用户名: 密码: 验证码:
新型过渡金属配合物的合成、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸类衍生物及希夫碱过渡金属配合物在材料、医药生物、催化等领域具有广泛的应用,成为当前配位化学研究热点之一。合成新的配体及过渡金属配合物、研究其性质及应用,对配位化学的发展有重要的意义。
     L-半胱氨酸是一种具有生理活性的α-氨基酸。它在医药、食品及化妆品等生产中有着广泛的应用。在医药方面,它可作为预防和治疗放射性伤害的物质,是治疗肝炎、肝中毒及锑中毒等的解毒剂,其衍生物在医药上也有着广泛的用途。研究L-半胱氨酸衍生物的金属配合物及生物活性是生命科学中重要的研究课题。
     本文合成了4个系列21种过渡金属配合物及4个希夫碱配体及配合物的单晶。这些配合物是以L-半胱氨酸缩邻香草醛、L-半胱氨酸缩香草醛、L-半胱氨酸缩3,4-二羟基苯甲醛和4,4’-二氨基二苯甲烷缩邻香草醛为配体合成的。采用元素分析、红外光谱、紫外光谱、XRD单晶衍射、核磁共振、摩尔电导率及热重分析对配体及配合物进行了表征。对部分配合物与DNA的相互作用、抗肿瘤活性及4,4’-二氨基二苯甲烷缩邻香草醛希夫碱被用作检测Zn(Ⅱ)的荧光探针的应用进行了研究。具体内容如下:
     1.合成了L-半胱氨酸缩邻香草醛配体及它的4种过渡金属配合物,配合物的组成为:[M_2(C)_(11)H_(13)NO_4S)_2(CH_3COO)_2] [M=Cu(Ⅱ), Co(Ⅱ), Zn(Ⅱ), Mn(Ⅱ)]。
     2.合成了L-半胱氨酸缩香草醛配体及它的5种过渡金属配合物,各配合物的组成分别为:[Cu(C)_(11)H_(12)NO_4S)(CH_3COO)(H_2O)]、[Co(C)_(11)H_(12)NO_4S)(CH_3COO) (H_2O)_3]、[Cd(C)_(11)H_(12)NO_4S) (CH_3COO)(H_2O)]·2H_2O]、[Zn(C)_(11)H_(12)NO_4S)(CH_3COO) (H_2O)]·2H_2O、[Mn(C)_(11)H_(12)NO_4S) (CH_3COO) (H_2O)_2]。
     3.合成了L-半胱氨酸缩3,4-二羟基苯甲醛配体及它的5种过渡金属配合物,配合物的组成为:[M(C_(10)H_(11)NO_4S)_2] [M=Cu(Ⅱ), Co(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), Mn(Ⅱ)]。
     4.合成了4,4’-二氨基二苯甲烷缩邻香草醛希夫碱配体及它的7种过渡金属配合物,配合物的组成为:[M_2(C_(58)H_(58)N_4O_8)_2],[M= Cu(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cd(Ⅱ),Zn(Ⅱ), Mn(Ⅱ), Fe(Ⅱ)]。培养得到了该配体及其铜配合物的单晶,晶体结构测试表明:
     4,4’-二氨基二苯甲烷缩邻香草醛希夫碱(L)配体晶体属正交晶系,Fdd2空间群,化学式C_(29)H_(26)N_2O_4,M = 466.5。晶胞参数:a = 24.433(2) (?),b=38.886(3) (?),c =4.7896(6) (?),α= 90°,β= 90°,γ= 90°,Z = 8, V=4736.8(8)(?)~3,T = 293(2) K,D_c = 1.308g·cm~(-3),R_1 = 0.046,wR_2 = 0. 0712 [I>2σ(I)],F(000) =1968。晶体结构显示,羟基上氢原子与希夫碱的氮原子形成了分子间氢键。
     4,4’-二氨基二苯甲烷缩邻香草醛希夫碱Cu(Ⅱ)配体物晶体属三斜晶系,P-1空间群,化学式C_(12)5H_(127)Cu_4N_(11)O_(25),M =2437.5。晶胞参数:a =13.697(13)) (?),b=14.181(15) (?),c =18.6859(19)(?),α= 69.56°,β=70.07°,γ= 81.63°,Z = 1, V=3195.9(6)(?)~3,T = 298 K,D_c = 1.267g·cm~(-3),R_1 =0.0756,wR_2 = 0. 0.1920 [I>2σ(I)],F(000) =1270。晶体结构显示,配合物为双核配合物,Cu(Ⅱ)为四配位,分别位于扭转四面体的中心。
     5.利用Achar的微分法和Coats-Redfern的积分法计算程序,分别对30种热分解动力学进行了拟合,对部分配合物进行了非等温热分解动力学处理,得出了配合物某步热分解反应机理、热分解动力学方程、相应的动力学参数及活化熵变△S~≠和吉布斯自由能变△G~≠。
     [Cu (C)_(11)H_(12)NO_4S)_2(CH_3COO)]·H_2O第2步热分解反应机理:动力学函数符合反应方程:f(α)=1/4(1-α)[-ln(1-α)]~(-3),热分解动力学方程为:dα/dt = A·e~(-E/RT)·f(α) = A·e~(-E/RT)·1/4(1-α)[-ln(1-α)]~(-3),E = 349.5 kJ·mol~(-1),lnA = 73.74,r = 0.9900,△S~≠= 363.6 J·mol~(-1)·K,△G~≠= 161.2 kJ·mol~(-1)。
     [Zn_2L_2]第2步热分解反应机理:动力学函数符合二级反应方程:f(α)=(1-α)~2,其热分解动力学方程为:dα/dt = A·e~(-E/RT)·f(α) = A·e~(-E/RT)·(1-α)~2,E = 390.5 kJ·mol~(-1),lnA = 66.68,r = 0.9884,△S~≠= 242.2 J·mol~(-1)·K,△G~≠= 287.0 kJ·mol~(-1)。
     [Cu_2(C)_(11)H_(13)NO_4S)_2(CH_3COO)_2]、[Cu(C_(10)H_(11)NO_4S)_2]、[Cu_2L_2]及[Cd_2L_2]的热分析数据略。
     6.合成了4-[(E)-(2-甲氧基)亚甲氨基]-N,N-二甲基苯和1,5-二甲基-2-苯基-4-{[(E)-3,4,5-三甲氧基苯亚甲基]亚氨基}-1H-吡唑-3(2H)-酮2种希夫碱配体,并得到了其单晶。晶体结构测试表明:
     4-[(E)-(2-甲氧基)亚甲氨基]-N,N-二甲基苯胺的晶体属正交晶系,空间点群Pna21,化学式C_(16)H_(18)N_2O,M =254.3,晶胞参数为a =15.182(8)(?),b=11.756(6) (?),c = 7.809(4)(?),α=90.000°,β= 90.000°,γ= 90.000°,V = 1393.813)(?)~3,Z = 4,F(000) = 544.0,D_c = 1.212 Mg·m ~(-3),R_1 = 0.0433,wR_2 = 0.1006 [I>2σ(I)]。
     1,5-二甲基-2-苯基-4-{[(E)~(-3),4,5-三甲氧基苯亚甲基]亚氨基}-1H-吡唑~(-3)(2H)-酮晶体属正交晶系,空间点群P2_1/c,化学式C_(21)H_(23)N_3O_4,M =381.4,晶胞参数为a =12.3644 (12)(?),b=14.0075(16)(?),c = )_(11).2682()_(11))(?),α=90.000(?),β= 90.000(?),γ= 90.000(?),V = )_(13)93.8()_(13))(?)3,Z = 4,F(000) = 544.0,Dc = 1.2)_(12) Mg·m ~(-3),R_1 = 0.0433,wR_2 = 0.1006 [I>2σ(I)]。
     采用密度泛函理论(DFT)B3LYP方法,对4-[(E)-(2-甲氧基)亚甲氨基]-N,N-二甲基苯胺和1,5-二甲基-2-苯基-4-{[(E)~(-3),4,5-三甲氧基苯亚甲基]亚氨基}-1H-吡唑~(-3)(2H)-酮希夫碱晶体的分子构型、前沿轨道能量、自然电荷布局、自然键轨道进行了计算。计算结果表明,实验值与计算值基本吻合,并预测了它们的化学性质。
     7.本文探讨了4,4’-二氨基二苯甲烷缩邻香草醛希夫碱(L)被用作检测Zn(Ⅱ)的荧光探针的特性,并考察了金属阳离子、常见阴离子、溶液pH及溶剂对荧光探针性能的影响。研究表明,4,4’-二氨基二苯甲烷缩邻香草醛希夫碱在450-650 nm范围内没有荧光,当有Zn(Ⅱ)离子存在时,在525nm处的荧光强度明显增强。配体可在DMF,DMSO,四氢呋喃,甲苯及三氯甲烷中对Zn(Ⅱ)离子进行检测,pH范围为6-14,且Na(I), Mg(Ⅱ), Ca(Ⅱ), Al(Ⅲ), Cu(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cd(Ⅱ), Mn(Ⅱ), Sn(Ⅱ), Pb(Ⅱ), Cr(Ⅲ), Fe(Ⅲ), La(Ⅲ), Yb(Ⅲ), Er(Ⅲ) and Pr(Ⅲ)等离子的存在对体系的荧光强度没有影响。以DMF为溶剂,在Zn (Ⅱ)离子浓度在1.0×10~(-7) mol·L~(-1) - 1.2×10~(-5) mol·L~(-1)浓度范围内,Zn (Ⅱ)离子浓度与荧光强度呈很好的线性关系,I = 45.86c+18.12, R_2=0.9991(I为荧光强度,c为Zn (Ⅱ)离子浓度)。4,4’-二氨基二苯甲烷缩邻香草醛希夫碱可被用作检测Zn(Ⅱ)的荧光探针。
     8.采用紫外可见光谱、荧光光谱,EB-DNA猝灭实验和粘度法等方法对4种配体的Cu(Ⅱ)配合物与DNA作用方式进行了研究。结果表明:[Cu_2(C)_(11)H_(13)NO_4S)_2(CH_3COO)_2]、[Cu (C)_(11)H_(12)NO_4S)_2(CH_3COO)]·H_2O和[Cu_2L_2]配合物与DNA的作用方式为插入作用,而[Cu(C_(10)H_(11)NO_4S)_2]与DNA的作用方式为静电结合。
     9.本文以蛋白酶体为靶点,对部分配合物的抗肿瘤活性进行了研究。通过MTT法对18种配合物进行了初步筛选,发现L-半胱氨酸缩邻香草醛Cu(Ⅱ)配合物、4,4’-二氨基二苯甲烷缩邻香草醛希夫碱Cu(Ⅱ)配合物和4,4’-二氨基二苯甲烷缩邻香草醛希夫碱Fe(Ⅱ)配合物可以抑制前列腺癌细胞(PC-3)的增长。通过对配合物与糜蛋白酶体(CT-like)和半胱氨酸蛋白酶(Caspase-3)作用的研究表明,4,4’-二氨基二苯甲烷缩邻香草醛希夫碱Fe(Ⅱ)配合物对糜蛋白酶体活性有抑制作用,并且对Caspase-3的增殖作用明显。说明该配合物可以通过抑制糜蛋白酶体活性和激活Caspase-3的方法,诱导PC-3细胞的凋亡。
