用户名: 密码: 验证码:
视觉导航的轮式移动机器人运动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动导引车AGV(Automated Guided Vehicle)作为一种轮式移动机器人,广泛用于机械、汽车、电子、造纸、烟草、制药和食品等众多行业的自动化物流输送,在国内外市场上具有很大的应用需求,研发具有自主知识产权的高性能AGV具有重要的理论意义和工程应用价值。
     基于视觉的标线跟踪导航只需识别人工设置的导引标线,可达到很高的导航精度和实时性。两轮差速驱动能实现AGV的零半径转向,表现出良好的机动性。本文针对视觉导航和差速转向的AGV,从理论研究与技术开发相结合的角度努力提高其运动控制性能。
     在理论研究方面,围绕着如何通过调节速度差控制量消除AGV位姿偏差和如何通过调节电压控制量消除驱动轮速度误差两条技术主线,深入研究基于有限纠偏能力的路径跟踪算法和保证跟踪输出的伺服控制算法。首先比较运动学、动力学和控制受限的运动学三类移动机器人运动控制方法,提出了一种包含路径跟踪和伺服控制的混合运动控制模型,通过速度和加速度约束以及速度差控制量匹配路径跟踪算法的位姿纠偏能力与伺服控制算法的速度纠偏能力。
     其次研究AGV的路径跟踪问题,分析线性二次型调节器LQR和预测控制在优化目标选取、控制量超限和控制步数设置等方面的难点。对小偏差情况提出了一种基于多步运动预测的LQR最优控制算法,通过纠偏协调性最优的多步运动控制同步消除两种位姿偏差,通过最小化速度和加速度约束下的控制步数保证可实现的最快跟踪。对大偏差情况提出了一种基于视野状态分析的智能预测迭代控制算法,以最优偏差状态转化策略描述控制目标,取代二次型加权和形式的目标函数,通过同步控制算法协调消除理想纠偏状态的两种位姿偏差。
     再次研究驱动系统的伺服控制问题,将系统模型辨识和PID参数整定描述为多目标优化问题。提出了一类基于精英导向机制的Pareto型多目标遗传算法,通过精英导向、多样性保持和多种群进化机制,快速有效地定向搜索满足决策偏好(路径跟踪需求)的Pareto最优解。
     在技术开发方面,研究AGV运动控制的多智能体功能建模和嵌入式技术实现,提出了一种基于多智能体结构的嵌入式系统设计方法,建立了控制器智能体向智能体结构和任务的转化模型,为有效实现路径跟踪和伺服控制算法提供了一种高性能嵌入式控制器。
     本文先通过计算机数值仿真验证所提出理论的可行性,再利用嵌入式技术将理论研究成果转化为高性能AGV车载控制器,并成功应用于自行开发的视觉导航AGV系统(NHAGV)。经过大量系统运行测试与路径跟踪实验,实验结果充分验证了本文所提出的控制技术的有效性和所开发的AGV车载控制器的先进性,这为研发具有自主知识产权的高性能AGV车载控制器奠定了坚实的技术基础。
As a kind of wheeled mobile robot, Automated Guided Vehicle (AGV) has been used widely in manufacturing, automotive, electronics, paper, tobacco, pharmaceutical, food and other industries for automated material transportation, and there is a great demand for AGV product in the domestic and international markets. Developing a high-performance AGV with independent intellectual property rights has a great theoretical significance and engineering value.
     Vision-based tracking navigation only needs to identify guiding lines preset manually, which can achieve a very high accuracy and real-time. Two-wheel differential driving can make AGV turnaround at a zero radius, which shows a good maneuverability. This paper attempts to improve the motion control performance for an AGV with vision navigation and differential turnaround in the perspective of integrating theoretical research with technology development.
     At the level of theoretical research, two main technical guidelines on how to correct pose errors of AGV by adjusting speed difference output and how to eliminate speed error of driving wheel by regulating voltage output are followed. This paper has made an intensive research on path tracking algorithm with the limited control capability and servo control algorithm able to implement tracking output. Firstly, three kinds of motion control approaches for mobile robots, including kinematics, dynamics, and kinematics with control constraints are compared. A hybrid motion control model containing path tracking and servo control is presented. Speed and acceleration constraints and speed difference output are used to match the capability of path tracking algorithm to correct pose errors with that of servo control algorithm to eliminate speed error.
     Secondly, path tracking of AGV is investigated. The difficulties in optimized objective selection, output beyond constraints, and control step setting are analyzed for linear quadratic regulator (LQR) and predictive control. A LQR optimal control algorithm based on multi-step motion prediction is proposed for the small error state, which uses multi-step motion control with the best coordination to reduce two pose errors synchronously, and minimizes control steps under speed and acceleration constraints to keep an achievable fastest tracking. An intelligent predictive iterative control algorithm based on state analysis of visual field is proposed for the large error state, which replaces a quadratic weighted sum function with an optimal conversion strategy of error states as a description of control objectives, and uses a synchronous control algorithm to coordinate a correction process of two pose errors for the ideal rectification state.
