用户名: 密码: 验证码:
湿热地区降雨对墙体传热的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿热地区具有“太阳辐射强烈、雨量丰富、季风旺盛、蒸发比高”的气候特征,夏热季节如何利用丰沛的降雨消除强烈的太阳辐射对建筑的影响,对降低这一地区的建筑空调能耗并改善室内热环境意义重大。由于缺乏相应的基础研究,目前的建筑能耗和热环境分析过程均无法定量考虑降雨的影响。本文以广州地区为例,研究湿热地区降雨对建筑墙体传热的影响,并研究应用被动蒸发冷却技术实现墙体降温节能的可行性和潜力。
     首先,从建筑墙体传热角度出发,分析广州地区降雨特点,确定典型降雨日。对广州地区近百年降雨资料进行频率分析,系统地研究了广州地区的年、月、日降雨特征,对广州地区的降雨规律进行总结;按月降雨量分类研究广州地区降雨日的小时降雨特点,从三年实际气象参数选取了具有代表性的51日作为广州地区典型降雨日。
     其次,对自然降雨或淋水作用下的墙体的热湿传递过程进行实验研究,搭建墙体传热传湿实验小室,对无雨日和降雨日墙体的热湿传递过程进行实测研究。在墙体湿度场测试中引入微波测湿系统,提出了单一建筑材料和墙体砌体的标定方法,实现了固体材料的质量含湿量的测试。实测实验对降雨条件下墙体传热量进行了定量研究,并就墙体温、湿度场和热流分布与室外气象参数间的关系进行了探讨。
     以研究利用建筑外表面材料含湿蓄水实现被动蒸发冷却为目的,进行了墙面淋水降温对比实验。对不同淋水时长,不同淋水起始时间下淋水墙体与对比墙体的温、湿度和热流进行比较发现:墙面淋水可以有效的降低墙体内、外表面温度,削减进入室内的热流,墙体内表面热流最高可降低49.9%,从而达到降温节能的效果。
     应用热湿传递计算软件Delphin对灰砂砖墙体进行数值模拟,研究典型降雨对墙体传热的影响。首先以实测数据对软件进行验证,温、湿度吻合率可达91%,热流吻合率为68%;进而对广州地区典型降雨日进行数值模拟,分析考虑降雨与否墙体传热量的差异,通过模拟结果发现内表面热流最高可降低25.6%;最后对多雨月室内空调模式下降雨对墙体传热影响进行模拟,并将天然降雨与淋水相结合,研究采用墙面淋水实现降温节能可能达到的效果。模拟结果表明,墙面淋水可大幅度降低进入室内的热量,墙体内表面热流降低幅度可达69%,利用被动蒸发冷却进行降温节能的效果显著。
The climate in hot-humid area has features of strong solar radiation, abundant precipitations, high-speed monsoon and intense evaporation in the whole year. The buildings in that area consume more energy while providing poorer indoor thermal environment than the ones in other climate zones in China. It has become an urgent task to research on the features of building climatology in this area so as to save building energy through climate-adaptive architectural design. This thesis focuses on the effects of precipitations on heat transfer through exterior walls by taking Guangzhou as an example. It also presents the possibilities by employing passive cooling technologies on exterior walls to reduce indoor air temperature and conserve building energy.
     Through statistics analysis on precipitation strength and frequency in Guangzhou area, this thesis concludes the annual, monthly and daily patterns of precipitations in Guangzhou. The features of hourly precipitation in different days are concluded based on the analysis of monthly precipitation. Fifty-one typical precipitation days are chosen to represent the annual precipitation features through the analysis of three-year weather data.
     The heat and mass transfer procedures of exterior walls in raining days and normal days are measured respectively at the same time in experimental rooms. The microwave moisture meter was utilized in the experiments. And its calibration procedures in pure material of exterior walls were proposed in the thesis. The moisture content in wall materials was measured. The results in normal days referred to the original states of the walls and appealed their comparative properties. The experiments in raining days measured the heat transfer through walls in quantity. The relationships among temperature, moisture and heat flex in exterior walls and outdoor meteorological parameters were analyzed.
     The water spray experiments were carried out in order to verify the possibilities of passive cooling through porous materials on exterior walls. The comparisons of measurements of temperature and moisture in wet and normal walls with various spray duration and time present that spray walls can effectively reduce the surface temperature on both sides of the wall and its heat flux. The heat flux of the inner side of the wall can be reduced as much as 49.9%.