Transition metal complexes of amino acid derivative and Schiff base are widely used in the fields of material, medicine and catalysis etc. Thus, studies on the synthesis of novel complexes, studing their properties and application are significant the development of coordination chemistry.
     L-cysteine isα-amino Acids which has strong biological activity. It is widely used in medicine, food and cosmetic areas. It can prevent and treat the radioactivity. L-cysteine is an antidote of hepatotoxicity and stibialism. The study of synthetization and bioactivity of metal complex, which is derived from L-cysteine derivative, is an important research topic in life science.
     In this paper, three ligands derived from L-cysteine (L-cys) , vanillin(vani), o-vanillin(ovani), 3,4-dihydroxybenzaldehyde(3,4DHD) and a Schiff base ligand derived from 4,4`-diaminodiphenylmethane and o-vanillin were prepared. And twenty-one coordination compounds of transition metal were synthesized. Four crystals of these ligands or complexes were prepared. These ligands and complexes were characterized by elemental analysis, 1H NMR, IR spectroscopy, UV spectroscopy, single-crystal X-ray diffraction, TG-DTG analysis and molar conductance analysis. The binding mode of some complexes with DNA, anticancer activity and a fluorescent probe based on Schiff Base which derived from 4,4`-diaminodiphenylmethane and o-vanillin, for the detection of Zinc (Ⅱ) . The details of contents are as follow:
     (1) The ligand and 4 transition metal complexes derived from L-cysteine and o-vanillin were synthetized. The compositions of the complexes are confirmed to be [M_2 (C)_(11)H_(13)NO_4S) 2(CH_3COO) 2] [M=Cu (Ⅱ), Co (Ⅱ), Zn (Ⅱ), Mn (Ⅱ)].
     (2) The ligand and 5 transition metal complexes derived from L-cysteine and vanillin were synthetized. The compositions of the complexes are confirmed to be [Cu (C)_(11)H_(12)NO_4S) (CH_3COO) (H_2O)], [Co (C)_(11)H_(12)NO_4S) (CH_3COO) (H_2O) 3], [Cd(C)_(11)H_(12)NO_4S)(CH_3COO)(H_2O)]·2H_2O,[Zn(C)_(11)H_(12)NO_4S)(CH_3COO)(H_2O)]·2H_2O, [Mn(C)_(11)H_(12)NO_4S) (CH_3COO) (H_2O)_2].
     (3) The ligand and 5 transition metal complexes derived from L-cysteine and 3,4-dihydroxybenzaldehyde were synthetized. The compositions of the complexes are confirmed to be [M (C_(10)H_(11)NO_4S) 2] [M=Cu (Ⅱ), Co (Ⅱ), Cd (Ⅱ), Zn(Ⅱ), Mn(Ⅱ)].
     (4) The ligand and 7 transition metal complexes derived from 4,4`-diaminodiphenylmethane and o-vanillin were synthetized. The compositions of the complexes are confirmed to be [M_2(C_(58)H_(58)N_4O_8)_2], [M=Cu(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), Mn(Ⅱ), Fe(Ⅱ)]. The crystals of Schiff base and its Cu (Ⅱ) were obtained.
     X-ray crystallography shows that the crystal derived from 4,4`-diaminodiphenylmethane and o-vanillin [L] crystallizes in the orthorhombic, Fdd2 space group, molecular formula: C_(29)H_(26)N_2O_4, M= 466.5. Unit cell parameter: a = 24.433(2) (?), b=38.886(3) (?), c =4.7896(6) (?),α= 90°,β= 90°,γ= 90°, Z = 8, V=4736.8(8) (?)~3, T = 293(2) K, Dc = 1.308 g·cm ~(-3), R_1 = 0.046, wR_2 = 0.0712 for I>2σ(I), F(000) =1968. The crystal structure shows that the H atom of hydroxybenzene and N atom of Schiff base formed intramolecular hydrogen bond.
     The crystal of Cu(Ⅱ) complex with Schiff base ligand derived from
     4,4`-diaminodiphenylmethane and o-vanillin(Cu_2L_2) belongs to orthorhombic, Fdd2 space group, molecular formula: C)_(12)5H_(127)Cu_4N)_(11)O_(25),M =2437.5.Unit cell parameter: a =13.697()_(13) (?),b=14.181(15) (?),c =18.6859(19)(?),α= 69.56°,β=70.07°,γ= 81.63°,Z = 1, V=3195.9(6)(?)~3,T = 298 K,Dc = 1.267 g·cm~(-3),R_1 =0.0756,wR_2 = 0. 0.1920 for I>2σ(I),F(000) =)_(12)70. The structure of Cu_2L_2 shows that the complex is bi-nuclear. The Cu (Ⅱ) ion is in a four-coordinate, located in center of a distorted tetrahedron.
     (5) Combinating Achar differential and Coats-Redfern integral method which fits the thirty kinetic equations, the calculating program of some step of thermal decomposition for complexes was designed. The kinetic equations of corresponding kinetic parameters were obtained. The kinetic parameters include E, A, order of reaction and correlation coefficient etc. The activation entropy△S~≠and activation free-energy△G~≠for some thermal decomposition steps were also calculated.