     Thirdly, servo control of driving system is discussed, in which system model identification and PID parameter tuning are both expressed as the multi-objective optimization. A kind of Pareto-type multi-objective genetic algorithm based on elitist guidance mechanism is proposed, which makes a fast, effective and directional search for Pareto optimal solutions by using these mechanisms of elitist guidance, diversity preservation and multi-population evolution, in order to meet decision-making preferences that are required by path tracking.
     At the level of technology development, functional modeling by using a multi-agent system view and implementation by using embedded technology is presented for motion control of AGV. An embedded system design method based on a multi-agent structure is presented, and a transformation model from a controller agent to an agent structure and task is constructed, which can provide a high -performance embedded controller for path tracking and servo control algorithms effectively.
     Computer numerical simulation is used to verify the feasibility of the theories proposed in this paper, and then theoretical research results are converted into a high-performance AGV vehicular controller based on embedded technology, which has been applied successfully to an AGV (named NHAGV) with vision navigation we develop independently. Many system operation tests and path tracking experiments are carried out. Experiment results have sufficiently verified the effectiveness of the control techniques and the advantages of AGV vehicular controller presented in this paper, which provides a solid technical foundation for developing a high-performance AGV vehicular controller with independent intellectual property rights.
引文
[1]蔡自兴.机器人学[M].北京:清华大学出版社, 2000: I-V.
    [2]张毅,罗元,郑太雄等.移动机器人技术及其应用[M].北京:电子工业出版社, 2007: 2.
    [3]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题[J].控制与决策, 2002, 17(4): 385-390.
    [4]欧青立,何克忠.室外智能移动机器人的发展与其相关技术研究[J].机器人, 2000, 22(6): 519- 536.
    [5] Meystel A. Autonomous mobile robots vehicles with cognitive control [M]. World Scientific Publishing Co. Pte. Ltd., 1991.
    [6] Nilsson N J. A mobile automation: an application of artificial intelligence techniques [A]. Proc. of the 1st Int. Joint Conf. on Artificial Intelligentce, 1969: 509-520.
    [7] Moravec H P. Robot rover visual navigation [M]. UMI Res Press, 1981.
    [8] Elfes A, Talukdar S N. Distributed control system for the CMU rover [R], Report of the Robotic Institute at Carnegie–Mellon University, Pittsburgh, 1983.
    [9]王宏,何克忠,张钱.智能车辆的自主驾驶与辅助导航[J].机器人, 1997, 19(2): 155-160.
    [10] Iagnemma K,Rzepniewski A,Dubowsky S,et al. Control of robotic vehicles with actively articulated suspensions in rough terrain [J].Autonomous Robots,2003,14(1):5-16.
    [11] Estier T, Crausaz Y, Merminod B, et al. An innovative space rover with extended climbing abilities [A]. Proc. of the 2000 Space and Robotics [C], Albuquerque, 2000, v2:201-206.
    [12] Schenker P S, Huntsberger T L, Pirjanian P, et al. Planetry rover developments supporting Mars exploration, sample return and future human-robotic colonization [J]. Autonomous Robots, 2003, 14(2): 103-126.
    [13] Fish S. DARPA FCS Unmanned Ground Vehicle Research Initiative [A]. Proc. of SPIE– The 2002 Int. Society for Optical Engineering [C], Orlando, 2002: 107-111.
    [14] Madhavan R, Messina E. Information-based intelligent Unmanned Ground Vehicle Navigation [A]. IROS2003 [C], Las Vegas, 2003, 4: 3485-3490.
    [15] Lacagnina M, Muscato G, Sinatra R, et al. Modeling and simulation of multibody mobile robot for volcanic environment explorations [A]. IROS2002 [C], Lausnne, 2002, 1: 714-720.
    [16] Younqkak M, Seunqwoo K, Donqik O, et al. A study on development of home mess-cleanup robot McBot [A]. Proc. of the 2008 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics [C], Xian, 2008: 114-119.
    [17] Elkmann N, Luck M, Kruger T, et al. Kinematics, sensors and control of the fully automated fa?ade-cleaning robot SIRIUSc for the Fraunhofer headquarters building, Munich [J]. Industrial Robot, 2008, 35(3): 224-227.
    [18] Braqa R A M, Petry M, Oliveira E, et al. Multi-level control of an intelligent wheelchair in a hospital environmentusing a cyber-mouse simulation system [A]. Proc. of the 5th Int. Conf. on Informatics in Control, Automation and Robotics [C], Portugal, 2008, v2: 179-182.
    [19] Kim H J, Ryu D H. Smart wheelchair based on ultrasonic positioning system [A]. Proc. of the 10th Int. Conf. on Computer Helping People with Special Needs [C], Austria, 2006, v4061: 1014-1020.
    [20] Daisuke C, Wataru M, Songmin J, et al. A robotic walker with standing assistance [A]. Proc. of the 2008 IEEE Int. Conf. on Information and Automation [C], Zhangjiajie, 2008: 452-457.
    [21] Shibusawa T, Kobayashi Y, Kuno Y. Robotic wheelchair for museum visit [A]. Proc. of the 2008 SICE Int. Conf. on Instrumentation, Control and Information Technology [C], Tokyo, 2008: 20-22.
