电子分形燃烧模型在高能固体推进剂中的应用[J].固体火箭技术,2007,30(5):412-415.
    [31]张炜,朱慧,刘文元AP/RDX/HTPB复合推进剂燃速特性计算研究[J].推进技术,1997,18(4):75-79.
    [32]彭培根,刘德辉.高氯酸铵/硝胺推进剂燃烧模拟[J].推进技术,1990,11(4):63-70.
    [33]邓鹏图,田德余,庄逢辰.复合固体推进剂燃烧性能模拟计算的神经网络方法[J].推进技术,1996,17(4):72-76.
    [34]宋洪昌.火药燃烧模型和燃速预估方法的研究[D].南京:南京理工大学博士学位论文.1986.
    [35]杨栋.无(微)烟推进剂催化燃烧机理和模型的研究[D].南京:南京理工大学博士学位论文,1995.
    [36]李苗苗.高能固体推进剂燃速数值模拟[D].南京:南京理工大学博士学位论文,2009.
    [37]封锋,陈军,郑亚.基于一维气相稳态反应流的燃速预估软件研究[J].火炸药学报,2009,3(32):58-62.
    [38]Feng Feng, Jun Chen,Ya Zheng, Hong-chang Song. Burning rate prediction of composite modified double base propellant with fine-grained AP[C].2009 Internatio-nal Autumn Seminar on Propellants, Explosives and Pyrotechnics(2009 IASPEP), Theory and Practice of Energetic Materials. Kunming:2009:354-359
    [39]封锋,陈军,郑亚,唐健.高燃速丁羟推进剂燃烧性能可调节性研究[J].弹道学报,2010,1(22):74-78.
    [40]童景山.流体热物性学-基本理论与计算[M].北京:中国石化出版社,2008.
    [41]万俊华,郜冶,夏允庆.燃烧理论基础[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [42]Hirschfelder J O, Curtiss Ch F, Bird R B. Molecular theory of gases and liquids. New York:John Wiley and Sons, Inc,1954.
    [43]Hirschfelder J O. Heat conductivity in polyatomic or electronically excited gases Ⅱ. J. Chem. Phys.1957,26:282.
    [44]Kim S K, Ross J. On the determination of potential parameters from transport coefficients. J. Chem. Phys,1967,46:818.
    [45]Hattikudur U R, Thodos G. Equations for the collision integrals Ω21(1,1) and Ω(2,2). J. Chem. Phys.,1970,52:4313.
    [46]Neufeld P D, Janzen, Aziz R A. Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l,s)* for the Lennard-Jones (12-6) Potential. J. Chem. Phys, 1972,57:1100.
    [47]Monchick L, Mason, E A. Transport properties of polar gases. J. Chem. Phys,1961, 35:1676.
    [48]Brokaw R S. Predicting transport properties of dilute gases. Ind. Chem. Proc. Des. Dev.1969,8:240.
    [49]Svehla R A. Estimated viscosties and thermal conductivities of gases at high tempera-tures[R]. NASA-R132.
    [50]Svehla R A. Tansport coefficients for the NASA Lewis chemical equilibrium program [R]. NASA-4647.
    [51]Svehla R A, McBride B J. Fortran IV computer program for calculation of thermodyna-mic and transport properties of complex chemical systems. NASA TN D-7056.
    [52]Wilke C R. Viscosity equation for gas mixtures. J. Chem. Phys.1950,18:517.
    [53]童景山.气体混合物及液体混合物的粘度和导热系数[J].化学工程.1977,6:66
    [54]Lucas K. Phase Equilibria and Fluid Properties in the Chemical Industry. Frankfart: DECHEMA.1980
    [55]Lucas K. The pressure dependence of the viscosity of liquids a simple estimation. Chem. Ing. Tech.1981,53:959-960.
    [56]Chung T H, Lee L L, Starling K E. Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Ind. Eng. Chem. Fundam.1984,23:8-13.
    [57]Chung T H, Ajlan M, Lee L L, Starling K E. Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res.1988,27: 671-679.
    [58]Jossi J A, Stiel L I, Thodos G. The viscosity of pure substances in the dense gaseous and liquid phases. AIChE J.1962,8:59-62.
    [59]Wassiljewa A. Warmeleitung in Gasgemischen. Physik Z.1904,5:737
    [60]Brokaw R S. Estimating thermal conductivities for nonpolar gas mixtures-simple empirical method.Ind. Eng. Chem.1955,47:2398.
    [61]Stiel L I, Thodos G. The Viscosity of Polar Substances in the dense gaseous and liquid regions.A IChE J.1964,10:26.
    [62]Coats D E. A computer program for the prediction of solid rocket motor performance [R].AD-A015140.
    [63]Roys G P. User's manual for solid propulsion optimization code[R]. AD-A108224.
    [64]Jacques L, Roux J. Computer aided preliminary design of solid rocket motors[C]. AIAA-83-1254.