     The thermal decomposition kinetic function of [Cu (C)_(11)H_(12)NO_4S)_2(CH_3COO)]·H_2O in step(2) may be expressed as f(α)=1/4(1-α)[-ln(1-α)]~(-3), and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·1/4(1-α)[-ln(1-α)]~(-3),E = 349.5 kJ·mol~(-1), lnA = 73.74, r = 0.9901,△S~≠= 363.6 J·mol~(-1)·K,△G~≠= 161.2 kJ·mol~(-1).
     The thermal decomposition kinetic function of [Zn2L_2] in step(2) may be expressed as f(α) =(1-α)~2, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·(1-α)~2, E = 390.5 kJ·mol~(-1), lnA = 66.68, r = 0.9884,△S~≠= 242.2 J·mol~(-1)·K,△G~≠= 287.0 kJ·mol~(-1).
     TG-DTG analysis data of [Cu(C_(10)H_(11)NO_4S)_2] , [Cu_2L_2] , [Cd_2L_2] and [Cu_2(C)_(11)H_(13)NO_4S)_2(CH_3COO)_2] were omitted.
     (6) The crystals of 4-[(E)-(2-Methoxyphenyl)iminomethyl]-N,N-dimethylaniline and 1,5-Dimethyl-2-phenyl-4-{[(E)~(-3),4,5-Tri methoxy benzylidene]amino}-1H -pyrazol~(-3)(2H)-one were obtained. The measurement of crystal structure showed that:
     The crystal 4-[(E)-(2-Methoxyphenyl)iminomethyl]-N,N-dimethylaniline belongs to orthorhombic, Pna21 space group, molecular formula: C16 H18 N2 O, M =254.3.Unit cell parameter: a =15.182(8)(?),α=90.000(?),b=)_(11).756(6)(?) ,β= 90.000(?), c = 7.809(4)(?),γ= 90.000(?), V = )_(13)93.8()_(13))(?)3, Z = 4, F(000) = 544.0, Dc = 1.2)_(12) Mg·m~(-3), R_1 = 0.0433, wR_2 = 0.1006 for I>2σ(I).
     The crystal 1, 5-Dimethyl-2-phenyl-4-{[(E)~(-3),4,5-Tri methoxy benzylidene] amino}-1H-pyrazol-3(2H)-one belongs to monoclinic, P21/cspace group, molecular formula: C21H_23N3O_4,M =381.4.Unit cell parameter: a =)_(12).3644 ()_(12))(?), b=14.0075(16)(?), c = )_(11).2682()_(11))(?),α=90.000(?),β= 90.000(?),γ= 90.000(?), V = 1393.813(?)3,Z = 4, F(000) = 544.0, Dc = 1.212 Mg·m~(-3), R_1 = 0.0433, wR_2 = 0.1006 for I>2σ(I).
     The crystals of 4-[(E)-(2-Methoxyphenyl)iminomethyl]-N,N-dime-thylaniline and 1,5-Dimethyl-2-phenyl-4-{[(E)~(-3),4,5-Tri methoxy benzylidene]-amino}-1H- Pyrazol-3(2H)-one were calculated using the density functional theory (DFT) with the gradient corrected B3LYP method. The crystal structure of the compound is totally optimized. The energies and components of molecular orbital (HOMO and LUMO), natural population, NBO and stabilization energy were calculated. All data obtained from the calculations are consistent with those gained from the determination, which means the calculation model is stabilized. The chemical property of two Schiff bases was illustrated.
     (7) In this paper, the character of fluorescent probe (L) derived from 4,4`-diaminodiphenylmethane and o-vanillin for detection of Zn (Ⅱ) cation was studied. The metal ion, negative ion, effect of pH and solution of the fluorescent probe (L) were studied.The results showed that: the Schiff base (L) derived from 4,4`-diaminodiphenylmethane and o-vanillin, has no fluorescence intensity in a range of 450-650 nm, but its fluorescence spectrum shows enhancement in the intensity of the signal at 525 nm on binding with the Zn(Ⅱ) cation. This Schiff base can be used in N, N-dimethylformamide (DMF), tetrahydrofuran (THF), toluene, and dimethylsulfoxide (DMSO), at pH 6 to 14, and Na(I), Mg(Ⅱ), Ca(Ⅱ), Al(Ⅲ), Cu(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cd(Ⅱ), Mn(Ⅱ), Sn(Ⅱ), Pb(Ⅱ), Cr(Ⅲ), Fe(Ⅲ), La(Ⅲ), Yb(Ⅲ), Er(Ⅲ) and Pr(Ⅲ) ion has no effect to the fluorescence intensity of Zn-L system. Dissolved in DMF, Fluorescence intensity is linear with concentration of Zn (Ⅱ) cation in a range from 1.0×10~(-7) mol·L~(-1) to 1.2×10~(-5) mol·L~(-1) atλ_(em)=538 nm. I=45.86c+18.12, R~2=0.9991. [I: fluorescence intensity; c: concentration of Zn (Ⅱ)]. Schiff base derived from 4, 4`-diaminodiphenylmethane and o-vanillin, can be used as a fluorescent probe for detection of Zn (Ⅱ) cation.
     (8) The DNA binding modes of the four Cu (Ⅱ) complexes were investigated by electronic absorption spectra, EB-DNA displacement experiment and viscosity measurement. The experimental evidences indicated that: [Cu_2(C)_(11)H_(13)NO_4S)_2(CH_3COO)_2], [Cu (C)_(11)H_(12)NO_4S)_2(CH_3COO)]·H_2O and [Cu_2L_2] could interact with DNA through intercalation, and [Cu(C_(10)H_(11)NO_4S)_2] binds to DNA through an electrostatic interaction mode.
     (9) In this paper, the anticancer activity of complexes was studied using protease for targets. 3 complexes were sifted from 18 complexes using MTT method. It was found that complexes of No.6 [Cu (Ⅱ) complex derived from L-cysteine and ovanillin], NO.14 [Cu (Ⅱ) complex derived from 4,4`-diaminodiphenylmethane and o-vanillin] and No.18 [Fe(Ⅱ) complex derived from 4,4`-diaminodiphenylmethane and o-vanillin] showed high anticancer activity. The study of the impact of complexes to CT-like (chymotrypsin-like activity) and Caspase-3 showed that No.18 complex could inhibit proteasome and activate Caspase-3 to induce apoptosis in prostate cancer PC-3.
引文
[1]杜向东,俞贤达.非对称Schiff碱过渡金属配合物模拟酶催化烯烃环氧化(I).高等学校化学学报,1997,18(4):567.
    [2]杜向东,俞贤达.非对称希夫碱过渡金属配合物模拟催化烯烃环氧化(Ⅱ).分子催化,1997,12(1):26-30.
    [3] West B. O. The magnetic moments and structures of some N-substituted salicylidene-imine complexes of cobalt (Ⅱ). Chem. Soc., 1962, 1374-1387.
    [4]李珍贵,郑永春,配位键理论的形成与发展.楚雄师范学院学报, 2007, 22(3):55-59.
    [5]游效曾.配位化合物的结构和性质.北京:科学出版社,1992.
    [6]赵大成.理论无机化学-结构与反应机理.长春:东北师范大学出版社,1994.
    [7]巴索洛F,皮尔逊F. G..无机反应历程-溶液中金属络合物的研究.陈荣悌,姚斌译.北京:科学出版社, 1987.
    [8] Balzani V, Scandola F., Super molecular Photochemistry. New York: Ellis Horwood, 1991.
    [9] Martell A. E.,. Coordination Chemistry. New York: Von Nostrand Reinhold, 1971.
    [10]陈荣悌著.配位化学中的线性相关分析.合肥:安徽科学技术出版社, 1996.
    [11] Meites L., et al. Electrochemical Data Organic, Organ metallic and Biochemical Substances. NewYork: Wiley, 1974.
    [12]丁彦滨,彭丽.配位化合物的进展.化学工程师,2003,6:42-43.
    [13]肖珊美,杨晓东.配位化学的沿革与进展.鸡西大学学报, 2001, 1(4):56-57.
    [14]国家自然科学基金委员会.自然科学学科发展战略调研报告.无机化学.北京:科学出版社, 1994.
    [15]游效曾.分子材料-光电功能化合物.上海:上海科技出版社, 2000.
    [16] Lianzhi Li, Zhenghua Guo, Qingfu Zhang, Tao Xu, Daqi Wang. An unexpected oxovanadium (IV) complex with in situ generated lactone ligand: Synthesis, crystal structure and DNA-binding property. Inorganic Chemistry Communications, 2010, 13: 1166-1169.