    [22] Taipalus T, Kazuhiro K. Development of service robot for fetching objects in home environment [A]. Proc. of the 2005 IEEE Int. Symposium on Computational Intellligence in Robotics and Automation [C], Finland, 2005: 451-456.
    [23] Ming A G, Xie Z X, Yoshida T, et al. Home service by a mobile manipulator system– system configuration and basic experiments [A]. Proc. of the 2008 IEEE Int. Conf. on Information and Automation [C], Zhangjiajie, 2008: 464- 469.
    [24]张培忠.柔性制造系统[M].北京:机械工业出版社, 1998: 102.
    [25] Jerald J, Asokan P, Saravanan R,et al. Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm [J]. Int. Journal of Advanced Manufacturing Technology, 2006, 29(5): 584 -589.
    [26] Buyurgan N, Meyyappan L, Saygin C,et al. Real-time routing selection for automated guided vehicles in a flexible manufacturing system [J]. Journal of Manufacturing Technology Management, 2007, 18(2): 169-181.
    [27] Srivastava S C, Choudhary A K, Kumar S, et al. Development of an intelligent agent-based AGV controller for a flexible manufacturing system [J]. Int. Journal of Advanced Manufacturing Technology, 2008, 36(7-8): 780-797.
    [28] Tong F, Zu T Z. An ultrasonic navigation automatic guided vehicle system used in CIMS [A]. Proc. of the 2002 World Congress on Intelligent Control and Automation [C], Shanghai, 2002, v4: 2645-2649.
    [29] Liu S N. Optimization problem for AGV in automated warehouse system [A]. Proc. of the 2008 IEEE Int. Conf. on Service Operations and Logistics, and Informatics [C], Beijing, 2008: 1640-1642.
    [30] Jang, Y J. TFT-LCD automated guided vehicle systems analysis using Axiomatic Design Theory [A]. Proc. of the 15th Int. Symposium on Semiconductor Manufacturing [C], Tokyo, 2007: 225-228.
    [31] Roche P. A new application of automatic guided vehicles (AGVS) [A]. Proc. of the 2003 TAPPI Spring Technical Conference and Exhibit [C], Chicago, 2003: 463-467.
    [32] Muller D J, Cardinal S M, Baumbach J. Complexities of AGV modeling in newspaper roll delivery system [A]. Proc. of the 2002 Winter Simulation Conference [C], United States, 2002, v1: 1046-1051.
    [33] Hoshino S, Ota J, Shinozaki A, et al. Improved design methodology for an existing automated transportation systemwith automated guided vehicles in a seaport container terminal [J]. Advanced Robotics, 2007, 21(3-4): 371-394.
    [34]樊跃进,片春媛. AGV技术在发动机行业中的应用[J].柴油机, 2006, 28(3): 38-41.
    [35]任晓华.新型飞机自动化装配技术[J].航空制造技术, 2005(12): 32-35.
    [36] Dai Z H, Wu M, Chen X. Multi-robot cooperative transportation using formation control [A]. Proc. of the 27th Chinese Control Conference [C], Kunming, 2008: 346-350.
    [37] Yang L, Cao Z Q, Zhou C, et al. Observation-based multi-robot cooperative formation control [A]. Proc. of the 1st Int. Conf. on Intelligent Robotics and Applications [C], Wuhan, 2008: 1117-1126.
    [38]谷玉川. AGV驱动转向一体化机构及其导航控制研究. [硕士学位论文],吉林大学, 2006:2.
    [39]叶菁.磁导式AGV控制系统设计与研究. [硕士学位论文],武汉理工大学, 2006.
    [40] Leonard J, Durrant-Whyte H F. Mobile robot localization by tracking geometric beacons [J]. IEEE Trans on Robotics and Automation, 1991, 7(3): 376-382.
    [41] Anderson R, Spone M. Bilateral control of teleoperators with time delay [J]. IEEE Trans. on Automatic Control, 1989, 34 (3): 494-501.
    [42] Araújo R, Almeida A T D. Learning sensor-based navigation of a real mobile robot in unknown worlds [J]. IEEE Trans on Systems, Man and Cybernetics, Part B: Cybernetics, 1999, 29(2): 164-178.
    [43] Luca T, Daniele N. Hough localization for mobile robots in polygonal environments [J]. Robotics and Autonomous Systems, 2002, 40(l): 43-58.
    [44] Li X D, Huang X H, Wang M. Sonar grid map building of mobile robots based on DSmT [J]. Information Technology Journal, 2006, 5(2): 267-272.
    [45] Wang H M, Hou Z G, Ma J,et al. Sonar feature map building for a mobile robot [A]. Proc. of the 2007 IEEE Int. Conf. on Robotics and Automation [C], Italy, 2007: 4152-4157.
    [46] Sasaki H, Kubota N, Taniguchi K. Evolutionary computation for simultaneous localization and mapping based on topological map of a mobile robot [A]. Proc. of the 1st Int. Conf. on Intelligent Robotics and Applications [C], Wuhan, 2008: 883-891.
    [47]蔡则苏,洪炳镕,魏振华.使用NDT激光扫描匹配的移动机器人定位方法[J].机器人, 2005, 27(5): 414-419.
