用户名: 密码: 验证码:
蛋氨酸类希夫碱配合物的合成、表征与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸是重要的生理活性物质,是构成生物体内蛋白质、酶等的基本结构单元,在生物体内参与多种生物化学过程。氨基酸希夫碱及其配合物具有抗病毒、抑菌、抗癌等生物活性和较好的载氧、催化性能,在农业、医学、催化、材料、生物科学等领域具有广泛的应用前景,已受到人们的广泛关注。因此,通过反应引入其它不同结构和活性的基团,从而合成出新的氨基酸希夫碱配体及其金属配合物,研究其结构、性质与生物活性,对指导配合物的合成与应用具有重要意义。
     本文选择活泼羰基化合物与L-蛋氨酸缩合得到了5个系列希夫碱配体,将这些配体与金属离子反应得到了80种新型的的希夫碱配合物,培养了两个希夫碱配合物的单晶。采用元素分析、热分析、核磁共振氢谱等方法对其结构进行了表征,推断出粉末状金属配合物可能的化学结构;采用X-射线单晶衍射测出了单晶的精细结构;对配体及其配合物进行了荧光光谱分析;并对部分配合物与DNA的作用方式进行了研究;研究了铜配合物的抗肿瘤活性。主要工作如下:
     (1)合成了邻香草醛缩蛋氨酸希夫碱(KHL~1)及其配合物,培养了配位聚合物{[CuL~1(H_2O)_2]·[CuL~1(H_2O)]_3·4H_2O}_n和四核配合物[Cd_4(L~1)_4(H_2O)_2]·3H_2O的单晶。单晶结构分析表明:
     配合物{[CuL~1(H_2O)_2]·[CuL~1(H_2O)]_3·4H_2O}_n,属三斜晶系,空间点群Pī。晶胞参数为a =5.2027(5)(?),b = 16.6916(16)(?) ,c = 20.237(2)(?),α= 88.895(10)°,β= 84.127(1)°,γ=83.577(10)°,V = 1737.2(3)(?)~3,F(000) = 848,Dc = 1.561 g/cm~3, R_1 = 0.0760,wR_2 = 0.2095。该配合物属于配位聚合物,整个分子包含两个独立单元,且处于不同的配位环境。独立单元一由1个铜离子、2个配位水分子及1个希夫碱配体所组成,Cu(1)离子具有稍畸变的四方锥体配位几何。独立单元二是通过羧基桥连而成的链状聚合物, Cu(2)离子具有扭曲的四方锥体配位几何结构。配合物[Cd_4(L~1)_4(H_2O)_2]·3H_2O,属单斜晶系,空间点群P2(1)/c,晶胞参数为a = 22.035(2) (?),b = 14.362(6) (?) ,c = 20.237(2)(?),α= 90°,β=104.8940(10)°,γ=90°,V = 7037(?)~3,F(000) = 3416,Dc = 1.605 g/cm~3, R_1 = 0.1993, wR_2 = 0.4536。镉配合物分子由4个镉离子、2个配位水分子、4个希夫碱配体和3个未配位水分子所组成四核分子,整个分子通过O–H…O氢键的相互作用形成了二维网状结构。其余8种配合物的可能组成分别为:[ML~1(H_2O)_2]·nH_2O (M=Zn、Co、Ni, n=1; M=Mn, n=2)、[LnL~1 (NO_3)(H_2O)_2]·nH_2O (Ln=La、Pr, n=1; Ln= Sm、Yb, n=2 )。
     (2)合成了2-羟基-1萘甲醛缩蛋氨酸希夫碱(KHL~2)及其配合物,配合物的可能组成分别为:[ML~2(H_2O)_2]·nH_2O (M=Zn, n=0; M= Cu、Mn, n=1; M= Co、Ni, n=2), [LnL~2(NO_3)(H_2O)_2]·nH_2O (Ln=Er、Sm, n=1; Ln=La、Pr, n=2), [YbL~2(NO_3)(H_2O)_2]·2CH_3OH (L~2 = C_(16)H_(15)NO_3S)。
     (3)合成了吡啶-2-甲醛缩蛋氨酸希夫碱(KL~3)及其配合物,配合物的可能组成分别为:[M(L~3)_2]·nH_2O (M= Mn, n=0; M=Ni、Zn, n=1; M= Co、Cu, n=3), [LnL~3(NO_3)_2]·nH_2O (Ln=La、Sm, n=1; Ln=Yb, n=2; Ln=Er、Pr, n=3), [M(Phen)L~3]·Ac·nH_2O (M=Co、Cu, n=1; M=Ni、Zn, n=2; M=Mn, n=3), [Ln(Phen)(NO_3)L~3]·NO_3·nH_2O (Ln=La、Sm, Er, n=2; Ln= Pr、Yb, n=3) (L~3 = C_(11)H_(13)N_2O_2S, Phen = 1,10-Phenanthroline, Ac = CH_3COO)。
     (4)合成了噻吩-2-甲醛缩蛋氨酸希夫碱(KL~4)及其20种金属配合物,配合物的可能组成分别为:[M(L~4)_2(H_2O)_2]·nH_2O (M= Co、Cu, n=1; M=Ni, n=2; M=Zn、Mn, n=3), [LnL~4(NO_3)_2(H_2O)]·nH_2O (Ln=Er, n=0; Ln=La、Sm, n=2; Ln=Pr, Yb, n=3), [ML~4(Phen)(H_2O)]·Ac·nH_2O (M=Co、Cu, Ni, n=2; M=Zn、Mn, n=3), [LnL~4(Phen)(NO_3)(H_2O)]·NO_3·nH_2O (Ln=Sm、Pr、Yb, n=1; Ln=La、Er, n=2) (L~4 = C_(10)H_(12)NO_2S_2, Phen = 1,10-Phenanthroline, Ac = CH_3COO)。
     (5)合成了2-乙酰基吡啶缩蛋氨酸希夫碱(KL~5)及其配合物,配合物的可能组成分别为:[M(L~5)_2]·nH_2O (M= Zn, n=1; M= Cu、Ni、n=2; M= Co、Mn, n=3), [LnL~5(NO_3)_2]·nH_2O (Ln=Sm、Yb, n=2; Ln=La、Er、Pr, n=3) , [M(Phen)L~5]·Ac·nH_2O (M=Cu, n=0; M=Co、Mn, n=2; M=Ni、Zn, n=3), [Ln(Phen)(NO_3)L~5]·NO_3·nH_2O (Ln=Pr、Yb, n=1; Ln=La、Sm、Er, n=2) (L~5 = C_(12)H_(15)N_2O_2S, Phen = 1,10-Phenanthroline, Ac = CH_3COO) (L~5 = C_(12)H_(15)N_2O_2S, Phen = 1,10-Phenanthroline, Ac = CH_3COO )。
     (6)利用Achar法和Coats-Redfern法,对配合物进行了热分解动力学处理,得出了相关的动力学方程及动力学参数。
     (7)测定了配合物的荧光光谱,比较了其荧光特性。初步研究结果显示:配合物[ZnL~1(H_2O)_2]·H_2O、[ZnL~2(H_2O)_2]、[LaL~2(NO_3)(H_2O)_2]·2H_2O、[PrL~2(NO_3)(H_2O)_2]·2H_2O、[Zn(L~3)_2]·H_2O、[LaL~3(NO_3)_2]·H_2O、[Zn(L~4)_2(H_2O)_2]·3H_2O、[LaL~4(NO_3)_2(H_2O)]·2H_2O、[Zn(L~5)_2]·H_2O、[LaL~5(NO_3)_2]·3H_2O、[SmL~5(NO_3)_2]·2H_2O、[PrL~5(NO_3)_2]·3H_2O具有较好的荧光性质,它们与对应的配体相比,配合物的激发峰和发射峰位置均发生了一定程度的兰移或红移,且相对荧光强度明显增强,是配体的2~3倍。
     (8)研究了Cu(Ⅱ)配合物[CuL~2(H_2O)_2]·H_2O、[CuL~4(Phen)(H_2O)]·Ac·2H_2O ,Zn(Ⅱ)配合物[Zn(L~3)_2]·H_2O分别与鱼精DNA之间的作用模式。实验结果显示:配合物[CuL~2(H_2O)_2]·H_2O、[CuL~4(Phen)(H_2O)]·Ac·2H_2O与DNA发生了插入作用,配合物[Zn(L~3)_2]·H_2O与DNA发生了静电作用。配合物中配体的共平面性越好、平面面积越大、空间位阻越小,其与DNA作用越显著,越有利于其以插入方式与DNA发生相互作用。
     (9)对合成的16种铜、锌希夫碱配合物,采用MTT法进行抗肿瘤活性筛选,得到对前列腺癌PC-3细胞增殖具有较好抑制作用的2种铜配合物[CuL~2(H_2O)_2]·H_2O、CuL~4(Phen)(H_2O)]·Ac·2H_2O。对CuL~4(Phen)(H_2O)]·Ac·2H_2O、CuL~2(H_2O)_2]·H_2O的进一步抗肿瘤活性研究发现:这两种配合物对前列腺癌PC-3细胞内的内糜蛋白酶体有较强的抑制作用,其抑制能力与配合物的使用浓度和作用时间正相关;并且前者的抑制效果优于后者。更重要的发现是金属配合物的抗肿瘤活性的差异与金属离子的选择及配体的结构密切相关,对于同一配体,铜配合物的抗肿瘤活性优于锌配合物。此外,共平面性好、空间位阻小、含杂原子的配体所形成的金属配合物抗肿瘤活性效果更佳。
Amino acids are important physiological active substance. They are the basic structural unit of the protein and enzyme in many living organisms and involve in various biochemical processes in vivo. Amino acids Schiff base and their metal complexes have been proved having such biological activities as anti-virus, antibacterial, anti-cancer, and they have also good oxygen-carrying and catalytic properties. At the same time they have a wide range of applications such as agriculture, medicine, catalysis, materials, biological science and so on, which have received extensive attention by the people. Therefore, the synthesis of many novel amino acid Schiff bases and their metal complexes through the introduction of some other groups with different structures and activities by the chemical reaction, and the studies such as structures, properties and bioactivities, which is very significant for guiding the synthesis and application of complexs.