    [65]Jacques L, Legagneux D. Computer aided preliminary design of atiane 5 solid rocket motors[C]. AIAA-87-1738.
    [66]Gerhardt D L. Use of microcomputers for interactive solid rocket motor preliminary design[C]. AIAA-84-1353.
    [67]James Brill Clegren. Solid rocket motor conceptual design:the development of a design optimization expert system with hypertext user interface[C]. AIAA 93-2318.
    [68]James Brill Clegren. Computer aided solid rocket motor conceptual design and optimization[C]. AIAA 94-0012.
    [69]阮崇智.固体火箭发动机计算机辅助设计(CAD)技术的发展[J].固体火箭技术,1991,1:24-40.
    [70]何洪庆,刘宇.固体火箭发动机的CAD和CAM设想[J].推进技术,1994,1:18-22.
    [71]鲍福廷.固体火箭发动机概念设计CAD专家系统设计[J].推进技术,1998,19(3):17-20.
    [72]鲍福廷,徐东来,曹军伟.固体火箭冲压发动机一体化CAD系统设计[J].固体火 箭技术,2001,24(3):19-24.
    [73]梁国柱,张卫华,郭红杰等.固体火箭发动机集成方案设计系统SRMCAD[J]固体火箭技术,2003,26(3):18-20.
    [74]江振宇.固体火箭发动机喷管CAD[D]长沙:国防科技大学硕士论文,2002.
    [75]解红雨.固体火箭发动机分布式集成设计平台及其关键技术研究[D].长沙:国防科技大学博士论文,2006.
    [76]古建光.基于知识工程的固体发动机设计方法及其应用研究[D].长沙:国防科技大学博士论文,2008.
    [77]陈军,王政时,董师颜.固体火箭发动机自动化参数设计软件模型与实现[J].兵工学报,23(4):513-516.
    [78]陈军,周长省,董师颜,鞠玉涛.固体火箭发动机自动化设计系统与AutoCAD的“无缝”联结及应用[J].南京理工大学学报,2000,24(4):338-340.
    [79]陈军,董师颜,季宗德.固体火箭发动机结构质量的优化设计[J].固体火箭技术,1998,21(2):14-18.
    [80]陈军,董师颜,季宗德.火箭喷管推力偏心高精度计算软件[J].推进技术,2003,24(1):25-27.
    [81]Pivina T S. Computer generation of framework which can be used as synthons for creating high energy rnaterials[J]. Propellant, Explosives and Pyrotechnics,1994,19: 286-289.
    [82]Peter Politzer. Computational studies of energetic nitrarmines[R]. AD-A241870.
    [83]Pivina T S. Investigation of the "structure-properties" relationship of powerful compa-ct chemical source of energy[J].17th Pro. Int. Pyrotech. Semmin,1991,1:212-219
    [84]Sukhacev D V. Estimation and prediction of heats of formation for non-aromatic poly-nitro compounds on the basis of QSPR approach[J]. PEP,1994,19:159-164.
    [85]Wolf-Dietrich Ihlenfeld, Johann Gasteiger. Computer associated planning of organic synthesis:the second generation of programs[J]. Angew. Chem. Int. Ed. Engl.1995,34.
    [86]Shaw F J, Fifer, Robert A. A preliminary report on developing an expert system for computer aided formulation of propellants[R]. AD-A198088.
    [87]Sakovich G V. Design principle of advanced solid propellant[J]. Propul. Power Ⅱ, 1995,(4):830-837.
    [88]潘文达.俄国的炸药燃烧数据库[J].火炸药学报.1994,2:35-37.
    [89]Bohn M A. Modellierung und simulation der leistungskenndaten, des abbrandprodukt-spektrums, der optimalen formulierung, der chemischen stabilitat und kompatibilitat, der thermochemischen reaktionen und des alterungsverhaltens in der productentwick- lung von energetischen materialien[C]. Proceeding of the 30th ICT international annual meeting, V16/1-45(Ger).
    [90]Kerzers H L J. Modeling of composite propellant properties[R]. AIAA2000-3323.
    [91]张经江.含能材料化学合成专家系统ESCS的设计方法[J].计算机与应用化学,1994,11(3):211-219.
    [92]李一彤,刘建平,裴晓华.数值计算技术在固体推进剂研制生产中的应用[J].固体火箭技术,2003,26(2):38-41.
    [93]张海娜,庞军,王宁飞.固体推进剂配方与性能数据库的设计[J].火炸药学报,2003,2(26):47-49.
    [94]李世鹏,王宁飞,刘云飞.固体推进剂组分数据库系统的结构设计[J].火炸药学报.2007,4(30):72-75.
    [95]蒲薇华,杜志明,方勇.干扰烟火剂数据库的设计与建立[J].火工品,2000,(4):33-36.
    [96]苏航,李疏芬,李上文.LABORATORY(?)火箭推进剂燃烧特性研究辅助软件[J].计算机与应用化学,1997,2(14):158-160.