    [48]房芳,马旭东,戴先中.基于霍夫空间模型匹配的移动机器人全局定位方法[J].机器人, 2005, 27(1): 34-40.
    [49]厉茂海,,洪炳镕,罗荣华等.基于单目视觉的移动机器人全局定位[J].机器人, 2007, 29(2): 140-178.
    [50]庄严,王伟,王珂等.移动机器人基于激光测距和单目视觉的室内同时定位和地图构建[J].自动化学报, 2005, 31(6): 925-933.
    [51]许俊勇,王景川,陈卫东.基于全景视觉的移动机器人同步定位与地图创建研究[J].机器人, 2008, 30(4): 289 -297.
    [52] Yvan J B, Jeffrey E F, Michael P D. Autonomous vehicle navigation with real-time 3D laser based positioning for construction [J]. Automation in Construction, 1996, 5: 261-272.
    [53] Ohno K, Tsubouchi T, Shigematsu B, et al. Differential GPS and odometry-based outdoor navigation of a mobile robot [J], Advanced Robotics, 2004, 18(6): 611-635.
    [54] Chen C, Wang B, Ye Q T. Application of automated guided vehicle (AGV) based on inductive guidance for newsprint rolls transportation system [J]. Journal of Dong Hua University (English Edition), 2004, 21(2): 88-92.
    [55]廖华丽,周祥,董丰等.基于模糊控制的AGV寻迹算法[J].哈尔滨工业大学学报, 2005, 37(7): 896-898.
    [56] Pang Y S, De L C, Adriana L,et al. Bipolar magnetic positioning system for Automated Guided Vehicles [A]. Proc. of the 2008 IEEE Intelligent Vehicles Symposium [C], Netherlands, 2008: 883-888.
    [57] Beccari G, Caselli S, Zanichelli F, et al. Vision-based line tracking and navigation in structured environments [A]. Proc. of the 1997 IEEE Int. Symposium on Computational Intelligence in Robotics and Automation [C], USA, 1997: 406-411.
    [58] Nakamura T, Oohara N, Ogasawara T, et al. Fast self-localization method for mobile robots using multiple omnidirectional vision sensors [J]. Machine Vision and Applications, 2003, 14(2): 129-138.
    [59] Shimizuhira W, Fujii K, Maeda Y. Fuzzy behavior control for autonomous mobile robot in dynamic environment with multiple omnidirectional vision system [A]. Proc. of the 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems [C], Japan, 2004, v4: 3412-3417.
    [60] Cucchiara R, Perini E, Pistoni G. Efficient stereo vision for obstacle detection and AGV navigation [A]. Proc. of the 14th Int. conf. on Image Analysis and Processing [C], Italy, 2007: 291-296.
    [61] Betke M, Gurvits L. Mobile Robot Localization Using Landmarks [J]. IEEE Trans. on Robotics and Automation, 1997, 13(2):251-263.
    [62] Gowdy J. Emergent achitectures: a case study for outdoor mobile robots. [Ph.D. Dissertation], Robotics Institute, Carnegie Mellon University, 2000.
    [63] Gregor R, Lutzeler M, Pelkofer M, et al. EMS-vision: a perceptual system for autonomous vehicles [A]. Proc. of the Intelligent Vechicles Symposium [C], USA, 2000: 52-57.
    [64] Broggi A, Bertozzi M, Fascioli A. ARGO and the MilleMiglia in automatic tour [J]. Intelligent Systems and Their Applications, 1999, 14(1): 55-64.
    [65] Zhang H B, Yuan K, Mei S Q, et al. Visual navigation of an automated guided vehicle based on path recognition [A]. Proc. of the 2004 Int. Conf. on Machine Learning and Cybernetics [C], Shanghai, 2004, v6: 3877-3881.
    [66] Kuang P, Zhu Q X, Liu G C. Real-time road lane recognition using fuzzy reasoning for AGV vision system [A]. Proc. of the 2004 Int. Conf. on Communications, Circuits and Systems [C], Chengdu, 2004, v2: 989-993.
    [67] Jiang Y, Cao J, Liu R H, et al. An algorithm for automatic guided vehicle based on machine vision and DR [A]. Proc. of the 2006 World Congress on Intelligent Control and Automation [C], Dalian, 2006, v2: 8582-8586.
    [68]付梦印,谭国悦,王美玲.一种基于单目视觉的移动机器人室内导航方法[J].光学技术, 2006, 32(4): 591-597.
    [69]胡斌,张朋飞,何克忠.一种用于室外移动机器人的快速有效的车道线识别方法[J].机器人, 2006, 28(4): 394-399.
    [70] Wang R B, Li B, Chu J W, et al. A new optimal controller for intelligent vehicle headway distance [A]. IEEE Intelligent Vehicle Symposium of IV, France, 2002.
    [71]王荣本,储江伟,冯炎等.一种视觉导航的实用型AGV设计[J].机械工程学报, 2002, 38(11): 135-138.
    [72] Tong F, Tso S K, Xu T Z. A high precision ultrasonic docking system used for automatic guided vehicle [J]. Sensors and Actuators, 2005, 118(2): 183-189.