     A simulation software of heat and mass transfer was utilized to simulate the differences in heat transfer under raining and normal conditions. Firstly, the software was calibrated with experiments. The simulation results of temperature and moisture agreed in 91% while the ones of heat flux in 68%. The heat flux through exterior walls in typical precipitation days of Guangzhou was simulated under conditions of raining or not. The simulation results revealed little differences with a reduction of 25.6%. Finally, heat transfer procedures of exterior walls of air-conditioned rooms in rainy days were simulated. The possibilities of saving energy through raining and spraying on exterior walls were analyzed. The results revealed that large heat can be prevented to transfer into indoor by combining with raining and spraying exterior walls, the higheste reduction was 69%. The usage of passive cooling can save remarkable building energy.
引文
[1]张家诚,林之光.中国气候[M].上海:上海科技出版社,1985:257
    [2]朱中奇.广州居民企业用电攀升[N].广州日报,2000.8.15
    [3]李强.结合湿热气候的建筑形体设计[D].重庆大学,2004
    [4]孟庆林,胡文斌,张磊等.建筑蒸发降温基础[M].北京:科学出版社,2006
    [5]孟庆林.南亚热带建筑气候资源化研究进展[J].热带建筑,2003,12(1):1-2
    [6]鹿世瑾.华南气候[M].北京:气象出版社,1990:67-81
    [7]孟庆林.湿热地区城市微气候调节与设计[R].北京:国家自然科学基金,2005
    [8]孟庆林.关于城市气候资源[J].城市环境与城市生态,1998,11(1):45-47
    [9]DOE2.com. Weather Data & Weather Data Processing Utility Programs [EB/OL]. http://www.doe2.com
    [10]清华大学DeST开发组.建筑环境系统模拟分析方法-DeST[M].北京:中国建筑工业出版社,2006:119-126
    [11]Tom.G.Chapman. stochastic model for daily rainfall in the western pacific[J]. mathematics and computers in simulation,1997(43):351-358
    [12]Richardson C.. Stochastic simulation of daily precipitation[J], temperature, and solar radiation. Water Resources Research,1981(17):182-190
    [13]王民,崔灵周,李占斌等.模拟降雨条件下径流侵蚀力与地貌特征的动态响应关系[J].水利学报,2008,39(9):1105-1110
    [14]陈继东.城市暴雨强度公式的统计方法[J].海河水利,1999(4):32-33
    [15]吴志峰,刘平,王继增等.广东省降雨侵蚀力时间变化初步分析[J].亚热带水土保持,2005,17(1):34-37
    [16]刘兵.最优气候相似法及其在降水预报中的应用[J].气象,2004,30(5):7-11
    [17]吴金栋,王馥棠.随机天气模型参数化方案的研究及其模拟能力评估[J].气象学报,2000,58(1):49-59
    [18]杨淑群,芮景析,冯汉中.支持向量机(SVM)方法在降水分类预测中的应用[J].西南农业大学学报(自然科学版),2006,28(2):252-257
    [19]黄胜,梁川.一种基于混沌吸引子的降雨降尺度分析[J].哈尔滨工业大学学报,2006,38(3):439-442
    [20]James P. Rydock. A look at driving rain intensities at five cities. Building and Environment[J],2006,41:1860-1866
    [21]Kristine Nore, Bert Blocken, Bjorn Petter Jelle etc. A dataset of wind-driven rain measurements on a low-rise test building in Norway[J]. Building and Environment, 2007,42:2150-2165
    [22]王志刚.广州地区建筑能耗分析用逐时降雨模型的确定[D].华南理工大学,2005
    [23]Hartwig M. Kunzel and Kurt kiessl. Calculation of heat and moisture transfer in exposed building components[J]. Int. J. Heat Mass Transfer,1997,40(1):159-167
    [24]S.E.G. Jayamaha, N.E. Wijeysundera, S.K. Chou. Effect of rain on the heat gain through building walls in tropical climates[J]. Building and Environment,1997,32(5):465-447
    [25]S.E.G. Jayamaha, S.K. Chou, N.E. Wijeysundera. Accounting for Rain Effets in Building Energy Estimation[J]. Interantional Journal of Energy Research,1998,22:61-78
    [26]S.K. Chou, N.E. Wijeysundera, S.E.G. Jayamaha. Determining the heat flow through building walls under simulated actual weather patterns[J]. Interantional Journal of Energy Research,1995,19:243-251
    [27]S.E.G.Jayamaha. Heat and moisture transfer through building envelope components subjected to outdoor weather conditions including rain [D]. National University of Singapore,1996
    [28]S.K. Chou, N.E. Wijeysundera, S.E.G. Jayamaha. Measurement of the Heat transfer coefficient for walls[J]. Building and Environment,1996,31(5):399-407
    [29]Taylor-Firth A., Flatt DE.. Climatic simulation and environmental monitoring—a facility for realistic assessment of construction materials in-service performance [J]. Construction and Building Materi-als,2001,5(1):3-7
    [30]Laycock EA, Hetherington S., Hall. M.Damptowers—understanding and controlling the ingress of driven rain through exposed solid masonry wall structures[J]. London: Confidential report for English Heritage,2002.