    [17] Michael G., Drew B., Forida S., Martin Nelson S. Trihapto-hexahapto fluxional behavior of a macrocyclic ligand: template synthesis, proton nuclear magnetic resonance spectra, and the crystal and molecular structure of an eleven-coordinate barium(Ⅱ) complex. Chem.Soc. 1983, 1653-1659.
    [18] Csaszar J., Morvay J., Herczeg O. Study of 5-nitro-2-furfuraldehyde Derivatives.Ⅱ. Preparation, spectra and antibacterial activities of Schiff bases with sulfonamides. Acta.Phys.Chem. 1985, 31(3):711-722.
    [19]祝心德,乐芝凤,吴自慎,等. 2,4-二羟基本甲醛缩氨基硫脲合铜(Ⅱ),镍(Ⅱ),锌(Ⅱ),铁(Ⅱ)的合成和表征及杀菌活性.高等学校化学学报, 1991, 12(8): 1066-1068.
    [20] Chandra S., Sharma K. Synthesis and characterization of chrominum (Ⅲ) complex of some semicarbazones and thiosemicarbazones. Syn.React. Inorg. Met-Org. Chem. 1982, 12(6): 647-659.
    [21] Dutt N. K., Nag K. Bis-salicylaldehyde ethylenediamine and bis- salicylaldehyde o-phenylenedimine complexes of rare-earth. Inorg. Nucl. Chem. 1968, 30: 2493-2499.
    [22] XiuC.en Y., Harry G. Evidence for Schiff base in the addition of amino alcohols to the Eu (Ⅲ) chelates of benzoylacetone and dibenzoyl-methane. Inorg. Chim. Acta. 1982, 59(2):261-268.
    [23] Iftikhar K., Arvind M., Ahnad N. Studies on bis(p-dimethylaminobenzylidene) benzidine complexes of Trivalent Lanthanides. Indian. Chem. 1986, 25A: 589-591.
    [24] Desai S. B., Desai P. B., Desai K. R. Synthesis of some Schiff base thiazolidinones and azetidinones from 2, 6-diaminobonzol [1,2-d:4, 5-d] bisthiazole and their activities. Hetercycl Commun, 2001, 7(1): 83-90.
    [25] Isse A. A., Gennaro A., Vianello E. Electrochemical reduction of Schiff bases ligands H2 salen and H2 salophen. Electrochimical Acta, 1997, 42(13-14): 2065-2071.
    [26] Bastos M. B. R., Moreira J. C., Farias P. A. M. Adsorptive striooing voltammetric behaviour of UO2(Ⅱ) complexed with the Schiff base N, N-prime-ethylenebis(salicylidenimine) in 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid medium. Analytica Chimica Acta, 2000, 408: 83-88.
    [27]袁淑军,蔡春,吕春绪.双亲性席夫碱铜(Ⅱ)配合物的合成及苯甲醇的催化氧化.应用化学, 2003, 20(3): 278-280.
    [28]范玉华,张冬梅,毕彩丰,邹言娜,杨立荣,李莹莹.异双希夫碱与La(Ⅲ)配合物的合成、热分解反应动力学和抑菌活性.中国海洋大学学报(自然科学版),2005(3):463-466.
    [29]程爱玲,任萌,王霞,杨帆. Recent Development of Copper Containing Schiff-base Complexes as Models of Oxidases.化学世界.2006,8(16).
    [30]唐波,张杰,王栩.新型主体试剂交联聚合β-环糊精-邻香草醛苯甲酰腙的合成及荧光法识别锌.分析化学, 2002, 30(10): 1196-1200.
    [31]李培凡,刘燕,王智,等.对溴苯甲醛缩邻氨基酚席夫碱及其配合物的合成及抑菌活性.天津师范大学学报, 2003, 23(2): 10-12.
    [32] Maurya R. C., Mishra D. D. Synthesis, Magnetic and Spectral Studies of some mixed-ligand Complexes of Copper(Ⅱ) and Cobalt(Ⅱ) with Schiff Base and 2-or 3-Pyrazoline-5-one Derivatives. Synth. React. Inorg. Met. Org. Chem.1994, 24(3): 427-430.
    [33] Gaber M. Structural PH-metric and conductance studies of 4-(2-Pyridyl)-1- (2-Hydroxyacetophenone)-3-thiosemicar bazone (H 2PHAT) complexes symth. React, Inorg. Met. Org. Chem. 1994, 24(5): 813-816.
    [34]王积涛.手性过渡金属(Mn, Co, Ni)-Salen配合物催化NaOCl不对称环氧化苯乙烯的反应.有机化学, 1998,18(3):228-232.
    [35] Mehmet T., Huseyin K., Selahattin S., Synthesis, Charac -teriztion and Studies of Mononuciear and Binuclear Complexes of Copper(Ⅱ)with Schiff Bases Derived from 1-Phenyl-2,3-Dimethyl-4-Amino-5-Pyrazolone, Synth. React. Inorg. Met. Org. Chem., 1996, 26(9): 1589-1594.
    [36]陈德余,江银枝.过渡金属L-丙氨酸Schiff碱配合物的合成及其抗O_2~-性能.应用化学, 1997, 14(3): 5-8.
    [37] Juan M., Fernandez G., Hernandez Ortega S. The structures and electrochemical studies of three 2, 3-naohthalenic Schiff base copper (Ⅱ) complexes. Polyhedron. 1998, 17(15): 2425-2432.
    [38] Punnlyanurthy T, Madhava Reddy M. Cobalt (Ⅱ) Schiff base catalyzed biomimetic oxidation of organic substrates with dioxygen pure. Appl. Chem. 1996, 68(3): 619-622.
    [39] Mahapatra, B.B., Dash, S.S., Pujari, S.K. Complexes of Cu (Ⅱ) and Cd (Ⅱ) with tetradentate Schiff bases. Journal of Indian Chemical Society, 1980, 57: 95-98.
    [40] Demazeau G. Solvothermal processes: a route to the stabilization of new materials. Journal of Materials Chemistry, 1999, 9(11): 15-18.
    [41] Gopinathan S., Deshpande S.S., Gopinatha C. Novel ruthenium (Ⅱ) Schiff base complexes. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 1989, 19(4): 321-325.
    [42] Agarwala R.G. Acyl Hydrazine Complexes of titanium and zirconium tetrachlorides. Journal of Inorganic and Nuclear Chemistry, 1973, 35: 653-655.
    [43] Juan M., Fernandez G., Hernandez O.S. The structures and electrochemical studies of three 2, 3-naohthalenic Schiff base copper (Ⅱ) complexes. Polyhedron, 1998, 17(15): 2425-2432.
    [44] Maurya R.C., Mishra D.D. Synthesis, magnetic and spectral studies of some mixed-ligand complexes of copper(Ⅱ) and cobalt(Ⅱ) with Schiff Base and 2-or 3-Pyrazoline-5-one derivatives. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 1994, 24(3): 427-430.
    [45]左萍萍,冯华峰,壳聚糖希夫碱的合成及其抗菌活性探究.广东化工.2010, 5: 128-130.
    [46] Cai-Wu J., Hui C., Hong L., Liang-Nian J. S yntheses, characterization and DNA-binding studies of ruthenium(Ⅱterpyridine complexes: [Ru(tpy)(PHBI)]2+ and [Ru(tpy)(PHNI)]2+,Journal of Inorganic Biochemistry. 2003, 93: 247–255.
    [47] Agarwala R. G., et al. Acyl Hydrazine Complexes of titanium and zirconium tetrachlorides. J Inorg. Nucl. Chem. ,1973 ,35 :653-655.
    [48] Dilworth J. R. The Coordination Chemistry of Substituted Hy drazines . Coord. Chem. Rev. 1976 , 21 :29-62.
    [49] Bipin B., Mahapatra S. S., Dash S. K., Pujari. Complexes of Cu (Ⅱ) and Cd (Ⅱ) with Tetradentate Schiff Bases. J. Indian. Chem. Soc., 1980, 57:95-97.
    [50]胡秉方,李增民.水稻白叶枯病化学防治的新进展.化学通报,1986 ,11 :1-7.
    [51] Kimball D, et al. Heterocyclic Thrombin Inhibitors. U. S. A; NO, 5741799; 1998, 4. 21.