     In this paper, carbonyl compounds with multiple structures have been used to react with L-methionine to synthesize five novel Schiff base ligands, at the same time, eighty coordination compounds of transition ions or rare earth ions with these ligands have been prepared. All these complexes are the first time reported by the author. The single crystals of two coordination compounds have been also obtained. These ligands and complexes were characterized by elemental analysis, TG-DTG analysis, 1HNMR, and so on. The suggested structures of the powder of metal complexes were concluded. The fine structures of two single crystals were detected by X-ray crystal diffraction. Fluorescence properties of Schiff base ligands and their complexes have been studied. The mode of interaction between part complexes and DNA has been tested, too. The inhibition and inducing apoptosis of the amino acid Schiff base copper complexes on tumor cells have been also studied by targeting the cellular proteasome. The main works of the article are as follows:
     (1) Ten metal complexes with Schiff base ligand (KHL~1) derived from O-vanillin and methionine were synthesized. The single crystals of coordination polymer {[CuL~1(H_2O)_2]·[CuL~1(H_2O)]_3·4H_2O}_n and tetranuclear coordination complex [Cd_4(L~1)_4(H_2O)_2]·3H_2O have been also obtained. Crystal structure showed that:
     The crystal of [CuL~1(H_2O)_2]·[CuL~1(H_2O)]_3·4H_2O}_n belongs to the triclinic crystal system, space group Pīwith the cell parameter a =5.2027(5)(?), b = 16.6916(16)(?), c = 20.237(2)(?),α= 88.895(10)°,β= 84.127(1)°,γ=83.577(10)°, V = 1737.2(3)(?)~3, F(000) = 848, Dc = 1.561 g/cm~3, R_1 = 0.0760, wR_2 = 0.2095. The title copper (Ⅱ) complex is a kind of coordination polymer, which contains two independent units with different coordination environments. The independent unit 1 consists of one copper ion, two uncoordinated water molecules and one Schiff base ligand and the Cu (1) has a slightly distorted square pyramidal coordination geometry. On the other hand, the independent unit 2 is a one-dimensional chain coordination polymer bridged by carboxyl, and the Cu (2) possess coordination geometry as similar as the Cu (1). The crystal of [Cd_4(L~1)_4(H_2O)_2]·3H_2O belongs to the monoclinic crystal system, space group P2(1)/c with the cell parameter a = 22.035(2) (?), b = 14.362(6) (?), c = 20.237(2)(?),α= 90(?),β=104.8940(10)°,γ=90°, V = 7037(?)~3, F(000) = 3416, Dc = 1.605 g/cm~3, R_1 = 0.1993, wR_2 = 0.4536. The [Cd_4(L~1)_4(H_2O)_2]·3H_2O is a tetranuclear coordination complex consisting of four Cd (Ⅱ) ions, two coordinated water molecules, four Schiff base ligands, and three uncoordinated water molecules. A two-dimensional network of molecule is formed by the interaction of the intramolecular and intermolecular hydrogen bonds (O-H…O).
     The possible chemical compositions of the remaining eight metal complexes are confirmed to be: [ML~1(H_2O)_2]·nH_2O (M=Zn,Co,Ni, n=1; M=Mn, n=2), [LnL~1 (NO_3)(H_2O)_2]·nH_2O (Ln=La,Pr, n=1; Ln= Sm,Yb, n=2 ) (where L~1 = C13H15NO4S).
     (2) Ten metal complexes with Schiff base ligand (KHL~2) derived from 2-hydroxy-1-naphthaldehyde and methionine were synthesized. The possible chemical compositions of these complexes are confirmed to be: [ML~2(H_2O)_2]·nH_2O (M=Zn, n=0; M=Cu, Mn, n=1; M=Co, Ni, n=2), [LnL~2(NO_3)(H_2O)_2]·nH_2O (Ln=Er, Sm, n=1; Ln=La, Pr, n=2), [YbL~2(NO_3)(H_2O)_2]·2CH_3OH (where L~2 = C_(16)H_(15)NO_3S).
     (3) Twenty metal ions complexes with Schiff base ligand (KL~3) derived from pyridine-2-formaldehyde and methionine were synthesized. The possible chemical compositions of these complexes are confirmed to be: [M(L~3)_2]·nH_2O (M= Mn, n=0; M=Ni, Zn, n=1; M= Co, Cu, n=3), [LnL~3(NO_3)_2]·nH_2O (Ln=La, Sm, n=1; Ln=Yb, n=2; Ln=Er, Pr, n=3), [M(Phen)L~3]·Ac·nH_2O (M=Co, Cu, n=1; M=Ni, Zn, n=2; M=Mn, n=3), [Ln(Phen)(NO_3)L~3]·NO_3·nH_2O (Ln=La, Sm, Er, n=2; Ln= Pr, Yb, n=3) (where L~3 = C_(11)H_(13)N_2O_2S, Phen = 1,10-Phenanthroline, Ac = CH_3COO).
     (4) Twenty metal complexes with Schiff base ligand (KL~4) derived from thiophene-2-formaldehyde and methionine were synthesized. The possible chemical compositions of these complexes are confirmed to be: [M(L~4)_2(H_2O)_2]·nH_2O (M= Co, Cu, n=1; M=Ni, n=2; M=Zn, Mn, n=3), [LnL~4(NO_3)_2(H_2O)]·nH_2O (Ln=Er, n=0; Ln=La, Sm, n=2; Ln=Pr, Yb, n=3), [ML~4(Phen)(H_2O)]·Ac·nH_2O (M=Co, Cu, Ni, n=2; M=Zn, Mn, n=3), [LnL~4(Phen)(NO_3)(H_2O)]·NO_3·nH_2O (Ln=Sm, Pr, Yb, n=1; Ln=La, Er, n=2) (where L~4 = C_(10)H_(12)NO_2S_2, Phen = 1,10-Phenanthroline, Ac = CH_3COO).
     (5) Twenty metal complexes with Schiff base ligand (KL~5) derived from 2-acetyl pyridine and methionine were synthesized. The possible chemical compositions of these complexes are confirmed to be: [M(L~5)_2]·nH_2O (M= Zn, n=1; M= Cu, Ni, n=2; M= Co, Mn, n=3), [LnL~5(NO_3)_2]·nH_2O (Ln=Sm, Yb, n=2; Ln=La, Er, Pr, n=3) , [M(Phen)L~5]·Ac·nH_2O (M=Cu, n=0; M=Co, Mn, n=2; M=Ni, Zn, n=3), [Ln(Phen)(NO_3)L~5]·NO_3·nH_2O (Ln=Pr, Yb, n=1; Ln=La, Sm, Er, n=2) (where L~5 = C_(12)H_(15)N_2O_2S, Phen = 1,10-Phenanthroline, Ac = CH_3COO ).
     (6) Combinating Achar differential and Coats-Redfern integral method were used to process non-isothermal decomposition kinetics of part of the complexes. The kinetic equations and kinetic parameters of thermal decomposition of the complex in some step were obtained.
     (7) Fluorescence spectra of all ligands and part of their metal ions complexes were detected. Meanwhile, the related fluorescence properties were studied. The experimental results show that these complexes such as [ZnL~1(H_2O)_2]·H_2O, [ZnL~2(H_2O)_2], [LaL~2(NO_3)(H_2O)_2]·2H_2O, [PrL~2(NO_3)(H_2O)_2]·2H_2O, [Zn(L~3)_2]·H_2O, [LaL~3(NO_3)_2]·H_2O, [Zn(L~4)_2(H_2O)_2]·3H_2O, [LaL~4(NO_3)_2(H_2O)]·2H_2, [Zn(L~5)_2]·H_2O, [LaL~5(NO_3)_2]·3H_2O, [SmL~5(NO_3)_2]·2H_2O, [PrL~5(NO_3)_2]·3H_2O have good fluorescence effects. Compared with the corresponding ligand, the excitation and emission peaks of these complexes have shifted to some range. Besides, their fluorescence intensity enhanced significantly, which are two or three times as strong as that of the ligand.