    [31]Matthew R. Hall. Assessing the environmental performance of stabilized rammed earth walls using a climatic simulation chamber[J]. Building and Environment.2007(42):139-145
    [32]Whitaker S.. Simultaneous head mass and momentum transfer in porous media:A thory of dring[J]. Advances in heat transfer,1977:119-203
    [33]Tenwolde A.. Steady-state one-dimensional water vapor movement by diffusion and convection in a multilayered wall[J]. ASHRAE Transactions,1985,91(1A):322-342
    [34]Burch D.M.. An analysis of moisture accumulation in walls subjected to hot and humid climates[J]. ASHRAE Transactions,1993,99(2):1013-1022
    [35]Tao Y.X.. Besant R.W, Rezkallah K.S.. The transient thermal response of a glass-fiber insulation slab with hygroscopic effects[J]. Int. J. of Heat and Mass Transfer,1992a(35):1155-1167
    [36]Stewart W.E.Jr.. Effect of air pressure differential on vapor flow through sample building walls[J]. ASHRAE Transactions,1998,104(2):17-24
    [37]Liesen R.J, Pedersen ransfer C.O.. Modeling the energy effects of combined heat and mass in building elements:Part 1-Theory[J]. ASHRAE Transactions,1999,105 (2):941-953
    [38]王补宣,王仁.建筑材料导热系数[J].工程物理学报:1983(4):146-152
    [39]王补宣,虞维平.在第三类边界条件下测定含湿毛细多孔介质热湿迁移特性的方法[J].工程物理学报.1987(8):363-369
    [40]陈永成,陈启高.建筑墙体潮湿区湿度计算力法研究[J].重庆建筑大学学报.1997(19):16-22
    [41]陈永成,陈启高.围护结构吸湿区湿分布的分析解[J].重庆建筑大学学报.1997(19):30-37
    [42]陈启高.房屋围护结构中的热湿迁移计算与设计理论[J].国家自然科学基金资助项目结题专著.1990
    [43]李友荣.多孔介质对流干燥过程的热力学理论[D].重庆大学,1999
    [44]刘才丰.吸湿被动蒸发通风屋顶热质迁移机理及热环境研究[D].重庆大学,2001
    [45]苏向辉.多层多孔结构内热湿耦合迁移特性研究[D].南京航空航天大学,2002
    [46]贾永英.建筑墙体热质耦合传递数值模拟[D].大庆石油学院,2002
    [47]闫增峰.生土建筑室内热湿环境研究[D].西安西安建筑科技大学,2003
    [48]孟庆林.建筑表面被动蒸发冷却[M].广州:华南理工大学出版社,2001
    [49]孟庆林,陈启高,冉茂宇.关于蒸发换热系数he的证明[J].太阳能学报,1999,20(2):216-219
    [50]冯雅,陈启高.种植屋面热过程的研究,太阳能学报[J].1999,20(3):311-315
    [51]孟庆林.自然气候控制多孔含湿材料蒸发冷却的热湿特征[J].西安建筑科技大学学报,2001,33(4):325-1328
    [52]唐鸣放,孟庆林.屋面多孔材料层在干湿状态下的隔热性能[J].建筑技术,2000,31(10):311-315
    [53]何化岳.湿多孔材料被动防热技术研究[D].西安建筑科技大学,2006
    [54]孟庆林,张玉,张磊.热气候风洞内测定种植屋面当量热阻[J].暖通空调,2006,36(10):111-113
    [55]广东省气象网.广州气候[EB/OL]. http://www.grmc.gov.cn/Article/2009/09/24 /Article 1334.html,2009.09.24