    [52]毕思玮,刘树祥.氨基酸水杨醛席夫碱与铜(Ⅱ)配合物的合成及其抗菌活性和稳定性、结构间的关系.无机化学学报,1996 ,12 (4) :423-426.
    [53]申国瑞,何玉凤,段宗范,王荣民,夏春谷. Influence of Metal Center in Polymer-Bound Schiff Base Metal Complexes in Catalytic Activation of Dioxygen.2007 (2)182-185.
    [54]田君濂,毕思玮,高恩庆,等.甲酰基甲酸氨基硫脲席夫碱二价金属离子配合物的研究.应用化学,1994 ,11 (5) :45-48.
    [55] Yoshimura M., et al. Soft Processing for Advanced Inorganic Materials. MRS Bulletin. 2000,25(9):12-13.
    [56] Yoshimura M., et al. Soft Solution Processing: A Strategy for One-Step Processing of Advanced Inorganic Materials. MRS Bulletin. 2000,25(9):17-25.
    [57] Yoshimura M. Soft Solution Processing: Environmentally Benign Direct Fabrication of Shaped Ceramics (Nano-crystals, Whiskers, Films, and/or Patterns) without Firing. Key Engineering Materials. 2001, 206-213:1-6.
    [58] Yoshimura M., In Situ Fabrication of Morphology-controlled Advanced Ceramic Materials by Soft Solution Processing. Solid State Ion. Diffus.React. 1997, 98(3-4):179-208.
    [59] Byrappa K., Yoshimura M., Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing, William Andrew Publishing, LLC Norwich, New York, 2001:1-43.
    [60]施尔畏.水热法的应用与发展.无机化学学报. 1996, 11(2):193-206.
    [61]吴自慎,严振寰,等.4-氯苯甲醛甘氨酸席夫碱及其Cu(Ⅱ)、Zn(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)配合物的合成、表征及抗菌活性研究.华中师范大学学报(自然科学版),1989,23(3):351-353.
    [62]鄢远,许金钩.溴化乙锭的三维荧光光谱用于研究DNA构像.科学通报,1995,40(18): 1664-1666.
    [63]张霞.希夫碱配合物的合成、表征及抗肿瘤活性研究. [博士学位论文].青岛:中国海洋大学, 2009.
    [64]舒磊.半导体硫化物纳米微粒的制备.无机化学学报. 1999, 15(1):1-7.
    [65]宋雅茹,徐建平.新型发蓝光材料的合成和光谱表征及光致和电致发光性能.光谱学与光谱分析. 2000, 20: 730-731.
    [66]王荣民,冯辉霞.新型杀夫碱配体的合成及表征.西北师范大学学报:自然科学版. 2000, 36: 46-47.
    [67]韩相恩,魏贤勇,王兴勇.两种新型氢键诱导液晶材料的合成及表征.化工新型材料2010, 7: 46-48.
    [68]王荣民.高分子希夫碱金属配合物的研究进展:(Ⅱ)聚希夫碱金属配合物的制备,表征及性能.高分子通报. 1998, 2: 27-31.
    [69]朱斌,黄佩,胡兰萍.含希夫碱基团的不对称弯曲型液晶分子的合成和相变研究.液晶与显示. 2010, 3: 305-310.
    [70]魏强,曹晖,朱思泉,一类含氟希夫碱液晶的合成及中间相性能.北京科技大学学报. 2008, 30: 285-288.
    [71] Feng G., Cai-Feng B, Yu-Hua F., et al. Synthesis, Crystal Structure and Antibacterial Properties of N-(2-Hydroxy-1-naphthalidene)-4-amino antipyrine.Asian Journal of Chemistry,2007,19(3):1864-1852.
    [72]黎植昌,刘炽清.混合氨基酸稀土配合物的研究(Ⅲ):MAR在防治柑桔,棉花和蔬菜病害上的应用.氨基酸杂志. 1990, 2: 12-15.
    [73] Rosenberg B., Vancamp L., Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 1965, 205: 698-699.
    [74] Evans B. D., Raju K. S., Calvert A. H., Harland S. J., Wiltshaw, E. PhaseⅡstudy of JM8, a new platinum analog, in advanced ovarian carcinoma. Cancer Treat. Rep. 1983, 67(11): 997-1000.
    [75] Yan X., Caifeng B, Yuhua F., Cindy C., Xia Z., Qingping D. L-glutamine Schiff base copper complex as a proteasome inhibitor and an apoptosis inducer in human cancer cells. International Journal of Oncology, 2008, 33: 1073- 1079.
    [76] Feng G., Cai-Feng B., Yu-Hua F., et al. Crystal Structure and geometry-optimization study of N- ( 2-hydroxy-1-naphthaldene ) -4-aminoantipyrine. Jounal of Ocean University of China.2008, 7(2): 166-170.
    [77] Frau. S., Bernadou J., Meunier B. Nuclease Activity and Binding Characteristics of a Cationic“Manganese Porphyrin?Bis(benzimidazole) Dye (Hoechst 33258)”Conjugate.Bioconjugate Chem.,1997,8:222-226.
    [78]王金胜,郭春绒,程玉香.铈离子清除超氧自由基的机理.中国稀土学报,1997,15(2):151-154.
    [79]李美霞修饰电极电催化应用于合成L-半胱氨酸的研究[博士学位论文].广州:华南理工大学, 1999.
    [80] Senevirathna Wasana U., Hong Z., Baohua G., Effect of oxalate and cysteine on desorption of Hg(Ⅱ) on kaolinite. Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, 2009, August: 16-20.
    [81] Hailiang Z., Zhongcheng S., Gaoyuan M., Pengcheng L., Lei S. Preparation of N-(tert-butoxycarbonyl)-4-thiazolidinecarboxylic acids as antibacterial agents. Faming Zhuanli Shenqing Gongkai Shuomingshu (2009).
    [82] Jiyun L., Shuming Q., Baoyuan L., Dehua L., Synthesis and antitumor activity of timonacic derivatives. Yiyao Gongye, 1988, 19(5): 203-205.
    [83] Belg. 4-Thiazolidine carboxylic acids with antihypertensive activity. (1979), 39 pp. CAN 92:76489, AN 1980:76489.
    [84] Masayuki O., Toshio B., Eishin K., Yoichi K., Toshio W. Thiele compounds: Synthesis and antihypertensive activity of N-(mercaptoacyl)thiazolidinecarboxylic acids. Chemical & Pharmaceutical Bulletin (1982), 30(2): 440-461.
    [85] Skvortsov A. N., Uvarov V. M., Vekki D. A., Studentsov E. P., Skvortsov N. K. Conformational analysis, spectral and catalytic properties of 1,3-thiazolidines, ligands for acetophenone hydrosilylation with diphenylsilane. Russian Journal of General Chemistry. 2010, 80(10): 2007-2021.
    [86] Wilson, W. D., Ying L., Veal James M. NMR analysis of reversible nucleic acid-small molecule complexes. Advances in DNA Sequence-Specific Agents. 1992, 1:89-165.
    [87] Lown J. W. Design of sequence-specific agents: lexitropsins. Mol. Aspects Anticancer Drug-DNA Interact. 1993: 322-355.
    [88] Anneheim-Herbelin G., Perree-Fauvet M., Gaudemer A., Helissey P., Giorgi-Renault S., Gresh N. Porphyrin-netropsin: a potential ligand of DNA. Tetrahedron Letters. 1993, 34(45): 7263-7266.
    [89] Brown S. C., Thomson S. A., Veal J. M. NMR solution structure of a peptide nucleic acid complexed with RNA. Science, 1994, 265(5173): 777-780.
    [90] Lown J. W. Chem. Trans. org. chem, 1993, 6:205-207.
    [91] Anneheim H. G., Perree F. M., Gaudemer A., et al.Porphyrin-netropsin: a potential ligand of DNA .Tetrahedron. 1993, 34(45):7263-7266.
    [92] Fraus S., Bernadou J., Meunier B. Bioconjugate Chem.1997, 8:222-225.
    [93] Eis P. S., Smith J. A., Rydzewski J. M., et al.High resolution solution structure of a DNA duplex alkylated by the antitumor agent duocarmycin SA. J Mol. Biol. 1997, 272(2): 237-252.