     (8) The interaction between complexes [CuL~2(H_2O)_2]·H_2O, [Zn(L~3)_2]·H_2O and [CuL~4(Phen)(H_2O)]·Ac·2H_2O with Sperm DNA was studied. The experimental results suggest that the interaction modes of [CuL~2(H_2O)_2]·H_2O and [CuL~4(Phen)(H_2O)]·Ac·2H_2O with deoxyribonucleic acid are intercalation. However, the interaction of [Zn(L~3)_2]·H_2O with deoxyribonucleic acid belongs to static electricity attraction mode. It has been demonstrated that when ligand has more co-planar, wider flat area and smaller steric hindrance, its interaction with DNA is more significant, simultaneously, ligand is more favorable to interact with DNA in the way of insertion.
     (9) The antiproliferaion activities of sixteen Schiff base copper(Ⅱ), zinc(Ⅱ) complexes were studied by 3-[4,5-dimethyltiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT method) in prostate cancer PC-3 cells. It was found that [CuL~2(H_2O)_2]·H_2O and CuL~4(Phen)(H_2O)]·Ac·2H_2O showed the higher antiproliferation activities than other complexes. So CuL~2(H_2O)_2]·H_2O and CuL~4(Phen)(H_2O)]·Ac·2H_2O were chosen for further anticancer studies and it turned out to be that they could inhibit proteasome activity and induce apoptosis in prostate cancer PC-3 cells in a concentration- and time-dependent manner. In addition, antiproliferation activity of CuL~4(Phen)(H_2O)]·Ac·2H_2O for prostate cancer PC-3 cells is higher than that of [CuL~2(H_2O)_2]·H_2O. More importantly, anti-tumor activity of metal complexes is closely related to selected metal ions and the structure of the ligands. For the same ligand, anti-tumor activity of copper(Ⅱ) complex is better than that of zinc(Ⅱ) complex. Besides, It was found that the complexe formed by the ligand containing better coplanarity, smaller steric hindrance and heteroatom have much higher anti-tumor activities than that formed by other ligands.
引文
[1]何雪涛.新型希夫碱配合物的合成、表征及其与DNA相互作用研究:[中国海洋大学硕士学位论文],2007.
    [2]孟庆金,戴安邦.配位化学的创始与现代化.无机化学学报,1995,11(3):219~227.
    [3]游效曾.我国配位化学进展[J].化学通报,1999,10:7~9.
    [4]肖珊美.配位化学今昔.浙江师范大学学报(自然科学版),2001,21(3):272~275.
    [5]游效曾,孟庆金,韩万书.配位化学进展.北京:高等教育出版社,2000.
    [6]杨帆.配位化学.上海:华东师范大学出版社,2007,10~ 12.
    [7]张岐.功能配合物研究进展.北京:原子能出版社,2007.
    [8]田娜.金属席夫碱自组装单层膜电化学行为研究:[河北师范大学硕士学位论文],2002.
    [9]范玉华.新型希夫碱金属配合物的合成、表征与应用研究:[中国原子能科学研究院博士学位论文],2004.
    [10]崔青霞.Schiff碱过渡金属配合物的合成、晶体结构及性质研究:[河南大学大学硕士学位论文],2008.
    [11]马晓丽.Schiff碱过渡金属配合物的合成、晶体结构及抑制脲酶活性研究:[辽宁师范大学硕士学位论文],2009.
    [12]马慧杰.5-氨基间苯二甲酸希夫碱配位聚合物的合成、表征及应用研究:[中国海洋大学硕士学位论文],2009.
    [13]刘信玉.2-氨基-5-甲基吡啶类希夫碱配合物的合成、表征及生物活性研究:[中国海洋大学硕士学位论文],2010.
    [14]张岐.功能配合物研究进展.北京:原子能出版社,2007.
    [15]章慧.配位化学原理与应用.北京:化学工业出版社,2009.
    [16]翟慕衡,魏先文,查庆庆.配位化学.安徽:安徽人民出版社,2007.
    [17]孙为银.配位化学(第二版).北京:化学工业出版社,2010.
    [18] Schiff H. Annis Chem, 1864, 131, 118.
    [19]程桂英.稀土希夫碱配合物的合成与表征:[南京工业大学硕士学位论文],2002.
    [20]焦元红.希夫碱配体及配合物的合成与表征:[华中师范大学硕士学位论文],2006.
    [21]王党辉.2-乙酰基苯并咪唑缩甘氨酸Schiff碱稀土配合物的合成及性质研究:[西北大学硕士学位论文],2005.
    [22]何连花.2,6-二氨基吡啶类希夫碱配合物的合成、表征及应用研究:[中国海洋大学硕士学位论文],2009.
    [23]宋玉晶.PMBP席夫碱及其金属配合物的合成、表征、晶体结构、抑菌活性和量子化学研究:[天津师范大学硕士学位论文],2007.
    [24]李淑娟.新型杂环化合物的合成、结构及生物活性研究:[西北大学硕士学位论文],2006.
    [25]刘玉婷,张洁心,尹大伟.氨基酸schiff碱及其金属配合物的性能研究进展.氨基酸和生物资源,2008,30(3):51~54.
    [26]李娜.新型吡嗪酮类席夫碱化合物的设计合成及抑菌性能研究:[西北大学硕士学位论文],2009.
    [27]黄得和.氮杂环席夫碱及其配合物的合成、晶体结构与抑菌活性研究:[南昌航空大学硕士学位论文],2010.
    [28]魏丹毅,李冬成,姚克敏.稀土元素与卢一丙氨酸席夫碱双核配合物的合成与表征及催化活性.无机化学学报,1998,14(2):209~213.
    [29] Majdi S., Jabbari A., Heli H., et al. Electrocatalytic oxidation of some amino acids on a nickel–curcumin Complex modified glassy carbon electrode. Electrochimica. Acta, 2007, 52: 4622~4629.
    [30]冯悦.杂环Schiff碱及其过渡金属配合物的合成、结构及荧光性质:[新疆大学硕士学位论文],2008.
    [31]艾小康.新型希夫碱金属配合物的合成、表征及荧光特性研究:[中国海洋大学博士学位论文], 2007.
    [32]陈玉红,王庆飞,崔敏,等.席夫碱应用研究新进展.河北师范大学学报(自然科学版),2003,27(1):71~74.
    [33] Lohnson J M., Walford R., Harman D., et al. Modern aging research, Vol 8: Free Radicals Aging and Degenerative Diseases. New York: Alan R Liss Inc, 1986: 561~568.
    [34]杨蕊.赖氨酸及其席夫碱铜配合物的合成、表征及生物活性研究:[青岛大学硕士学位论文],2009.
    [35]何秀英,吴纪梅,严振寰,等.邻甲氧基苯甲醛丙氨酸席夫碱及其金属配合物的合成、表征和对O2-·.自由基的抑制作用.无机化学学报,1995,11(3):302~307.
    [36]陈德余,江银枝.过渡金属L-丙氨酸席夫碱配合物的合成及其抗O2-?性能.应用化学,1997,14:5~8.
    [37]鲁桂,姚克敏,张肇英,等.镧系与直链醚一组氨酸Schiff碱新配合物合成、波谱与生物活性.应用化学,2001,18(1):1~4.
    [38]易国斌,陈德余.水杨醛缩天冬酰胺Schiff碱稀土配合物的合成与抗O2-?生物活性.中国稀土学报,2006,24(6):750~754.
    [39]李莹莹.β-氨基酸希夫碱配合物的合成、表征及生物活性研究:[中国海洋大学硕士学位论文],2006.
    [40]韩晶.氨基酸席夫碱类过渡金属超氧化物歧化酶模型化合物的设计、合成、表征及量子化学研究:[辽宁师范大学硕士论文],2008.
    [41]吴自慎,严振寰,等.4-氯苯甲醛甘氨酸席夫碱及其Cu(Ⅱ)、Zn(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)配合物的合成、表征及抗菌活性研究.华中师范大学学报(自然科学版),1989,23(3):351~353.
    [42]毕思玮,高恩庆,田君濂,等.N-亚水杨基氨基酸及其3d金属配合物的合成、表征和抑菌活性.应用化学,1995,12(6):13~16.
    [43]田来进,田君濂,李延团,等. N-亚水杨基氨基酸及其3d金属配合物的合成与性质.化学试剂,1996,18(2):114~116.
    [44]张建民,李瑞芳,刘树祥.过渡金属席夫碱配合物的稳定性及其杀菌活性.无机化学学报,1999,15(4):493~496.
    [45]范玉华,张冬梅,毕彩丰,等.异双希夫碱与La(Ⅲ)配合物的合成、热分解反应动力学和抑菌活性.中国海洋大学学报,2005,35(3):463~466.
    [46]马树芝,郑文捷,周美锋,等.稀土水杨醛缩苯丙氨酸盐邻菲咯啉配合物的合成、表征及抗菌活性.上海师范大学学报(自然科学版),2007,36(3):66~72.
    [47]张欣,杜聪,陈丹,等.氨基酸席夫碱镍、钴配合物的合成、晶体结构与抑菌活性.无机化学学报,2010,26(3):489~494.