    [56]中央气象局,中国科学院地球物理研究所联合资料室.中国降水资料[M].北京:中央气象局,1955
    [57]中央气象局.1951-1970中国逐日降水资料[M].北京:中央气象局,1975
    [58]世界气象组织.气象仪器和观测方法指南(第六版),1996
    [59]天气月刊编辑委员会编.云、雾、降水[M].北京:科学普及出版社,1958:61
    [60]李宪之.降水问题[M].北京:海洋出版社,1987:78-79
    [61]林之光.中国气候[M].北京:气象出版社,1987:45
    [62]谢云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4):6-11
    [63]QX/T 52-2007,地面气象观测规范第8部分:降水观测[S].气象出版社,2007
    [64]中国建设指南网.雨量等级[EB/OL]. http://www.zgjszn.com/html/2009313 /200931311942KnowledgeOfwater2341.shtml,2009.03.13
    [65]中华人民共和国水利部.什么是雨量,雨量等级是如何划分的[EB/OL]. http://www.mwr.gov.cn/ztpd/201 Oztbd/201 Ofxkh/rwkhswcbcs/cs/swj bzs/201008/t2010080 6 232626.html,2010.08.06
    [66]中华人民共和国水利部.暴雨预警信号如何分级,怎么样防御[EB/OL]. http://www.mwr.gov.cn/ztpd/201 Oztbd/201 Ofxkh/fwkhswcbcs/cs/fzbljbcs/201008/t201008 06 232631.html,2010.08.06
    [67]林之光.中国科普佳作精选气象万千[M].湖南教育出版社,1999:31
    [68]广州气象网.雨量等级标准[EB/OL]. http://www.tqyb.com.cn/NewTqyb/QXKP.asp, 2006
    [69]屠其璞,王俊德,丁裕国等.气象应用概率统计学[M].北京:气象出版社,1984:2,104-118,353-373,111
    [70]汪明明.雨水池设计理论研究[D].北京:北京工业大学,2008:19-21
    [71]Grayman, W.M.,P.S. Eagleson. Evaluation of radar and raingage systems for flood forecasting[D]. P.M. Parsons Laboratory. Report. No.138, Mass. Institute of Technology, Cambridge, Mass,1971:324
    [72]Mikhailova E.A., Bryant R.B., Schwager S.J. et. Predicting rainfall erosivity in Honduras[J]. Soil Sci.Soc. Am. J.,1997,61:273-279
    [73]Haan. C.T., Allen, D.M., Street, J.O.. A Markov chain model of daily rainfall. Water Resource[J].1976,12(3):443-449
    [74]Stern.R.D.. Analysis of daily rainfall at Samara Nigeria, using a simple two-part model[J]. Arch. Met. Geophy..1980,28:123-135.
    [75]Stern, R.D.. The calculation of probability distribution for models of daily precipitation[J]. Arch. Met. Geophy..1980,28:137-147.
    [76]Garbutt, D.J., Stern, R.D., Dennett et. A comparison of the rainfall climate of eleven places in West Africa using a two-part model for daily rainfall[J]. Arch. Met. Geophy..1981,29:137-155.
    [77]Jackson, I.J.. Dependence of wet and dry days in the tropics[J]. Arch. Met. Geophy..1981,29:167-179.
    [78]Jimoh, O.D., Webster, P.. Optimum order of Markov chain for daily rainfall in Nigeria[J]. Hydrol.1996,185:45-69.