    [94] Chihara N., Amo T., Tokunaga A., Yuzuriha, R., Wolf, A. M., Asoh, S., Suzuki, H., Uchida, E., Ohta, S. Mitochondrial DNA alterations in colorectal cancer cell lines. J. Nipp. Medi. School, 2011, (78):13-21.
    [95] Kim S., Jun, D.H., Kim, Hye J., Jeong, K.C., Lee, C.H. Development of a high-content screening method for chemicals modulating DNA damage response. J.Biomolecular Screening, 2011,(62):259-265.
    [96] Guin P.S., Das S., Mandal P. C. Interaction of 1,4-Dihydroxy-9,10-Anthraquinone with Calf Thymus DNA: A Comparison with Anthracycline Anticancer Drugs. J.Solution Chem., 2011,40(3):492-501.
    [97] Pontinha A.D.R. Jorge S.M.A., Chiorcea Paquim, A.M., Diculescu V.C.,Oliveira-Brett A.M. In situ evaluation of anticancer drug methotrexate-DNA interaction using a DNA-electrochemical biosensor and AFM characterization. Physical Chemistry Chemical Physics, 2011, 13(11):5227-5234.
    [98]黄永华,龙姝,蔡红革,叶勇. N-β萘酚醛-D-氨基葡萄糖席夫碱甘氨酸金属配合物与DNA作用的谱学研究.湖南农业大学学报(自然科学版),2002,28(2): 156-157.
    [99]唐宏武,陈蓓.吖啶橙-细胞DNA荧光抑制法初步筛选抗癌药物的研究.武汉大学学报(自然科学版),1997, 43(6):711-716.
    [100]咸会朵,刘建风,赵国良.十一烯酸邻菲咯啉铜髤配合物的合成、表征、晶体结构及与DNA作用.无机化学学报,2009,11(32):2066-2069.
    [101]张蓉颖,庞代文,蔡汝秀. DNA与其靶向分子相互作用研究进展.高等学校化学学报,1998,20(8):1210.
    [102]郭峰.甘氨酸希夫碱配合物的合成、表征及生物活性的研究. [博士学位论文].青岛:中国海洋大学, 2007.
    [103]张辉淼.新型1,8-萘啶和咪唑衍生物在荧光化学探针和功能配合物中的应用研究. [博士学位论文].北京:中国科学院理化技术研究所,2009.
    [104] Achar B. N. Studies of thermal decomposition kinetics. Proceeding international clay conference. Jerusalem, 1966, 1:67-69.
    [105]刘振海.热分析导论.北京:化学工业出版社,1991, 7.
    [106]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001,8. 100.
    [107]李余增.热分析.北京:清华大学出版社,1987,39.
    [108] Straszko J., Olstak-Humienik M., Mozejko J.. Kinetics of Thermal Decomposition of ZnSO4·7H2O. Thermochim.Acta., 1997, 292(1-2): 145-150.
    [109] Eftimic E., Segal E. Basic language programs for automatic processing non-isothermal kinetic data. Thermochim Acta, 1987, 111: 359-367.
    [110] Coats A W, Redfern J P. Kinetic Parameters from thermo gravimetric data. Nature., 1964, 201: 68-69.
    [111]宁斌科,杨正权,刘蓉,等.高氮量硝化棉的脱硝反应动力学研究.火炸药学报,2000,23(1):65-67.
    [112]夏锦尧,实用荧光分析法.北京:中国人民公安大学出版社,1992, 3.
    [113]杨根元,金瑞祥,应武林.实用仪器分析.北京:北京大学出版社,1997, 93-97.
    [114]陈国珍,黄贤智,许金钩等.荧光分析法,北京:科学出版社出版,1990, 8-15.
    [115]张慧茹,黄素萍.荧光防伪纤维.合成纤维工业,2002, 25(4) : 39-41.
    [116] Shen X. Q., Li Z. J., Zhang H. Y., et al. Mechanism and kinetics of thermal decomposi-tion of 5 - benzylsulfanyl - 2 - amino - 1 ,3 ,4 - thiadiazole. Thermochimica Acta, 2005, 428: 77.
    [117]邵建华,韩永圣,高芝祥.复合氨基酸稀土元素螯合物的生产和应用研究进展.稀土, 2001, 22 (5) : 59-62.
    [118] Huang J., Wang M., Zhou Y.Y., Weng X.C., Shuai L., Zhou X., Zhang D.Q. Visual observation of G-quadruplex DNA with the label-free fluorescent probe silole with aggregation-induced emission, Bioo. Medi. Chem. 2009,17(22): 7743-7748.
    [119] Ochi Y.J., Okamoto A., Saito I. Fluorescent probe for the detection of DNA conformational transition. Nucl. Acids Symp. Series, 2004, 48:73-74.
    [120]里平,李群.抗心绞痛有效成份一原儿茶醛.化学世界, 1997, 7: 334-335.
    [121] Young Sook K. Efect of protocatechualdehyde on reeeptorfor advanced glyeation end products and TGF-β31expression in human lens epitheUal eeHs cultured underdiabetic conditions and on lens opacity in streptozotocindiabetic rats. European Journal of Pharmacology,2007, 569: 171-179.
    [122] Wang M., Wang L.F., Li Y.Z., Li Q.X., Xu Z.D., Qu D.M. Antitumour activity of transition metal complexes with the thiosemicarbazone derived from 3-acetylumbelliferone. Trans. Met. Chem. 2001, 26:307-310.
    [123] Shahabuddin A.R., Hadi S. M., Parish J.H., Ainley K. Strand scission in DNA induced by quercetin in the presence of Cu(Ⅱ): role of Cu(I) and oxygen free radicals. Carcinogenesis, 1989, 10(10): 1833-1839.
    [124] Raman N., Syedalifathima S., Dhaveethu R. J., Designing, synthesis and spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. J. Serb. Chem. Soc. 2008, 73 (11):1063-1071.
    [125] Hitoshi T., Tamao N., Hideyuki A., Manabu F., Takayuki M. Preparation and haracterization of novel cyclic tetranuclear manganese (Ⅲ) complexes: MnⅢ4(X-salmphen)6 (X-salmphenH2 = N,N'-di-substituted-salicylidene-1,3-diaminobenzene (X = H, 5-Br)). Polyhedron, 1997, 16: 3787-3792.
    [126] Punniyamurthy T., Kalra S. J. S., Iqbal J. Cobalt (Ⅱ) catalyzed biomimetic oxidation of hydrocarbons in the presence of dioxygen and 2-methylpropanal. Tetrahedron Lett., 1995, 36: 8497-8501.
    [127] Sylvain R., Bernier J. L., Waring M. J., et al. Synthesis of a functionalized Salen-copper complex and its interaction with DNA. Org. Chem.1996, 61(7): 2326-2331.
    [128] Katia B., Simon L., Anne R., Gerard C., Francoise D., Bernard M. Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as Potential Enantioselective Epoxidation Catalysts. Inorg. Chem. 1996, 35, 387-391.
    [129] Czernuszewicz R. S., Rankin, J. G., Lash T. D. Fingerprinting Petroporphyrin Structures with Vibrational Spectroscopy. 4. Resonance Raman Spectra of Nickel (Ⅱ) Cycloalkanoporphyrins: Structural Effects Due To Exocyclic Ring Size. Inorg. Chem. 1996, 35(1):199-209.
    [130] Lehn J.M. Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995.
    [131] Losier P., Zaworotko M. J., A noninterpenetrated molecular ladder with hydrophobic cavities.Angew. Chem. Int. Ed. Engl., 1996, 35: 2779-2782;
    [132] Desai S.B., Desai P.B., Desai K.R. Synthesis of some Schiff base thiazolidinones and azetidinones from 2, 6-diaminobonzol [1,2-d:4,5-d/] bisthiazole and their activities. Hetercyclic Communications, 2001, 7(1): 83-90.
    [133] Liu Y., Wang N., Mei W., Chen F., Li X. H., Jian L., Wang R., Photoinduced cleavage and DNA-binding of the ruthenium(Ⅱ) polypyridyl complex [Ru(phen)_2(ipbd)](ClO4)_2. Trans. Met. Chem. 2007, 32:332-337.
    [133] Li V.S., Choi D., Wang Z., Jimenez L.S., Tang M.S., Kohn H., Role of the C-10 Substituent in Mitomycin C-1?DNA Bonding. J. Am. Chem. Soc. 1996, 118(10):2326-2331.