    [73]卢耀祖,罗志凡,张氢.一类自主移动小车的停车控制方法[J].同济大学学报, 2008, 36(11): 1569-1573.
    [74] Luca A D, Oriolo G, Vendittelli M. Control of wheeled mobile robots: An experimental overview. In RAMSETE- Articulated and Mobile Robotics for Services and Technologies [M]. Springer: 2001, 270: 181-216.
    [75] Zhang J R, Xu S J, Rchid A. Path tracking control of vehicles based on Lyapunov approach [A]. Proc. of the 2002 American Control Conference [C], AK, 2002: 2132-2137.
    [76] Wang T Y, Tsai C C. Adaptive trajectory tracking control of a wheeled mobile robot via Lyapunov techniques [A]. Proc. of the 30th Annual Conference of the IEEE Industrial Electronics Society [C], Kerea, 2004: 389-394.
    [77] Jiang Z P, Nijmeijer H. Tracking control of mobile robots: a case study in backstepping [J]. Automatica, 1997, 33(7): 1393-1399.
    [78] Wu W G,Chen H T,Wang Y J. Backstepping design for path tracking of mobile robots [A]. Proc. of the 1999 IEEE/ RSJ Int. Conf. on Intelligent Robots and Systems [C], 1999: 1822-1827.
    [79]吴卫国,陈辉堂,王月娟.移动机器人的全局轨迹跟踪控制[J].自动化学报, 2001, 27(3): 326-331.
    [80]李世华,田玉平.非完整移动机器人的轨迹跟踪控制[J].控制与决策, 2002, 17(3): 301-305.
    [81] Bhat S P, Bernstein D S. Finite time stability of homogeneous systems [A]. American Control Conference [C], 1997: 2513-2514.
    [82]李世华,田玉平.非完整移动机器人的有限时间跟踪控制算法的研究[J].控制与决策, 2005, 20(7): 750-754.
    [83] Kim M S, Shin J H, Hong S G, et al. Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances [J]. Mechatronics, 2003, 13: 507-519.
    [84] Zhang Y L, Chung J H, Velinsky S A. Variable structure control of a differentially steered wheeled mobile robot [J]. Journal of Intelligent and Robotics Systems, 2003, 36(3): 301-314.
    [85]庄严,孙越,王伟.基于神经动力学的非完整移动机器人跟踪控制[J].机器人, 2007, 29(5): 485-491.
    [86] Wei K, Xi N, Tan J. Analysis and design of non-time based motion controller for mobile robots [A]. Proc. of the IEEE Int. Conf. on Robotics & Automation [C], Michigan, 1999: 2964-2969.
    [87]王栋耀,马旭东,戴先中.非时间参考的移动机器人路径跟踪控制[J].机器人, 2004, 26(3): 198-203.
    [88]王荣本,李兵,徐友春等.基于视觉的智能车辆自主导航最优控制器设计[J].汽车工程, 2001, 21(2): 97-100.
    [89]陈无畏,孙海涛,李碧春等.基于标示线导航的自动导引车跟踪控制[J].机械工程学报, 2006, 42(8): 164-170.
    [90] Hemami A, Mehrabi M G. Synthesis for an optimal control law for path tracking in mobile robots [J]. Automatica,1992, 28(2): 383-387.
    [91]张剀,赵雷.磁轴承飞轮控制系统设计中方法的应用研究[J].机械工程学报, 2004, 40(2):127-131.
    [92]王仲民,岳宏,李充宁等.轮式移动机器人轨迹跟踪的最优控制[J].机械科学与技术, 2006, 25(1): 21-23.
    [93]周俊,姬长英.基于视觉导航的轮式移动机器人横向最优控制[J].机器人, 2002, 24(3): 209-212.
    [94]谷东兵,胡豁生,Michael Brady.移动机器人的运动预测控制[J].仪器仪表学报, 2000, 21(2): 155-158.
    [95]史恩秀,黄玉美,史文浩.轮式机器人轨迹跟踪的预测控制[J].机械科学与技术, 2004, 23(10): 1234-1241.
    [96]郭旭,熊蓉,胡协和.全方位移动机器人的运动预测控制[J].电机与控制学报, 2007, 11(1): 79-82.
    [97]徐琳,陆文娟,朱纪洪.六主动轮移动机器人的建模及路径跟踪[J].清华大学学报, 2003, 43(3): 385-388.
    [98] Ye J. Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot [J]. Neuro -computing, 2008, 71(7-9): 1561-1565.
    [99] Hajjaji A E, Bentalba S. Fuzzy path tracking control for automatic steering of vehicles [J]. Robotics and Autonomous Systems, 2003, 43: 203-213.
    [100] Elie M, Maarouf S, Hamadou S. A higher level path tracking controller for a four-wheel differentially steered mobile robot [J]. Robotics and Autonomous Systems, 2006, 54: 23-33.
    [101]李艳,高峰,林廷圻. 3自由度移动机器人的模糊跟踪控制器设计[J].西安交通大学学报, 2004, 38(5): 521-524.