    [97]申同贺,康德山.模式识别及应用—配方优化专家系统[J].精细化工,1996,6(13):49-51.
    [98]孔文军.配方信息优化系统的研究[D].武汉:华中科技大学硕士学位论文,2003.
    [99]郑当成,杜润生,吴波.基于BP神经网络的固体推进剂性能预示方法研究[J].航天制造技术.2006,1:21-24.
    [100]王亮,吴波.配方性能预示与控制系统的设计与实现[J].航天制造技术.2006,2:49-52.
    [101]邵江东,余永刚RLPG数据库中液体药参数模块的设计与实现[J].火炸药学报.2000,2:56-59.
    [102]邵江东,余永刚.液体发射药火炮数据库及图形功能实现的研究[J].弹道学报.1999,2(11):22-26.
    [103]罗曼.计算机辅助火药配方设计系统研究[D].南京:南京理工大学硕士论文,2006.
    [104]封锋,陈军,郑亚.基于能量特性配方设计专家系统的开发与实现[J].固体火箭技术,2009,2(32):206-209.
    [105]封锋,陈军,郑亚.固体推进剂专家系统总体技术研究[J].南京理工大学学报,2009,2(33):247-251.
    [106]封锋,陈军,郑亚.基于神经网络的固体推进剂专家系统研究[J].世界科技研究与发展,2009,1(31):81-83.
    [107]Sanford Gordon, Bonnie J, Mcbride. Computer program for calculation of complex chemical equilibrium compositions and applications[R]. NASA-RP-1311.
    [108]Kubota N, Summerfield M. The mechanism of super-rate burning of catalyzed double-base propellants[R].AD-A763786.
    [109]Beckstead M W. Model for double-base propellant combustion[J]. AIAA,1980, 18(8):980-985.
    [110]Powling J, Smith W A W. The Flame decomposition of some substituted[J]. Combustion and Flame,1960,4(3):201-211.
    [111]Frost A A, Pearson, R G化学动力学和历程-均相化学反应的研究[M].北京:科学出版社,1966.
    [112]五机部210所.国外高氯酸铵复合推进剂燃烧理论的研究状况[R].1976,3:9-14.
    [113]Udupa M R. Thermal decomposition of tetraethyamnoniun perchlorate[J]. Propellants, Explosives and Pyrotechnics,1982,7:155-157.
    [114]Kubota N, Masamoto T. Flame structures and burning rate characteristics of CMDB propellants[C].16th International Symposium on combustion,1977,1201-1209.
    [115]Beckstead M W, Derr R L, Price C F. The combustion of solid monopropellants and composite propellants[C].13th International Symposium on combustion,1970,1047-1056.
    [116]金乐骥,李疏芬.固体推进剂中铝粉凝聚的海绵模型[J].宇航学报,1989,(3):25-32.
    [117]王大安,杨明忠.高氯酸铵对改性双基推进剂燃速的影响[J].火炸药学报,1986,9(3):6-10.
    [118]张仁,吕正中AP/HITPB复合推进剂催化热分解研究[J].推进技术.1989,12(6).
    [119]张炜,张仁.过渡金属氧化物催化作用的表征[J].推进技术,1991,2:60-65.
    [120]Winfried K Rudloff, Eli S Freeman. The catalytic effect of metal oxide on thermal decomposition reaction. J. Chem. Phys,1970,74(18):3317-3321.
    [121]Pittman C.U. Location of action of burning-rate catalystsin composite propellant combustion [J]. AIAA,1969,7(2):328.
    [122]Pearson G S, D. Sutton. Composite solid propellent ignition:ignition of ammonia and other fuels by perchloric acid vapour[J]. AIAA,1967,5(11):2101.
    [123]杨荣杰,马庆云.高氯酸铵催化燃烧研究[J].固体火箭技术,1991,(9):78-81.
    [124]Maruizumi H, Fubuma D, Shirota K, Kubota N. Thermal decomposition of RDX composite propellants[J]. Propellants, Explosives, Pyrotechnics.1982. (7):40-45.
    [125]赵银,田德余,江瑜"AP/HTPB/A1/催化剂”推进剂燃烧模拟计算方法[J].推进技术,1990,1:54-61.
    [126]Gordon S, McBride B J, Zeleznik F J. Computer program for calculation of complex chemical equilibrium compositions and applications, supplement I-transport properties. NASA TM-86885.
    [127]Brokaw R S. Thermal conductivity of gas Mixtures chemical in chemical equilibrium. J. Chem. Phys,1960,32(4):1005-1006.
    [128]Svehla R A, Brokaw R S. Heat capacity and the lewis number of a reacting gas[J]. AIAA,1966,4(1):182-184.
    [129]苏志明.固体火箭发动机传热学[M].南京:华东工学院,1987.
    [130]张立科Visual C++6.0数据库开发技术与工程实践[M].北京:人民邮电出版社,2004.
    [131]崔莹,王华军,姚雪峰.Visual C++数据库实用编程100例[M].北京:中国铁道出版,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700