    [135] Zuber G., Quanda Jr., Hecht S.M. Sequence Selective Cleavage of a DNA Octanucleotide by Chlorinated Bithiazoles and Bleomycins. J. Am. Chem. Soc. 1998, 120:9368-9369.
    [136] Gravert, D.J., Griffin, J.H. Specific DNA cleavage mediated by [SalenMn(Ⅲ)]+. J. Org. Chem., 1993, 58(4): 820-822.
    [137] Erkkila K.E., Odom D.T., Barton J.K., Recognition and Reaction of Metallointercalators with DNA. Chem. Rev. 1999, 99(9): 2777-2795.
    [138] Metcalfe C., Thomas J.A., Kinetically inert transition metal complexes that reversibly bind to DNA. Chem. Soc. Rev. 2003, 32(4): 215-224.
    [139] Hap I., Lincoln P., Suh D., Norden B., Choedhry B. Z., Chaires J. B. Interaction ofΔandΛ-[Ru(phen)_2DPPZ]~(2+) with DNA: A Calorimetric and Equilibrium Binding Study. J. Am. Chem. Soc. 1995, 117(17): 4788-4791.
    [140] Arturo S., Giampaolo B., Giuseppe R., Maria G., Salvatore L. T., The interaction of native DNA with iron(Ⅲ)-N,N'-ethylene-bis(salicylideneiminato)-chloride. J. Inorg. Biochem. 2004, 98(4): 589-592.
    [141] Kease D., Arstein D., Harper W., et al. Depression of plasma glutamine concentration after exercise stress and its possible influence on the immune system. Medical Journal of Australia, 1995, 162(1): 15-18.
    [142] Matthews W., Driscoll J., Tanaka K., et al. Involvement of the proteasome in various degradative processes in mammalian cells. Proc. Nat Acad.(USA),1989, 86(8): 2597-2601.
    [143] Zhang H., Liu C. S., Bu X. H., Yang M., Synthesis, crystal structure, cytotoxic activity and DNA-binding properties of the copper (Ⅱ) and zinc (Ⅱ) complexes with 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene. J. Inorg. Biochem. 2005, 99: 1119-1125.
    [144] Sheldrick G. M., SHELXTL97. Program for the Refinement of Crystal Structure, University of G?ttingen, Germany 1997.
    [145]艾小康.新型希夫碱金属配合物的合成、表征及荧光特性研究. [博士学位论文].青岛:中国海洋大学,2007.
    [146] Chong-Qiu J., Ming-Xia G., Xian-Zhe M. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples. Spectrochimica Acta, Part A: Mol. Biomol. Spec. 2003, 59A (7): 1605-1610.
    [147] Perez, J.M., et al. Synthesis, characterization and DNA modification induced by a novel Pt(IV)-bis(monoglutarate) complex which induces apoptosis in glioma cells. Chemico-Biological Interactions, 1999, 117(17): 99-115.
    [148] Yang X.B., Huang Y., Zhang J.S., Yuan S.K., Zeng R.Q. Synthesis, characterization and DNA interaction of copper (Ⅱ) complexes with Schiff base ligands derived from 2-pyridinecarboxaldehyde and polyamines . Inorg.Chem.Commun,2010 ,13(12):1421–1424.
    [149] Chao H., Mei W.J., Huang Q.W., Ji L.N., DNA binding studies of ruthenium(Ⅱ) complexes containing asymmetric tridentate ligands. J. Inorg. Biochem. (2002) 92(3-4):165-170.
    [150] Nguyen T., Rawji G. DNA binding and photocleavage properties of dichloro-2-(2'-pyridyl)benzimidazoleplatinum(Ⅱ). 241st ACS National Meeting & Exposition, Anaheim, CA, 2011:27-31.
    [151] Wu K. C., Lippard S. J. Binding of p latinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs. Biochem. 1978, 15 (19): 4339 - 4346.
    [152] Kumar R.S., Arunachalam S., Periasamy V.S., Preethy C.P., Riyasdeen A., Akbarsha M. A., DNA binding and biological studies of some novel water-soluble polymer-copper(Ⅱ)-phenanthroline complexes. Eur. J. Med. Chem. 2008, 43, 2082-2091.
    [153] Jain A., Slebodnick C., Winkel B., Brewer K. J. Enhanced DNA photocleavage properties of Ru(Ⅱ) terpyridine complexes upon incorporation of methylphenyl substituted terpyridine and/or the polyazine bridging ligand dpp (2,3-bis(2-pyridyl)pyrazine). J. Inorg. Biochem. 2008, 102: 1854-1861.
    [154]王海滔,胡婷婷,张黔玲,等.钌(Ⅱ)多吡啶配合物的合成、荧光性质及与脱氧核糖核酸DNA的作用机制研究.化学学报, 2008, 66: 1565-1571.
    [155] Ashwini Kumar K., Kotha L. R., Satyanarayana S. Synthesis, DNA interaction and photocleavage studies of ruthenium(Ⅱ) complexes with 2-(pyrrole) imidazo-[4,5-f]-1,10-phenanthroline as an intercalative ligand. Transition Met Chem., 201035:713–720.
    [156] Liu J.G., Zhang Q.L., Shi X.F., Ji L.N. Interaction of [Ru(dmp)_2(dppz)]~(2+) and [Ru(dmb)_2(dppz)] ~(2+) with DNA: Effects of the Ancillary Ligands on the DNA-Binding Behaviors. Inorg. Chem. 2001, 40(19):5045–5050.
    [157] Hong-Yan W., Hui-Qin A., Bao-Lin Z., Shu-Rong W., Shou-Min Z., Shi-Hua W., Wei-Ping H. Synthesis, crystal structure and magnetic characterization of a dinuclear Mn(Ⅱ) complex with double end-on azide ligands. Inorg. Chem. Commun. 2007, 10(10): 1132-1135.
    [158] Wu J. S., Liu W. M., Zhuang X. Q., Wang F.; Wang, P. F., Tao S. L., Zhang X.H., Wu S.K., Lee S. T. Fluorescence Turn On of Coumarin Derivatives by Metal Cations: A New Signaling Mechanism Based on C=N Isomerization. Org. Lett. 2007, 9: 33-36.
    [159]唐婷.希夫碱的研究新进展.杭州医学高等专科学校, 2000,21(4):204-210.
    [160]范志影,刘宏超,朱超.对二甲氨基苯甲醛为显色剂分光光度法测定牛奶中尿素.分析试验室, 2009,28:313-315.
    [161]翟文慧,苏永恒.对二甲氨基苯甲醛比色法测定保健食品中胶原蛋白.中国卫生检验杂志, 2007, 17(1): 99-100.
    [162]戴绚丽,范立英,任艳.对二甲氨基苯甲醛分光光度法分析奶粉中羟脯氨酸含量.食品工业科技, 2009,30:3-5.
    [163]徐丽娜,肖鹤鸣,方国勇等,NTO二聚体分子间相互作用的理论研究,化学学报, 2005, 63(12): 1062-2068.
    [164]肖鹤鸣,居学海,高能体系中的分子间相互作用,北京:科学出版社,2004.
    [165]马海霞,宋纪蓉,徐抗震. 3-硝基-1,2,4-三唑-5-酮二甲胺盐(CH_3)_2NH_2C_2N_4O_3H的合成、晶体结构和量子化学研究.化学学报,2003,61(61):1819-1823.
    [166] Ma H. X., Song J. R., Hu R. Z., et al. Non-isothermal Kinetics of the Thermal Decomposition of 3-Nitro-1,2,4-triazol-5-one Magnesium Complex, J. Chem. 2003, 21(12): 1558-1561.
    [167] Lang A., Hatscher C., Wiegert C., Kuhl P., Protease-catalysed coupling of N-protected amino acids and peptides with 4-aminoantipyrine. Amino Acids, 2009, 36(2): 333–340.
    [168] Van Staden J.F., Beyene N.W., Stefan R.I., Aboul-Enein H.Y. Sequential injection spectrophotometric determination of ritodrine hydrochloride using 4-aminoantipyrine.Talanta. 2005, 68(2):401–405.
    [169] Kasthuri J., Santhanalakshmi J., Rajendiran N. Platinum nanoparticle catalysed coupling of phenol derivatives with 4-aminoantipyrine in aqueous medium.Transition Met. Chem. 2008, 33 (7): 899–905.