    [48] Hodnett E.M., Dunn W. J. 3rd.. Structure-antitumor activity correlation of some Schiff bases. J Med Chem, 1970, 13(4): 768~770.
    [49]陈建华,李常胜,李习俊. N -(2-羟基萘甲醛)甘氨酸希夫碱及其铜(Ⅱ)、镍(Ⅱ)配合物的合成、表征和抗癌活性.中国药物化学杂志,1995,5(3):192~195.
    [50]黎植昌,刘炽清,谭克俊,等.谷氨酸硫酸镧固体配合物的合成、性质及抗癌活性.中国药物化学杂志,1999,9(1):13~15.
    [51]赵喜荣,莫简.对氯对甲氧基苯乙酮缩氨基硫脲合铜(Ⅱ)配合物的合成表征及其抗癌活性.解放军药学学报,2001,17(3):137~139.
    [52]刘建宁,于新桥,董彦杰,等.双缩硫代二氨基脲与N(Ⅱ)、Co(Ⅱ)和Zn(Ⅱ)配合物的合成,表征及其抗癌活性研究.贵州大学学报(自然科学版),2001,18(4):309~312.
    [53]肖艳.新型氨基酸希夫碱配合物的合成及铜(Ⅱ)、铂(Ⅱ)配合物的生物活性研究:[中国海洋大学博士学位论文],2009..
    [54]张霞.希夫碱配合物的合成、表征及抗肿瘤活性研究:[中国海洋大学博士学位论文],2009.
    [55] Ma H.Y., Chen S.H., Niu L., et al. Studies on electrochemical behavtor of copper in aerated NaBr solutions with Schiff bases. Journal of Electrochemical Society, 2001, 148(5): 208~216.
    [56]刘晓岚,刘永红,石尧成,等.希夫碱在有机合成中的应用研究.有机化学,2002,22(7):482~488.
    [57]王伟.手性Schiff碱及其类似物和配合物的研究进展.化工中间体,2009,1:9~11.
    [58]何存星,蔡沛祥,莫金垣,等.一氧化氮在聚钴-席夫碱修饰电极上的电催化氧化.分析试验室,2000,19(1):9~12.
    [59]仇敏,刘国生,姚小泉,等.手性铜(Ⅱ)席夫碱配合物催化苯乙烯不对称环丙烷化反应.催化学报,2001,22(1):77~80.
    [60]李琛,张维萍,姚小泉,等.一种新型手性席夫碱的合成及其在不对称环丙烷化反应中的催化性能.催化学报,2000,21(3):289~291.
    [61]赵继全,韩建萍,张月成.丙氨酸-水杨醛席夫碱锰配合物的制备及其对烯烃环氧化的催化性能.催化学报,2005,26(7):571~576.
    [62]刘峥,陆文超.二苯甲酰甲烷席夫碱过渡金属配合物的制备及仿酶催化活性研究.广西科学,2008,15(3):299~303.
    [63]赵剑英,张宇.荧光试剂7-(4-氨基安替比林偶氮)-8-羟基喹啉-5-磺酸的合成及荧光光度法测定痕量铝的研究.化学试剂,2004,26(4):204~206.
    [64]忤博万,李惠成,刘建宁.新试剂4-羟基苯乙酮缩-2-氨基苯甲酸高灵敏荧光猝灭测定食品中痕量锌[J].食品工业科技,2007,9(28):201~202.
    [65]孔淑青,徐曲,郝莱安,等.用桑色素甲硫氨酸席夫碱荧光法测定锡青铜重痕量铝的研究.江西冶金,1999,19(6):48~50.
    [66]许剑平.微波辐射合成酪氨酸席夫碱及其光度法测定蔬菜中钴的研究.环境与开发,2000,15(4):44~45.
    [67]弓巧娟,晋卫军,董川,等.新荧光试剂4-氨基安替比林芳香席夫碱合成.应用化学,2000,17(2):227~229.
    [68]张丰如,赖俐超.3,4-亚甲二氧基苯甲醛缩氨基硫脲分光光度法测定矿样中铜.冶金分析,2006,26(3):75~76.
    [69] Katarzyna G., Magda Milewska. Tetrahedron, 2004, 60, 11889-11894.
    [70]韩相恩,燕莉.席夫碱液晶的研究与进展.化学试剂,2009,31(7):515~518; 554.
    [71] Klam]eiman B. H., Klingbiel R. T. Nematic liquid crytal compositions. US:, 1976.
    [72]李瑞军,任国度.分子中含-CH2O-桥键液晶化合物的结构和相变间关系.郑州大学学报,1999,31(1):84~87.
    [73] Ma H., Chen S. H., Niu L., et al. Studies on electrochemical behavior of copper in aerated NaBr solutions with Schiff bases. Journal of Electrochemical Society, 2001, 148(5): 208~216.
    [74]张淑媛,何可可,郑世军,等.新型席夫碱型液晶冠醚的合成与性质.应用化学,2005,22(3):272~277.
    [75]韩相恩,屈琦超,吴玉彬,等.新型噻吩席夫碱及其酯化产物合成与性能.应用化学,2009,26(8):935~938.
    [76]任红霞,雷自强,王云普,等.π共轭希夫碱聚合物的合成及其荧光性能.液晶与显示,2002,17(6):429~435.
    [77]吕绪良,许卫东,崔传安,等.席夫碱的合成及其在热红外伪装涂料中的应用.解放军理工大学学报(自然科学版),2000,1(6):54~57.
    [78]范丛斌,熊国宣.导电席夫碱类吸波材料的研究进展.化工新型材料,2005,33(2):59~62.
    [79]王奕.基于席夫碱铂配合物的溶解氧敏感材料的研究:[四川大学硕士学位论文],2006.
    [80]刘浪,贾殿赠,郁开北.1-苯基-3-甲基-4-(6-氢-4-氨基-5-硫杂-2,3-吡嗪)吡唑啉酮光致变色超分子化合物的合成、结构与性能.化学学报,2002,60(3):493~498.
    [81]刘伟.氨基酸的进展及应用.山东轻工业学院学报,1998,12(2):31~34.
    [82]黄光斗,鲁国彬,黄征青,等.氨基酸席夫碱配合物的制备及性能研究进展.化工纵横,2003,17(3):10~12.
    [83]高峰,牛春吉,倪嘉缵.稀土-蛋氨酸配合物的热力学.物理化学学报,1991,7(3):276~280.
    [84]高胜利,杨秉勤,惠会清,等.硝酸稀土与蛋氨酸配合物的合成及表征.中国稀土学报,1994,12(3):201~204.
    [85]乐学义,童明良. 1,10-邻菲咯啉-铜(Ⅱ)-L-蛋氨酸配合物的合成、表征及其分子结构.无机化学学报,2002,18(10):1023~1027.
    [86]周晓华,陈实,黄鹤,等.L-α-氨基酸铜(Ⅱ)-联吡啶混配配合物的合成及表征.合成化学,2003,11(6):503~506.
    [87] Bellam S., Jagadese J. V. Hydrogen-bonded copper(II) and nickel(II) complexes and coordination polymeric structures containing reduced Schiff base ligands. Inorganica Chimica Acta, 2009, 362(8): 2735~2743.
    [88]王立华,唐豫顺,张冰艳.稀土蛋氨酸配合物及稀土氯化物对鲤鱼毒性的比较试验.水产学杂志,1997,10(2):91~93.
    [89]李红,乐学义,吴建中,等.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA相互作用的研究.化学学报,2003,61(2):245~250.
    [90]商艳芳,葛存旺,吴昌月,等.稀土-蛋氨酸-邻菲咯啉配合物的合成、表征及抗菌活性研究.化学试剂,2009,31(12):971~973.
    [91] Guangbin Wang, James C Chang. Synthesis and Characterization of Amino Acid Schiff Base Complexes of Nickel(Ⅱ).Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry,1994,24(7): 1091~1097.
    [92]范玉华,郝锐,毕彩丰,等.Ln(Ⅲ)与2-羟基-1-萘醛缩蛋氨酸盐及邻菲咯啉三元配合物的合成与表征.合成化学,2003,11(3):230~232.
    [93] Iffet S., Hamza Y. Manganese(Ⅲ) Complexes of Some Amino Acid (L-Serine, L-Methionine, L-Cystein) Schiff Bases Derived from 2-Hydroxy-1-naphthaldehyde.Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 2003, 33 (6): 971~983.
    [94]陈杰.羟基喹啉-二茂铁缩聚物及羟基喹啉-蛋氨酸的合成与性能研究:[四川师范大学硕士学位论文],2008.
    [95]桂自其,严振寰,吴自慎.L-甲硫氨酸席夫碱及其锰(Ⅱ)配合物的合成、表征与抗癌活性.华中师范大学学报(自然科学版),1989,23(3):351~356.
    [96]王光斌.DL-蛋氨酸希夫碱的铜(Ⅱ)、锌(Ⅱ)配合物的抑菌作用.氨基酸杂志,1994,1:1~3.
    [97]陈德余,张义建,张平.甲硫氨酸席夫碱铜、锌、钴配合物合成及抗O2-?性能.应用化学,2000,17(6):607~610.