    [102] Yu M, Chen J, Dou L H, et al. The optimization design of fuzzy controller based on an improved artificial immune algorithm [A]. Proc. of the 2008 Chinese Control and Decision Conference [C], Yantai, 2008: 3383-3387.
    [103] Rama M R A, Sivasubramanian K. Multi-objective optimal design of fuzzy logic controller using a self configu- rable swarm intelligence algorithm [J]. Computers and Structures, 2008, 86(23-24): 2141-2154.
    [104]徐友春,王荣本,李兵等.一种机器视觉导航的智能车辆转向控制模型设计[J].中国公路学报, 2001(7),14(3): 96-100.
    [105]李庆中,顾伟康,叶秀清等.移动机器人路径跟踪的智能预瞄控制方法研究[J].机器人, 2002(5), 24(3): 252- 255.
    [106] Yang X X, He K Z, Guo M H. Intelligent predictive control approach to path tracking problem of autonomous mobile robot [A]. Proc. of the 1998 IEEE Int. Conf. on Systems, Man and Cybernetics [C], USA, 1998, 4: 3301-3306.
    [107]熊光明,曹晓燕,高峻等.基于速度控制的轮式滑动转向移动机器人航向跟踪[J],北京理工大学学报, 2004, 24(8): 663-666.
    [108]孙多青,霍伟,杨枭.含模型不确定性移动机器人路径跟踪的分层模糊控制[J].控制理论与应用, 2004, 21(4): 489-494.
    [109] Jiang X H, Motai V, Zhu X Q. Predictive fuzzy logic controller for trajectory tracking of a mobile robot [A]. Proc. of the 2005 IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications [C], Finland, 2005: 28-30.
    [110]陈无畏,李碧春,孙海涛等.基于视觉导航的AGV模糊-最优控制研究[J].中国机械工程, 2006(12), 17(24): 2546-2550.
    [111] Hamed K, Mohammad H S, Mahmood F. Design of a navigator for the optimized path-tracking of underwater ROVs using a nero-genetic fuzzy controller [A]. Proc. of the 2006 World Automation Congress [C], Hungary, 2006.
    [112]张轲,吴毅雄,金鑫.基于高斯基模糊神经网络的移动焊接机器人[J].焊接学报, 2007, 28(9): 17-20.
    [113] Canuads C D, Sordalen O J. Exponential stabilization of mobile robots with nonholonomic constraints [J]. IEEE Trans. on Automatic Control, 1992, 37: 1791-1797.
    [114] Luo J, Tsiotras P. Control design for chained-form systems with bounded inputs [J]. Systems and control letters, 2000, 39(2): 123-131.
    [115]王朝立,霍伟,谈大龙.控制受限的一类非完整动力学系统的镇定问题[J].自动化学报, 2002, 28(2): 223-228.
    [116] Wang C L. Semiglobal practical stabilization of nonholonomic wheeled mobile robots with saturated inputs [J]. Automatica, 2008, 28(3): 816-822.
    [117] Pei X Z, Liu Z Y, Pei R. Robust trajectory tracking controller design for mobile robots with bounded input [J]. Acta Automatica Sinica, 2003, 29(6): 876-882.
    [118] Ren W, Sun J S, Beard R W, et al. Nonlinear tracking control for nonholonomic mobile robots with input constraints: An experimental study [A]. Proc. of the American Control Conference [C], USA, 2005, v6: 4923-4928.
    [119]韩光信.控制受限的非完整轮式移动机器人运动控制研究. [博士学位论文],吉林大学, 2009.
    [120] Xu H T, Yang S X. Tracking control of a mobile robot with kinematic and dynamic constraints [A]. Proc. of the 2001 IEEE Int. Symposium on Computational Intelligence in Robotics and Automation [C], Canada, 2001: 125-130.
    [121]徐俊艳,张培仁,程剑锋.基于Backstepping时变反馈和PID控制的移动机器人实时轨迹跟踪控制[J].电机与控制学报, 2004, 8(1): 35-38.
    [122]褚健,胡协和.关于最优调节器LQR鲁棒性的讨论[J].控制与决策, 1992, 7(6): 478-481.
    [123] Shi E X, Guo J J. Experiment study of multi-steop predictive control in AGV path tracking [A]. Proc. of the Int. Conf. on Automation and Logistics [C]. Jinan, 2007: 531-535.
    [124] Stavros G. Reactive trajectory tracking for mobile robots based on non linear model predictive control [A]. Proc. of the Int. Conf. on Robotics and Automation [C]. Roma, Italy, April 10-14, 2007: 3074-3079.
    [125] Sung J. Y., Yoon H. C., Jin B. P. Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach [J]. IEEE Trans. on Circuits and Systems, 2006, 53(6): 1381-1394.
    [126]张铭钧,高萍,徐建安.基于神经网络的自治水下机器人广义预测控制[J].机器人. 2008, 30(1): 91-96.
    [127]曹洋,项龙江,徐心和.基于全局视觉的轮式移动机器人轨迹跟踪控制[J].机器人. 2004, 26(1): 78-82.
    [128] Ljung L. System identification– theory for the user [M]. Englewood Cliffs: Prentice Hall: 1999.