    [170] Katsaounos C.Z., Paleologos E. K., Giokas D.L., Karayannis M.I. The 4-aminoantipyrine method revisited: Determination of trace phenols by micellar assisted preconcentration. Int. J. Environ. An. Ch. 2003, 83(6):507–517.
    [171] En-jun G., Tie-dong S., Shi-hua L. Synthesis, characterization, interaction with DNA and cytotoxicity in vitro of novel pyridine complexes with Zn(Ⅱ). Eur. J. Med. Chem. 2010, 45: 4531-4538.
    [172] Punniyamurthy T., Kalra S. J. S., Iqbal J. Cobalt (Ⅱ) catalyzed biomimetic oxidation of hydrocarbons in the presence of dioxygen and 2-methylpropanal. Tetrahedron Lett. 1995, 36: 8497-500.
    [173] He S.Y., Chen J. L., Zhang W. P., etal. Interactions and Biological Activity of Rare Earth. Perchlorate Complexes with Alanine and Imidazole. Journal of Rare Earths, 2001, 19(1):66.-68.
    [174] Wang A. D., Bi C. F., Fan Y. H., Zou Y. N., Xu J. K., Kan Y. H. Structure and coordination environment of the zinc complex with vanillin of double-stranded helix. Russ. J. Coord. Chem. 2008, 34: 475-479.
    [175] Watanabe K., Okajima A., Shitanda I., Itagaki M. Spectrophotometric determination of small amounts of cadmium (Ⅱ) using formation of zinc (Ⅱ) complex with anionic porphyrin as an indicator reaction. Bunseki Kagaku,2010, 59(7):589-595.
    [176] Narashimhan, Kamesh; Pillay, Shubhadra; l Bin Ahmad, Nor Riza; Bikadi, Zsolt; Hazai, Eszter; Yan, Li; Kolatkar, Prasanna R.; Pervushin, Konstantin; Jauch, Ralf. Identification of a polyoxometalate inhibitor of the DNA binding activity of Sox2. ACS Chemical Biology, 2011, 6(10):231-234.
    [177] Choi D.W., Koh J.Y. Zinc and brain injury. Annu. Rev. Neurosci., 1998, 21: 347–375.
    [178] Ayyappanpillai A., Priya C., Sivaramapanicker S. A Ratiometric Fluorescence Probe for Selective Visual Sensing of Zn~(2+). J. AM. CHEM. SOC. 2005, 127: 14963-14971.
    [179] de Silva A.P., Gunaratne H.Q.N., T Gunnlaugsson., Huxley A.J.M., McCoy C.P., Rademacher J.T., Rice T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97: 1515–1566.
    [180] Valeur B., Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000, 205: 3–40.
    [181] Callan J.F., De Silva A.P., Magri D.C. Luminescent sensors and switches in the early 21st century. Tetrahedron, 2005, 61:8551–8588.
    [182] Pearce D. A., Jotterand N., Carrico I. S., Imperiali B. Derivatives of 8-hydroxy-2-methylquinoline are powerful prototypes for zinc sensors in biological systems. J. Am. Chem.Soc., 2001, 123: 5160-5161.
    [183] Koike T., Watanabe T., Aoki S., Kimura E., Shiro M. A Novel Biomimetic Zinc (Ⅱ)-Fluorophore, Dansylamidoethyl-Pendant Macrocyclic Tetraamine 1,4,7,10-Tetraazacyclododecane (Cyclen). J. Am. Chem.Soc. 1996, 118: 12696-12703.
    [184] Prodi L., Bolletta F., Montalti M., Zaccheroni N. Searching for new luminescent sensors. Synthesis and photophysical properties of a tripodal ligand incorporating the dansyl chromophore and of its metal complexes. Eur. J. Inorg. Chem. 1999: 455-460.
    [185] Thompson R.B., Maliwal B. P., Feliccia V. L., Fierke C. A., K. McCall, Determination of Picomolar Concentrations of Metal Ions Using Fluorescence Anisotropy: Biosensing with a "Reagentless" Enzyme Transducer. Anal. Chem. 1998, 70: 4717-4723.
    [186] Wu J. S., Liu W. M., Zhuang X. Q., Wang F., Wang P.F., Tao S.L., Zhang X.H., Wu S.K., Lee S. T. Fluorescence Turn On of Coumarin Derivatives by Metal Cations: A New Signaling Mechanism Based on C=N Isomerization. Org. Lett. 2007, 9: 33-36.
    [187] Wang L. N., Qin W. W., Liu W.S., A sensitive Schiff-base fluorescent indicator for the detection of Zn~(2+). Inorg. Chem. Commun. 2010, 13: 1122-1125.
    [188]张金超,李路伟,王立伟,张芳芳,秦新英,李小六.新型钯配合物[Pd(Phen)(TsserNO)]·H2O的合成、晶体结构和体外抗肿瘤活性.无机化学学报,2010, 26(9):1699-1702.
    [189]陈秋云,王玲昀,陈浩,王娟,高静.二吡啶甲基胺配合物修饰的肿瘤靶向性硅核壳纳米球.无机化学学报,2010,26(10):1784-1789.
    [190]贤景春,哈日巴拉,曹高娃,等. 5-氯水杨醛缩硫脲Schiff碱与锰配合物的合成及其对超氧离子的抑制作用.化学研究与应用, 2000, 12(4): 437-439.
    [191]贤景春,哈日巴拉,李春,等.新型Schiff碱配合物的合成及其对超氧离子的抑制作用.合成化学, 2000,8(1):12-15.
    [192]黄娟,崔紫宁,李映,杨新玲. Bioactivities of Copper Complexes with Schiff Bases.有机化学,2008,28(4):598-604.
    [193]王国平,傅旭春,朱龙观.Synthesis, Crystal Structure, Antibacterial and Antitumor Activities of a New Binuclear Copper (Ⅱ)Complex with 1,10-phen and Fluoroquinolone.无机化学学报,2003,19(9):1001-1005.
    [194]王建华,雷文,王远亮.噻二唑类Schiff碱配合物的合成及其对超氧阴离子自由基的抑制活性.化学研究与应用, 2003, 15(3):335-337.
    [195]何秀英,吴纪梅,严振寰,吴自慎.邻甲氧基苯甲醛丙氨酸席夫碱及其金属配合物的合成、表征和对O_2~-.自由基的抑制作用.无机化学学报, 1995, 11(3):302-307.
    [196]张邦乐,何炜,王多宁. 3, 5-二硝基水杨醛缩甘氨酸铜(Ⅱ)配合物的合成、表征及其抗O_2~-活性.西北药学杂志, 2000, 15(4):175-177.
    [197]陈德余,张义建,张平.甲硫氨酸席夫碱铜、锌、钴配合物的合成及抗O_2~-·性能.应用化学, 2000, 17(6):607-610.
    [198]黄永华,龙姝,陈怀侠,叶勇. 3-氯苯甲醛丙氨酸席夫碱及其3d-过渡金属配合物的研究.湖北大学学报(自然科学版), 2002, 24(2):159-163.
    [199]夏金虹,刘峥,王国瑞.卤代水杨醛缩L-酪氨酸希夫碱铜(Ⅱ)配合物的合成、晶体结构及其性能研究.合成化学,2009,17(4):416-421.
    [200]李全芳,何玉凤,王荣民,谢云涛,王向原.壳聚糖希夫碱钴配合物的合成及抗羟基自由基活性.化学研究与应用,2010,22(10):1295-1299.
    [201]侯汉娜,朱军成,刘义,李强国.一种新型希夫碱及其3d,4f配合物的抗菌活性.物理化学学报,2007,23(7):987-992.
    [202]杨频,宋宇飞.金属配合物健合DNA的研究进展.化学进展, 2000, 12(1):32-40.
    [203]朱风霞,陈育宏,曹爱年.金属配合物和DNA相互作用研究进展.化工时刊, 2002, 11:15-18.
    [204] Daniel K.G., Chen D., Orlu S., Cui Q. C., Miller F. R., Dou Q. P. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res, 2005, 7(6): 897–908.
    [205] Zhang X., Bi C. F. , Fan Y. H., Dou D. P., et al. Induction of Tumor Cell Apoptosis by Taurine Schiff Base Copper Complex is Associated with Inhibition of the Proteasomal Activity. Int. J. Mol. Med., 2008, 22(5):677-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700