    [98]乔艳红,郁铭,孙命,等.邻香兰素甲硫氨酸度夫碱四核铜配合物的合成及结构表征.应用化学,2003,20(2):192~194.
    [99] Huijuan Yue, Dong Zhang, Zhan Shi, et al. Dinuclear oxovanadium(IV) compounds from designed amino acid derivatives. Inorganica Chimica Acta, 2007, 360(8): 2681~2685.
    [100]干宁,葛从辛,王志颖,等.新型8-氨基喹啉-蛋氨酸衍生物合钌金属药物的合成和细胞毒活性及其与DNA相互作用研究.中国药学杂志,2007,42(19):1508~1512.
    [101]陈延维,唐瑶,王剑秋,等.氨基酸Schiff碱苄基锡配合物的合成及抑菌活性研究.衡阳师范学院学报,2010,31(3):126~129.
    [102]张丽影,赵小菁,齐小辉,等.5-溴水杨醛氨基酸Schiff碱及其铜(Ⅱ)配合物的制备和抑菌性能研究.安徽农业科学,2010,38(6):2795~2797.
    [103]刘峥,刘宝玉,王永燎.3,5-二溴水杨醛缩甲硫氨基酸席夫碱镍(Ⅱ)配合物修饰碳糊电极的制备及对甲醇的电催化氧化研究.分析仪器,2010,(4):46~50.
    [104]郭峰.甘氨酸席夫碱配合物的合成、表征及生物活性研究:[中国海洋大学博士学位论文], 2007.
    [105]何华,王羚郦,戴丽.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展.中国药学杂志,2005,40(7):481~485.
    [106]杨传孝,李原芳,奉萍.铝离子与脱氧核糖核酸作用的共振光散射研究.分析化学,2002,30(4):473~477.
    [107] Barton J. K., Goldberg J. M., Kumar C. V., et al. Binding Modes and Base Specificity of Tris (phenanthroline) ruthenium(Ⅱ) Enantiomers with Nucleic Acids: Tuning the Stereosele -ctivity. J. Am. Chem. Soc., 1986, 108: 2081~2088.
    [108]王平红.一些金属配合物与DNA相互作用研究:[海南大学硕士学位论文],2006.
    [109] Belmont P., Constant, J. F., Demeunynck M. Nucleic Acid Conformation Diversity: from Structure to Function and Regulation. Chem. Soc. Rev, 2001, 30: 70~81.
    [110] Rao R., Patra A. K., Chetana P. R. DNA binding and oxidative cleavage activity of ternary (L-proline) copper(Ⅱ) complexes of heterocyclic bases. Polyhedron, 2007, 26: 5331~5338.
    [111]黄琦,汪维鹏,钟文英,等.药物分子与DNA相互作用的研究方法.中南药学,2004,2(6):354~357.
    [112]董建方.氨基酸希夫碱铜配合物的合成、晶体结构分析及其与DNA的相互作用:[聊城大学硕士学位论文],2008.
    [113] Liu F., Meadons A., Mcmillin D. R. DNA-binding studies of Cu(bcp)~(2+) and Cu(bcp)~(2+) DNA elongation without intercalation of Cu(bcp)~(2+). J. Am. Chem. Soc, 1993, 115(15): 6699~6704.
    [114]沈同,王镜岩.生物化学(上)第二版.北京:高等教育出版社,1992.
    [115]吴红星.多胺桥联-2-亚甲基-1,10-邻菲咯啉配合物的合成、表征及其生物活性研究:[南开大学博士学位论文],2005.
    [116] Tysoe S. A., Morgan R. J., Baker A. D. etc. Spectroscopic Investigation of Differential Binding Modes ofΔ- andΛ-Ru (bpy)~(2+)( ppz ) with Calf Thymus DNA. J. Phys. Chem., 1993, 97: 1707~1711.
    [117]谢韵,张雷,古琴,等.邻菲咯啉-铜-氨基酸三元配合物与DNA的作用.华南理工大学学报(自然科学版),34(8):70~74.
    [118] Hiort C., Norden B., Rodger A. Enantiopreferential DNA binding of [ruthenium(II)(1,10 -phenanthroline)3]~(2+) studied with linear and circular dichroism. J. Am. Chem. Soc., 1990, 112: 1971~1982.
    [119]江崇球,贺吉香,王金山.EB荧光探针法研究多粘菌素B与DNA的作用方式.光谱学与光谱分析,2002,22(1):103~106.
    [120]吴海霞.生物活性分子与DNA的相互作用研究:[西北师范大学硕士学位论文],2005.
    [121] Yan Xiao, Cai-feng Bi, Yu-Hua Fan, et al. L-glutamine Schiff base copper complex as a proteasome inhibitor and an apoptosis inducer in human cancer cells. International Journal of Oncology, 2008, 33: 1073~1079.
    [122]杨立荣.牛磺酸席夫碱配合物的合成、表征及生物活性研究:[中国海洋大学博士学位论文], 2006.
    [123] Zhang X., Bi C. F., Fan Y. H., et al. Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated with the inhibition of proteasomal activity. International journal of molecular medicine, 2008, 22(5): 677~682.
    [124] Yan Xiao., Cai-Feng Bi., Yu-Hua Fan., et al. Journal of Coordination Chemistry. 2009, 62:3029~3034.
    [125]王永燎,刘峥,王松梅,等.氨基酸席夫碱双核铜配合物修饰玻碳电极对抗坏血酸的电催化作用.分析科学学报,2009,25(6):673~676.
    [126] JIA Xu-dong., DUAN Hai-feng., LIN Ying-ji., et al. Simple and Mild Syntheses of Optically Active 2-(N,N-Dialkylamino) oxazolines. CHEM. RES. CHINESE UNIVERSITIES, 2010, 26(3): 394~397.
    [127] Wang R. M., Hao C. J., Wang Y. P., et al. Amino acid Schiff base complex catalyst for effective oxidation of olefins with molecular oxygen. Journal of molecular catalysis, 1999, 147(1~2): 173~178.
    [128]马心英,傅佑丽.氨基酸化学修饰电极的研究与应用.曲阜师范大学学报(自然科学版),2006,32(4):91~94.
    [129]张栋梅.新型Schiff碱金属配合物的合成、表征与应用研究:[中国海洋大学硕士学位论文],2006.
    [130]王玉芳.邻氨基对苯二甲酸类希夫碱配位聚合物的合成、表征及抑菌活性研究:[中国海洋大学硕士学位论文],2010.
    [131]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用(修订版)[M].北京:科学出版社,2001,138.
    [132]聂毅,孙海英.十二员四氮杂大环席夫碱及其铜配合物的合成与表征.曲阜师范大学学报,2001,27(2):75~77.
    [133]李培凡,刘燕,王智,等.对溴苯甲醛缩邻氨基酚席夫碱及其配合物的合成、结构表征和抑菌活性[J].天津师范大学学报(自然科学版) 2003 ,23(2):10-12.
    [134]中本一雄.无机和配位化合物的红外和拉曼光谱(黄德如,汪庆仁,译者).北京:化学工业出版社,1986.251.
    [135] Martell A. E., Sillen L. G. Stability Constants, Special Publications No. 17, 25. London: The Chemical Society, 1964~1971.
    [136]刘宝殿,徐永祥.混合而烃基二氯化锡与水杨醛缩苯胺类Schiff碱配合物的合成和表征.高等化学学报,1994,15(9):1322~1326.
    [137]叶勇.2-氯代苯甲醛丙氨酸席夫碱配合物的合成与表征[J].湖北大学学报,2001,23(1):57~61.
    [138]毕彩丰.铀、钍、稀土希夫碱配合物的合成与表征:[中国原子能科学研究院博士学位论文],2001.
    [139]姚克敏,李冬成,沈联芳.镧系与邻氨基苯甲酸型Schiff碱配合物的合成,表征及催化活性.化学学报,1993,51 (7) :677~682.
    [140]范玉华,毕彩丰,施强.Y(Ⅲ), Pr(Ⅲ)与邻香草醛缩邻氨基苯甲酸配合物的合成与表征.山东建材学院学报,1998,12(4):306~308.
    [141]毕彩丰,范玉华.稀土异双希夫碱配合物的合成_表征及热分解反应动力学.稀有金属,2004,28(4):699~702.
    [142]蒋毅民,谭黎峰,银秀菊,等.Cu[C_5H_3N(CCH_3=N-C_6H_5)_2]_2(PF6)_2配合物的合成、晶体结构和热分解反应动力学.无机化学学报,2002,,26(1):802~806.
    [143]范玉华,邹彦娜,毕彩丰,等.糠醛缩4-氨基安替比林与Ln(Ⅲ)配合物的合成、表征和热分解反应动力学.应用化学, 2006,,23(4):394~398.
    [144] Shen X. Q., Li Z. J., Zhang H. Y., et al. Mechanism and kinetics of thermal decomposition of 5-benzylsulfanyl-2-amino-1,3,4-thiadiazole. Thermochimica Acta, 2005, 428: 77~82.