    [129] Shin G W, Song Y J, Lee T B, et al. Genetic algorithm for identification of time delay systems from step responses [J]. Int. J. of Control, Automation and Systems, 2007, 5(1): 79-85.
    [130] Tan X, Yang H G. The optimization of nonlinear systems identification based on genetic algorithms [A]. Proc. of the 2006 Int. Conf. on Computational Intelligence and Security [C], Guangzhou, 2006: 266-269.
    [131]蒙祖强,蔡自兴.一种基于并行遗传算法的非线性系统辨识方法[J].控制与决策, 2003, 18(3): 367-374.
    [132] Liu D P. Genetic algorithms based parameter identification for nonlinear mechanical servo systems [A]. Proc. of the 1st IEEE Int. Conf. on Industrial Electronics and Applications [C], Singapore, 2006: 1-5.
    [133]薛开,吕元元,祝海涛.运动控制器的PID参数整定[J].哈尔滨工程大学学报, 2005, 26(5): 655-657.
    [134]徐峰,李东海,薛亚丽.基于ITAE指标的PID参数整定方法[J].中国电机工程学报, 2003, 23(8): 206-210.
    [135]吴晓朝,吴捷,李全国.一种基于满意度的PID参数整定方法[J].华南理工大学学报, 2005, 33(2): 39-42.
    [136] Meng X Z, Song B Y. Fast genetic algorithms used for PID parameter optimization [A]. Proc. of the IEEE Int. Conf. on Automation and Logistic [C], Jinan, 2007: 2144-2148.
    [137] Zhang J H, Zhuang J, Du H F, et al. PID controller optimization based on the self-organization genetic algorithm with cyclic mutation [A]. Proc. of the 6th Mexican Int. Conf. on Artificial Intelligence [C], Mexico, 2008: 277-284.
    [138] Ding Y M, Wang X Y, et al. Real-coded adaptive genetic algorithm applied to PID parameter optimization on a 6R manipulators [A]. Proc. of the 4th Int. Conf. on Natural Computation [C], Jinan, 2008: 635-639.
    [139]张兴华,朱筱蓉,林锦国.基于自适应遗传算法的多目标PID优化设计[J].系统工程与电子技术, 2006, 28(5): 744-746.
    [140] Dionisio S P, Joao O P P. Genetic algorithm based system identification and PID turning for optimum adaptive control [A]. Proc. of the 2005 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics [C], USA, 2005: 801-806.
    [141] Valarmathi K, Devaraj D, Radhakrishnan T K. Real-coded genetic algorithm for system identification and controller tuning [J], Applied Mathematical Modelling, 2009, 33(8): 3392-3401.
    [142] Kristinn K, Guy A D. System identification and control using genetic algorithm [J]. IEEE Trans. on System, Man and Cybernetics, 1992, 22(5): 1033-1046.
    [143] Rudolph G. Convergence anlysis of canonical genetic algorithm [J]. IEEE Trans. on Neural Networks, 1994, 5(1): 96-101.
    [144] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Trans. on Systems, Man and Cybernetics, 1994, 24(4): 656-667.
    [145]张世华,雎刚.一种实数编码的自适应遗传算法及其在热工过程辨识中的应用研究[J].中国电机工程学报, 2004, 24(2): 210-214.
    [146] Yu Y Q, Huang Y, Wang M H, et al. Fuzzy neural PID controller and tuning its weight factors using genetic algorithm based on different location crossover [A]. Proc. of the 2004 IEEE Int. Conf. on Systems, Man andCybernetics [C], Netherlands, 2004: 3709-3713.
    [147] Leung Y W, Wang Y P. Multiobjective programming using uniform design and genetic algorithm [J]. IEEE Trans. on System, Man and Cybernetics—Part C: Application and Reviews, 2000, 30(3): 293-304.
    [148] Das I, Dennis J. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems [J]. Structural Optimization, 1997, 14(1): 63-69.
    [149] Jin Y, Okabe T, Sendhoff B. Adapting weighted aggregation for multiobjective evolution strategies [A]. Proc. of the 1st Int. Conf. on Evolutionary Multi-criterion Optimization [C], Zurich: Springer-verlag, 2001: 96-110.
    [150] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Proc of the 1st Int. Conf. on Genetic Algorithms [C], Hillsdale, 1985: 93-100.
    [151] Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms– Part I: a unified formulation [J]. IEEE Trans. on System, Man and Cyber -netics– Part A: Systems and Humans, 1998, 28(1): 26-37.
    [152] Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithm [J]. Evolutionary Computation, 1994, 2(3): 221-248.
    [153] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
    [154]任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报, 2006, 18(1): 41-43.
    [155]冯士刚,艾芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用[J].电工技术学报, 2007, 22(12): 146-151.
    [156]胡江强,郭晨,李铁山.启发式自适应免疫克隆算法[J].哈尔滨工程大学学报, 2007, 28(1): 1-5.
    [157]赵亮,雎刚,吕剑虹.一种改进的遗传多目标优化算法及其应用[J].中国电机工程学报, 2008, 28(2): 96-102.
    [158]祁荣宾,钱锋,杜文莉等.基于精英选择和个体迁移的多目标遗传算法[J].控制与决策, 2007, 22(2): 164-168.