    [79]黄显峰,邵东国,阳书敏.降雨时间序列分解预测模型及应用[J].中国农村水利电力,2007,9:6-8
    [80]朱元甡,金光炎.城市水文学[M].中国科学技术出版社,1991:101-124
    [81]M.J.霍尔.城市水文学[M].河海大学出版社,1989:30-53
    [82]王晓华.水文学[M].华中科技大学出版社,2006:143
    [83]史玉虎,张洪江,潘磊等.长江三峡花岗岩区降雨特性对管流的影响[J].东北林业大学报,2004,32(3):33-36
    [84]周淑贞,张超,张如一等.高等学校试用教材气象学与气候学实习[M].人民教育 出版社,1979:128-133,148-150
    [85]段文标.气象学实验教程[M].东北林业大学出版社,2006:160
    [86]杨继武.农业气象学[M].中央广播电视大学出版社,1989:76
    [87]朱炳海.中国气候[M].科学出版社,1962: 97-98
    [88]薛积彬,钟巍.1470年以来广东地区降水量的定量重建及其探讨[J].华南师范大学学报(自然科学版).2006,1:125-132
    [89]彭丽英,王谦谦,马慧.华南前汛期暴雨气候特征的研究[J].南京气象学院学报.2006,29(2):249-253
    [90]余功梅.华南地区近40年降水的气候特征[J].热带气象学报.1996,(2)3:252-256
    [91]吴尚森,黄成昌,薛惠娴.华南后汛期的年际变化[J].热带气象.1996,4:348-355
    [92]朱昆鹏.广州市分区雨量分析计算[J].广东水利水电.2005,3:70-72
    [93]季杰.严寒地区建筑墙体湿迁移对能耗影响的研究[D].哈尔滨:哈尔滨建筑工程学院,1991
    [94]GB/T 13475-92,建筑构件稳态热传递性质的测定标定和防护热箱法[S].北京:中国标准出版社,1992
    [95]王珍吾,孟庆林,张百庆.双面热流计法现场测墙体构造热阻[J].建筑节能,2004,4:38-40
    [96]王补宣.多孔介质传热传质研究的意义与现状[J].中国科学基金,1991,1:23-25
    [97]韩吉田,归柯庭等.测量含湿多孔介质局部含湿量的针型电容法[J].计量学报,1996,17(3):178-180
    [98]史锦珊、齐广学.中子法在线湿度测量[J].自动化技术与应用:1983,Ⅱ(4). p25-30
    [99]朱建堂、陈向东.激光、红外、微波NDT新技术的应用于发展[J].实用测试技术,1996,4:46-49
    [100]姜宇、丁雪梅等.密度无关的物料含水率微波测量方法[J].哈尔滨工业大学学报,2007,39(11):1829-1832
    [101]左春英、定言镁.微波测湿原理及其应用[J].微波学报,2005,21(增刊):153-156
    [102]MOIST 200B OPERATION MANUAL[R]. hf sensor GmbH
    [103]GB/T 20313-2006/ISO12570:2000,建筑材料及制品的湿热性能含湿量的测定烘干法[S].北京:中国标准出版社,2006
    [104]GB/T 20312-2006/ISO12571:2000,建筑材料及制品的湿热性能吸湿性能的测定[S].北京:中国标准出版社,2006
    [105]Dr.-Ing. A. Goller, Dipl.-Ing. A. Handro, Dipl.-Phys. J. Landgraf. A New Microwave Method for Moisture Measurement in Building Materials[R]. hf sensor GmbH
    [106]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006
    [107]胡玉坤,丁静.多孔介质内部传热传质规律的研究进展[J].广东化工,2006,33(11):44-47
    [108]张燎原.建筑物外墙热湿传递过程的数值模拟[D].北京:北京交通大学,2006
    [109]Bauklimatik-Dresden. Software for Research and Practitioners [EB/OL]. http://www.bauklimatik-dresden.de/index.php?aLa=en
    [110]Fraunhofer IBP. Software WUFI Introduction [EB/OL]. http://www.wufi-pro.com, 2010.8.30
    [111]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1955
    [112]A.V.Luikov. Heat and Mass Transfer[M]. Moiscow:Mir Publishers,1980
    [113]J.Bear and Y. Bechmat. Introduction to Modeling of Transport Phenomena in Pprous Media[J]. Kluwer Academic Publishers,1991
    [114]王中华.湿稳定状态确定及建筑热工缺陷红外测试基础研究[D].哈尔滨:哈尔滨工业大学,2006:21
    [115]Roels et al. Interlaboratory Comparison of the Measuremet of BasicHygric Properties of Porous Building Materials[J]. Journal of Thermal Envelope and Building Science, 2004(27):261-276
    [116]广州市墙体材料革新与建筑节能管理办公室.新型墙体材料的干燥收缩及使用建议[EB/OL]. http://www.gzqgb.com/qgb/ArticleContent.aspx?article_id=74, 2007.12.17
    [117]李魁山,张旭,韩星等.建筑材料等温吸放湿曲线性能实验研究[J].建筑材料学报,2009,12(1):81-84
    [118]裴清清,陈在康.几种常用建材的等温吸放湿线试验研究[J].湖南大学学报(自然科学版),1999,26(4):96-99
    [119]华南理工大学等.建筑物理[M].广州:华南理工大学出版社,2002
    [120]张玉.建筑多孔材料气候蒸发量的风洞实验方法研究[D].广州:华南理工大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700