    [145]刘德军,毕彩丰,刘峙嵘.糠醛缩丙氨酸合Dy(Ⅲ)配合物的合成、表征及热分解反应动力学.稀土,2004,25(1):41~44.
    [146] Issa.R M., Khear. A. M., Rizk. H. F. Spectrochim Acta Part A, 2005, 62: 621~629.
    [147] Sheldrick, G. M. SHELXTL 5.10 for Windows NT:structure determination software programs. Bruker Analytical X-ray systems. Inc., Madison. Wisconsin. [M], USA. (1997).
    [148]王强.含N、O、S杂环席夫碱及其金属配合物的合成与结构研究:[聊城大学硕士学位论文],2008.
    [149]夏军,刘星,任化伟,等.二乙撑三胺单缩水杨醛合铜(II)的晶体结构.武汉科技学院学报,2003,16(2):43~46.
    [150] Chen Hu., Xu Xing-You., Gao Jian., etc. Chinese Struct. Chem., 2006, 25(3): 247~252.
    [151] Wang Ruifen, Wang Shuping, Shi Shikao, et a1. Coord. Chem., 2002, 55(2): 215~223.
    [152]丁立群,张占金,刘景芳.2-羟基-1-萘醛缩苯胺类希夫碱的非线性光学性质的理论研究.辽宁师范大学学报(自然科学版),1999,22(2):144~147.
    [153]刘富安,蒋维东,何锡阳,等.相转移催化剂促进2-羟基-1-萘甲醛的合成.四川大学学报(自然科学版),2008,,45(2):399~401.
    [154]明阳福,黄震年,许安宝,等.双希夫碱-N,N’-二(2-羟基-1-萘甲醛)缩-1,4-苯二胺的电子光谱和光致变色机理研究.中国科学(B辑),1997,27(2):120~124.
    [155]葛晓霞,刘金凯,江崇球.邻羟基萘醛缩氨基硫脲的合成及其与铍的荧光熄灭反应的研究及应用.化学试剂,2003,25(5):279~281.
    [156]朱少萍,壮亚峰,高姗姗,等.2-羟基-1-萘醛缩-4-氨基安替比林席夫碱的热色性研究.江西师范大学学报(自然科学版),2009,33(4):429~432.
    [157] Yamada S. Coord Chem Rev, 1999, 537: 190~192.
    [158]范乃英,高山,赵辉,等.金属离子对2-羟基-1-萘甲醛缩对甲氧基苯甲酰腙荧光光谱的影响.黑龙江大学自然科学学报,2004,21(3):104~107.
    [159]孙命,段月琴.邻香兰素氨基酸Schiff碱化合物的合成及构象研究.高等学校化学学报,2001,22(7):1160~1162.
    [160] Wu Zishan., Lu Zhiping., Yan Zhenhuan. Synthesis, Characterization scavenger effect on O2- of Copper(Ⅱ) and Zinc(Ⅱ)complexes derived from thiosemi- carbazide. Transition Met Chem, 1993, 18: 291.
    [161]张文昭,周彦同,余宝源.Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)、Ag(Ⅰ)和Pb(Ⅱ)的2,5-噻吩二甲醛双缩邻氨基苯酚席夫碱配合物的合成及性质的研究.无机化学学报,1993, 9(2):216~220.
    [162] Geary W. J. The use of Conductivity Measurements in organic Solvents for the Characterization of Coordination Compounds. Coord. Chem. Rev., 1971, 7(1): 81~102.
    [163]胡明,赵永亮.邻菲罗啉-水杨酸-稀土三元配合物的合成与表征.化学试剂,2001,23(6):328~329,332.
    [164]范玉华,毕彩丰,李金英.2-羟基-1-萘醛缩-4-氨基安替比林与钆(Ⅲ)配合物的合成、表征及热分解动力学.核化学与放射化学,2004,26(1):56~60.
    [165] Yu-Hua Fan., Cai-Feng Bi., Jin-ying Li. Thermodecomposition Kinetics of Dy(Ⅲ) Complex with Schiff Base Derived from Furfural and DL–α–Alanine. Synthesis and Reactivity in Inorganic and Metal-organic Chemistry, 2003, 33(1): 137~145.
    [166]杨卫民,刘利军,拓守脘,等.2-羟基-1-萘甲醛缩氨基胍铜配合物的合成及表征.化学研究与应用,2008,20(11):1476~1479.
    [167] Casellato U., Vigato P.A. Coord Chem Rev, 1977, 23: 31.
    [168]白令君.高等学校化学学报,1998,19(6):890~894.
    [169] Saryan L. A., Ankel E. K. . Medthem, 1979, 22: 1218.
    [170] Fanshawe R. L., Mobinikhaledi A., Clark C. R., et al. Inorg. Chim. Acta, 2000, 307: 27~32.
    [171] Keypour H., Yhanmohammadi H. Transition Metal Chemistry, 2004, 29: 523~527.
    [172] Zhang H Y, Ye K Q, Zhang J Y, et al. Inorg. Chem., 2006, 45: 1745~1753.
    [173] Bassetti M., Calene A., Mastrofrancesco L., et al. Eur. J. Inorg. Chem., 2006, 64:: 914~925.
    [174] Duran M. L., Rodriguez A. Santiagode Compostela. Spain, 1987, 17(7): 681.
    [175] Michel J. M.C. Coord. Chem. Rev. 1975, 15: 279.
    [176]林志东,瞿阳,刘伟生.Schiff碱双冠醚及其多核配合物的合成及表征.武汉化工学院学报,2004,26(1):42~44.
    [177]侯林荣,高继红,杨天林.N, N’-双(2-羟基-1-萘酚醛)-2,6-二亚胺吡啶Schiff碱Co(Ⅱ)配合物的合成、表征及与ct-DNA的相互作用.宁夏大学学报(自然科学版),2008,29(3):244~248.
    [178]江银枝,胡惟孝. 2-乙酰吡啶吖嗪及其与Co~(2+)、Ni~(2+)、Fe~(3+)、Zn~(2+)配合物的合成和生物活性.应用化学,2003,20(6):582~585.
    [179]刘睦清,张淑梅.2,3-二氯异丁酸、邻菲咯啉稀土三元配合物的合成与表征.化学研究与应用,1999,11(6):697~700.
    [180]毕彩丰,范玉华,杨立荣,等.异双希夫碱配合物的合成与表征.化学研究与应用,2005,17(3):307~309.
    [181]胡应喜,黄蓉.柠檬酸-邻菲啰啉-稀土三元配合物的合成与表征.化学与生物工程,2009,26(9):31~33.
    [182] Jabri E., Carr M. B., Hausinger R. P., et a1. Science, 1995, 268: 998~1002.
    [183]赵吉寿,李文军,颜丽.一种含硫Schiff碱及其金属螯合物的研究.云南民族学院学报(自然科学版),2000,9(4):206~209.
    [184] Jiang Y. M., Zhang S. H., Xu Q., et a1. Acta Chin Sinica, 2003, 61: 573~577.
    [185] Akbar A. M., Mirza A. H, Ravoof T. B., et al. Synthetic spectroscopic and X-ray crystallographic structural study of the monomeric [Cu(pysme)(sac)(MeOH)] and dimeric [cu(6mptsc)(sac)]2 complexes. Polyhedron, 2004, 23(11): 2031~2036.
    [186]郑启升,赵吉寿,王金城,等.含硫双Schiff碱及其金属配合物的合成、表征与生物活性研究.化学试剂,2007,29(7):415~417
    [187] Peet N.P., Bangh L.E., Sunders S. 3-(1H-tetrazol-5-yl)-4-(3H)-quinazdinone sodium salt: a new antiallergic agent. J. Med. Chem., 1986, 29: 2403
    [188] Peet N.P., Sunders, Barbuch R. J., et al. Sulfonyl carbaminidic Azides from sulfonyl chlorides and 5-aminotetrazole. J. Heterocyclic Chem., 1987, 24: 1531.
    [189] Zhidong Ma, Gilda Saluta, Gregory L. Kucera, et a1. Bioorganic & Medicinal Chemistry Letters,2008,18, 3799~3801.
    [190] Huff B. E., Staszak M.A. A new method for the preparation of tetrazoles from nitriles using trimethylsilylazied. Tetrahedron Letters, 1993, 34: 8011.
    [191]杨红,韩新利,张智慧,等.丙二酸根-1,10-邻菲罗啉合镍(Ⅱ)配合物的合成、晶体结构及光谱性质.无机化学学报,2007,23(3):513~516.
    [192] CUI Guang-Hua, TIAN Jin-Lei,,BU Xian-He.. Nankai Daxue Xuebao cta Scientiarum Natu.rallum Universitatis Nankaiensis,2005, 38: 32~36.
    [193] Xu G J, Kou Y Y, Li F, et a1. App. Organomet. Chem., 2006, 20: 351~356.
    [194]刘延福.邻菲咯啉衍生物的配合物的合成、结构与性质:[江南大学硕士学位论文],2008.
    [195] Zheng S. L., Zhang J. P., Wong W. T., et a1. Am. Chem. Soc., 2003, 125: 6882~6883.