    [159] Wang U L, Yan W W, Shao H H. Multi-objective optimization based on Genetic Algorithm for PID controller tuning [J]. Journal of Harbin Institute of Technology, 2009, 16(1): 71- 74.
    [160] Jennings N R, Sycara K, Wooldridge M. A roadmap of agent research and development [J]. Auton Agents Multi -Agent Systems, 1998: 17-38.
    [161] Ramdane C A, Levy N, Djenidi H, et al. Agents paradigm to solve a complex optimization problem [A]. Proc. of the 1st IEEE Int. Conf. on Cognitive Informatics [C], Canada, 2002: 247-256.
    [162] Wooldridge M J. An introduction to multiagent systems [M]. New York: Wiley, 2002.
    [163] M C Neves and E Oliveira. A multi-agent approach for a mobile robot control system [A]. Proc. of the Workshop on Multi-agent Systems: Theory and Application [C], 1997: 1-14.
    [164] M Kolp, P Giorgini and J. Mylopoulos. Multi-agent architectures as organizational structure [J]. Autonomous Agents and Multi -agent Systems, 2006, 13: 3-25.
    [165] B Innocenti, B Lopez and J Salvi. A multi-agent architecture with cooperative fuzzy control for a mobile robot [J]. Robotics and Autonomous Systems, 2007, 55: 881-891.
    [166] Y Ono, H Uchiyama, W Potter. A mobile robot for corridor navigation: a multi-agent approach [A]. ACM Southeast Regional Confernce [C], 2004: 379-384.
    [167] van Breemen AJN. Agent-based multi-controller systems– a design framework for complex control problems. [Ph.D thesis], University of Twente, 2001.
    [168] Ning K J and Yang R Q. MAS based embedded control system design method and a robot development paradigm [J]. Mechatronics, 2006, 16: 309-321.
    [169]赵克利,孔德文.无人搬运车的新技术及瑞典和美国产品情况[J].起重运输机械, 2000, 8: 11-13.
    [170]储江伟,王荣本,郭克友等.基于机器视觉引导的两轮差速转向AGV控制问题的研究[J].机械与电子, 2002, 5: 51-55.
    [171]方正,杨华,胡益民等.嵌入式智能机器人平台研究[J].机器人, 2006, 28(1): 54-58.
    [172] Xiao J Z, Calle A, Ye J, et al. A mobile robot platform with DSP-based controller and omnidirectional vision system [A]. Proc. of the 2004 IEEE Int. Conf. on Robotics and Biomimetics [C], Shenyang, 2004: 844-848.
    [173] Chen C H, Liou S T. An embedded computing platform for robot [A]. Proc. of the 2008 IEEE Int. Conf. on Sensor Networks, Ubiquitous, and Trustworthy Computing [C], Taiwan, 2008: 445-450.
    [174] Susnea I, Susnea A, Vasiliu G, et al. Path following, real-time, embedded fuzzy control of a mobile platform wheeled mobile robot [A]. Proc. of the 2008 IEEE Int. Conf. on Automation and Logistics [C], Qingdao, 2008: 268-272.
    [175] Baturone I, Moreno V F, Blanco V, et al. Design of embedded DSP-Based fuzzy controllers for autonomous mobile robots [J]. IEEE Trans. on Industrial Electronics, 2008, 55(2): 928-936.
    [176]肖本贤,张松灿,郭福权.基于线阵CCD导航和双DSP的AGV装置研究[J].电子测量与仪器学报, 2006, 20(1): 79-84.
    [177]张云洲,吴成东,薛定宇等.自主移动机器人嵌入式控制系统研究[J].东北大学学报, 2008, 29(1): 29-32.
    [178]黄操,孙振国,陈强等.移动式修焊机器人双DSP嵌入式视觉反馈控制系统[J].清华大学学报2009, 49(2): 198-201.
    [179] Lazaro J L, Garcia J C, Mazo M, et al. Distributed architecture for control and path planning of autonomous vehicle [J]. Microprocessors and Microsystems, 2001, 25: 159-166.
    [180] Yasuda G. Distributed autonomous control of modular robot systems using parallel programming. Journal of materials processing technology, 2003, 141: 357-364.
    [181] Chiou J Y. Robot control system based on distributed embedded systems [A]. Proc. of the 2nd Int. Conf. on Innovative Computing, Information and Control [C], Japan, 2007.
    [182] Azevedo J L, Cunha B, Almeida L. Hierarchical distributed architectures for autonomous mobile robots: a casestudy [A]. Proc. of the 2007 Int. Conf. on Emerging Technologies and Factory Automation [C], Greece: 973-980.
    [183]何文浩,原魁,邹伟.一种嵌入式移动机器人控制系统[J].高技术通讯, 2007, 17(6): 595-599.
    [184] Labrosse J. MicroC/OS-II. The real-time kernel [M]. The 2nd Edition. USA: CMP Media LLC. 2002.
    [185] Egemin AGV介绍:http://www.egeminusa.com/pages/agvs/agvs_general.html.
    [186]新松AGV技术指标:http://www.siasun.com/showproduct2.aspx?id=325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700