    [196]叶勇,胡继明,曾云鹗.用表面增强拉曼光谱研究8种席夫碱化合物及其对脱氧核糖核酸的作用.分析化学,1997,25(8):883~887.
    [197]杨健国,潘富友,李钧敏. Cu(Ⅱ)-2′-(2-噻吩亚甲基)水杨酰腙Schiff碱配合物的合成、表征、晶体结构及抑菌活性研究.无机化学学报,2005,21(10):1593~1596.
    [198]王郁文,钟凡,许亚萍,等.化学学报,2006,64(8):811~816.
    [199] Tamburini S., Tomasin P., Vigato P. A., et al. . Inorg Chim Acta, 2004, 357: 1374~1380.
    [200] WANG Ming-Zhao., MENG Zhao-Xing., PENG AN., et al. Chem. J. Chinese Universities, 2005, 26(5): 816~818.
    [201] Refat M. S., El-Deen I. M., Ibrahim H. K., et al. . Spectrochimica Acta Part A, 2006, 65: 1208~1220.
    [202] Yu-hua Fan., Yu-Fang Wang., Cai-feng Bi., et al. Russian Journal of Coordination Chemistry, 2010, 36(7): 512~516.
    [203] Wang Z., Wu Z., Yen Z., et al. . Synth. Reaact. Inorg. Met-Org. Chem. 1994, 24(9): 1453.
    [204] Chen H., Romasin P. A. J. Mol. Med, 1996, 74: 497~504.
    [205]赵继全,韩建萍,张月成.丙氨酸-水杨醛席夫碱锰(Ⅲ)配合物的制备及其对烯烃环氧化的催化性能.催化学报,2005,26(7):571~576.
    [206] Janusz L., Janusz Z., Iwona J., et al. Coordination Chemistry Revews, 2005, 249: 1185~1199.
    [207] Oliveirta P., Ramos A. M., Fonseca I., et al. . Catalysis Today, 2005, 102~103(15): 67~77.
    [208] Qiang Wang, Cai-feng Bi, Yu-hua Fan, et al. A Novel Copper(Ⅱ) Complex with Schiff Base Derived from O-vanillin and L-methionine: Synthesis and Crystal Structure. Russian Journal of Coordination Chemistry, 2011, 37 (3): 228~234.
    [209] Trzebiatawska B. J., Chmielewski P., Vogt A. Inorg Chim Acta, 1984, 83(2): 129~136.
    [210]计亮年,张黔玲.多吡啶配合物在大分子DNA中的功能及其应用前景.科学通报,2001,48(6):451~460.
    [211]陈延民,解庆范,郑香平.乙酰基吡啶Schiff碱Cu(Ⅱ)、Ni(Ⅱ)配合物的合成与表征.化学研究,2006,17(1):13~15.
    [212]张玲,唐宁,曾毅博,等.3,5-二苄氧基苯甲酰水杨醛腙的合成及其稀土硝酸盐配位性能的研究.中国稀土学报,2002,20(专辑):14~16.
    [213]祈燕玲,余坚,黄丹,等.铕吡啶羧酸配合物[Eu (C_7H_3O_4N )(CH_3COO)( H_2O) ]·2H_2O的合成、表征及其结构.光谱实验室,2008,25(4):523~26.
    [214]刘峥,王松梅,王莉.对甲基苯磺酰化丝氨酸Nd-配合物的合成_表征及热分解反应动力学.光谱实验室,2010,27(4):1237~1243.
    [215] .陈欣妍.甘氨酸席夫碱铜配合物的合成及其与DNA相互作用的研究:[华中师范大学硕士学位论文],2005.
    [216] Nassar A. E. F., Rusling J. F. Electron transfer between electrodes and heme proteins in protein-DNA films, J Am Chem Soc, 1996, 118(12): 3043~3044.
    [217]刘军,罗国安,王义明,等.小分子与核酸相互作用的研究进展.药学学报,2001,36(1):74~78.
    [218]王海滔,胡婷婷,张黔玲,等.钌(Ⅱ)多吡啶配合物的合成、荧光性质及与脱氧核糖核酸DNA的作用机制研究.化学学报,2008,66(13):1565~1571.
    [219] Chouai A., Wieke S. E., Turro C., et a1. Ruthenium(Ⅱ) complexes of 1,1-diazaperylene and their interactions with DNA. Inorg Chem, 2005, 44(17): 5996~6003
    [220]周庆华,杨频.1,3-双(2-苯并咪唑基)-2-氧杂丙烷与锌配合物的合成、晶体结构及其与DNA作用方式的研究.化学学报,2006,64(8):793~798.
    [221]李风华,吴红星,林华宽.N-烷基,邻菲咯啉,甲胺La(Ⅲ)配合物的合成及抗癌活性.高等学校化学学报,2006,27(10):1800~1804.
    [222]朱莉,彭斌,凌友,等.配合物[Co_2(EGTB)Cl_2]·(BF_4)·5H_2O与DNA相互作用的研究.化学学报,2008,66(24):2705~2711.
    [223]席小莉,杨曼曼,杨频.6-苄氨基嘌呤及其金属配合物与DNA的作用机理.无机化学学报,2005,21(12):1847~1853.
    [224]胡亚敏,王兴明,张欢.金属配合物与DNA相互作用的研究进展.化学与生物工程,2007,24(8):1~4.
    [225]罗黎,江崇球,李磊.光谱法研究氧氟沙星-铽络合物与脱氧核糖核酸的相互作用.分析化学,2003,31(12):1504~1507.
    [226]王姣亮.几种新型配合物的合成、表征及与DNA的相互作用:[湖南师范大学硕士学位论文],2005.
    [227]张黔玲,刘剑洪,任祥忠,等.新型双核配合物的形成、与DNA的作用机制及荧光性质研究.化学学报,2006,64(10):968~974.
    [228]顾姗姗.以苯并咪唑配合物及酶为指示剂的DNA电化学生物传感器的研究:[青岛科技大学硕士学位论文],2008.
    [229]刘敏,袁文兵,张岐,等.新型三足席夫碱稀土配合物的合成,表征及与DNA的作用.应用化学,2008,25(10):1193~1196.
    [230] Reichmann M. E., Rice S. A., Thomas C. A., Doty P.. A further examination of the molecular weight and size of deoxypentose nucleic acid. J. Am. Chem. Soc., 1954, 76: 3047~3053.
    [231]文志刚,苏晓玲,柏任流.紫外-可见光谱法研究金霉素-Sm(Ⅲ)配合物与ctDNA的相互作用.化学试剂,2009,31(25):362~364.
    [232]李来生,王宇晓,黄伟东,等.荧光法研究金属配合物与DNA的相互作用.江西师范大学学报(自然科学版),2001,25(4):295~299.
    [233]黄琦,汪维鹏,钟文英,等.药物分子与DNA相互作用的研究方法.中南药学,2004,2(6):354~357.
    [234] Liu J., Zhang T. X., Lu T. B., Qu L. H., Zhou H., Ji L. N.J. Inorg. Biochem., 2002, 91: 269.
    [235]王洪芳,胡乃梁,毕建洪,等.一种希夫碱铜配合物与DNA相互作用的研究.安徽大学学报(自然科学版),2010,34(2):104~108.
    [236] Barton J. K., Danishefsky A. T., Goldberg J. M. J. Am. Chem. Soc, 1984, 106: 2172.
    [237] Wu J. Z., Ye B. H., Ji L. N., et al. J. Chem. Soc., Dalton Trans, 1997, 8: 1395.
    [238]黄波,邹国林,杨天鸣.阿霉素与牛血清白蛋白结合作用的研究.化学学报,2002,60 (10):1867~1871.
    [239]席小莉,杨曼曼,杨频.6-苄氨基嘌呤及其金属配合物与DNA的作用机理.无机化学学报,2005,21(12):1847~1852.
    [240] Wolfe A., Shimer G. H., T. Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 1987, 26: 6392~6396.
    [241] Kelly J. M., Tossi A. B., McConnell D. J., et al. A Study of the Interactions of Some Polypyridyl ruthenium(Ⅱ) Complexes with DNA Using Fluorescence Spectroscopy, Topoisomerization and Thermal-Denaturation. Nucleic Acids Research, 1985, 13(17): 6017~6034.
    [242]成红丽,马丽,卢奎,等.光谱法和电化学法研究甲硫氨酸二肽与DNA的相互作用.分析化学,2009,37(4):548~552.
    [243]胡婷婷.钌(Ⅱ)多吡啶配合物的合成、荧光性质及与DNA的作用机制研究:[深圳大学硕士学位论文],2008.
    [244]王娟,陈婧.Fe(phen)3与DNA作用的荧光光度法研究.中国稀土学报,2003,21(2):183.
    [245] Song Y. F., Yang P.. Mononuclear tetrapyrido phenazine (tpphz) cobalt complex. Polyhedron, 2001, 20(6): 501~506.
    [246] Baguley B. C., Lebret M. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 1987, 26: 6392~6396.
    [247] Lakowicz J. R., Weber G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 1973, 12: 4161~4170.
    [248]席小莉.生物小分子与DNA相互作用的光谱及二维核磁的研究:[山西大学博士学位论文],2008.
    [249]吴建中,王雷,杨光,等.钌多吡啶配合物的合成及结合DNA的研究.高等学校化学学报,1996,17(7):1010~1015.
    [250]周庆华,杨频.二(2-苯并眯唑亚甲基)胺合铜(Ⅱ)配合物与DNA作用方式的光谱研究.化学学报,2005,63(1):71~74.
    [251]张霞,倪永年.荧光光谱法研究罗丹明B与DNA的相互作用.南昌大学学报(理科版),2007,31(3):268~270
    [252] Rouzina L., Bloomfield V. A. Competitive Electrostatic Binding of Charged Ligands to Polyelectrolytes: planar and Cylindrical Geometries. J Phys Chem, 1996, 100(10): 4292~4304.
    [253] Kumar C. V., Tarrier R. S., Asuncion E. H. Groove Binding of a Styrylcyanine Dye to the DNA Double Helix the Salt Effect. J Photochem Photobiol A, 1993, 74(2): 231~238.
    [254]李娜,魏永巨.药物分子与血清白蛋白结合反应的荧光法研究进展.河北师范大学学报(自然科学版),2003,27(2):176~180.
    [255]王洪芳.芳香羧酸及衍生物配合物的合成及性质研究:[安徽大学硕士学位论文],2010.
    [256] Li Y. P., Wu Y. B., Zhao J., et al. DNA-binding and cleavage studies of novol binuclear copper(Ⅱ) complex with 1,1-dimethyl-2,2-biimidazole ligand. J. Inorg. Biochem., 2007, 101: 283~290.
    [257] Yang G., Wu J. Z., Wang L., etc. Study of the interaction between novel ruthenium(Ⅱ)-polypyridyl complexes and calf thymus DNA. J. Inorg. Biochem., 1997, 66: 141~144.
    [258]韩高义,杨频.四[对-(羧基甲氧基)苯基]卟啉的金属配合物(M=Zn,Cu,Ni)的π-π配合及其二丁基锡(Ⅳ)酯衍生物的抗癌活性.高等学校化学学报,2001,22(12):1993~1995.
    [259]卢奎,成红丽,马丽,等.L-半胱氨酸二肽与DNA的相互作用研究.光谱学与光谱分析,2010,26(1):146~149.
    [260]陈欣妍,史克莉.电化学法研究抗癌药物与DNA的作用.湖北中医学院学报,2007,9(3):53~55.
    [261]林丽清,康杰,等.苯甲酸二聚铜配合物与DNA相互作用的电化学研究及应用.光谱实验室,2010,29(5):1~4.
    [262]项朋志,高云涛,戴云,等.壳聚糖铜离子配合物与小牛胸腺DNA作用的光谱电化学研究.化学与生物工程,2005,9,37~39.
    [263]周庆华,杨频.二(2-苯并眯唑亚甲基)胺合铜(Ⅱ)配合物与DNA作用方式的光谱研究.化学学报,2005,63(1):71~74.
    [264]王洪芳.芳香羧酸及衍生物配合物的合成及性质研究:[安徽大学硕士学位论文],2010.
    [265] SADABS. Program for Empirical absorption correction of area detector data,University of Madison,Wisconsin,USA,1996.
    [266]朱莉,彭斌,凌友,等. [Co_2(EGTB)Cl_2]·(BF_4)_2·5H_2O与DNA相互作用的研究.化学学报,2008,66(24):2705~2711.
    [267] Tysoe S. A., Baker A. D., Strekas T. C. J. Phys. Chem. 1993, 97: 1707.
    [268]张朝红,苏欣,赵广富,等.用紫外光谱和荧光光谱研究三丁基锡化合物与脱氧核糖核酸的相互作用.分析科学学报,2006,22(3):267~270.
    [269]张爱梅,王怀生,孙盈,等.荧光光谱法研究利福平与DNA的相互作用.聊城大学学报(自然科学版),2007,20(2):45~47.
    [270]侯琳熙,魏丹毅,干宁,等.新型Schiff碱双核铜配合物与DNA相互作用的光谱研究.光谱实验室,2007,24(2):86~88.
    [271] Li Z. L., Chen J. L., Zhang K. C., et al.. Sci. China, Ser. B., 1991, 11: 1193
    [272]李莹莹,范玉华,毕彩丰,等.La(Ⅲ)与β-丙氨酸缩β-萘酚醛双核配合物的合成、表征及其与DNA的作用.光谱学与光谱分析,2006,26(12):2268~2271.
    [273] Wen-TongChen , Qiu-Yan Luo, Dong-Sheng Liu, et al.. Inorganic Chemistry Communications,2008, 11, 899~902.
    [274] Gonzalez V M, Fuertes M A, AJonso C, et a1. Is cisplatin-induced cell death always produced by apoptosis. Mol Pharmaeol, 2001, 59(4): 657~663.
    [275]王伸勇,张荣久,张奕华,等.铂类抗肿瘤药物的研究现状.药学进展,2004,28(6):253~257.
    [276] Evans B. D., Raju K. S., Calvert A. H., et al. PhaseⅡstudy of JM8, a new platinum analog, in advanced ovarian carcinoma. Cancer Treat. Rep., 1983, 67: 997~1000.
    [277] Daniel KG, Gupta P, Harbach RH, Guida WC, Dou QP. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem Pharmacol, 2004, 67(6): 1139~1151.
    [278] Scott E. Harpstrite, JulieL.Prior, Nigam P. Rath, Vijay Sharma. Metalloprobes: Synthesis, characterization, and potency of a novel gallium(ⅡI) complex in human epidermal carcinoma cells. Journal of Inorganic Biochemistry, 2007, 101: 1347~1353.
    [279] Akbar Ali, M., Guan, T. S., et al. Magnetic, spectroscopic and biological properties of copper(Ⅱ) complexes of the tridentate ligand, -N-methyl-S-methyl- -N-(2-pyridyl) methylenedithiocarbazate (NNS) and the X-ray crystal structure of the [Cu(NNS)I2] complex. 2002, 27(3): 262~267.
    [280] Shreelekha Adsule, Vivek Barve. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J.Med..Chem. 2006, 49(24): 7242~7246.
    [281] Vinita Ambike, Shreelekha Adsule, Fakhara Ahmed, et al. Copper conjugates of nimesulide Schiff bases targeting VEGF, COX and Bcl-2 in pancreatic cancer cells. Journal of Inorganic Biochemistry, 2007, 101(10): 1517~1524.
    [282] Giuseppe Filomeni, Giselle Cerchiaro, et al. Pro-apoptotic activity of novel isatin-Schiff Base copper(Ⅱ) complexes dependson oxidative stress induction and organelle-selective damage. The Journal of Biological Chemistry, 2007, 282(16): 12010~12021.
    [283] Kim I, Kim C H, Kim J H, et al. Pyrrolidine dithiocarbamate and zinc inhibit proteasome dependent proteolysis. Exp.Cell Res., 2004, 298(1): 229~238.
    [284] Milacic V, Chen D, Dou Q P, et al. Pyrrolidine dithiocarbamate-zinc(Ⅱ) and -copper(Ⅱ) complexes induce apoptosis In tumor cells by inhibiting the proteasomal activity. Toxicology and Applied Pharmacology, 2008, 231(1): 24~33.
    [285] Adams, J. Proteasome inhibition:a novel approach to cancer therapy. Trends in Molecular Medicine, 2002, 8(4): 49~54.
    [286] Baldwin, A.S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. Journal of Clinical Investigation, 2001, 107(3): 241~246.
    [287] Schubert, U., Ott, D.E., Chertova, E.N., et al. Proteasome inhibition interferes with Gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 13057~13062.
    [288] Chen D, Cui QC, Yang HJ and Dou QP. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition the proteasome activity. Cancer Res , 2006,66 (21): 10425~10433.
    [289]王晟.温敏性细胞培养基底的制备及其对平滑肌细胞和肝癌细胞的生长与粘附行为的影响:[重庆大学硕士学位论文],2010.
    [290] Chen D, Cui QC, Yang HJ, et al. Clioquinol, a therapeutic agent for Alzhemer’s disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts. Cancer Res 67(4): 1~9.
    [291]刘屹.免疫抑制剂霉酚酸酯在肝癌细胞HepG-2的作用及研究:[第四军医大学硕士学位论文],2008.
    [292] Zhang X, Bi CF , Fan YH, Dou DP, et al. Induction of Tumor Cell Apoptosis by Taurine Schiff Base Copper Complex is Associated with Inhibition of the Proteasomal Activity. Int J Mol Med, 2008, 22(5): 677~682.
    [293]洪卉.氮杂吲哚螺环化合物库的设计、合成及抗肿瘤活性研究:[青岛科技大学硕士学位论文],2010.
    [294]范琼瑛,张雪梅,田莉瑛,等.稀土元素及其配合物生物学效应研究进展.生命科学仪器,2008,6,3~8.
    [295]范卓文,孙盛敏,崔瑞海,等.硫代嘧啶类衍生物生物活性定量构效关系的理论研究.哈尔滨师范大学(自然科学学报),2010,26(1):102~104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700