用户名: 密码: 验证码:
希夫碱配合物与DNA的相互作用及新型电化学DNA传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在“人类基因组项目”的推动下,人类疾病的DNA诊断及治疗的研究得以快速发展,这也大大加快了生命科学、医学检测和药物筛选等领域技术的进步。金属配合物与DNA、蛋白质、氨基酸等生物分子的作用机理研究,是治疗某些疾病的重要环节。多数金属配合物抗肿瘤药物都是通过与肿瘤细胞DNA的作用,从而破坏肿瘤细胞,表现出其抗癌活性。希夫碱配合物由于具有抑菌、抗肿瘤、抗病毒、对DNA结构的插入作用等多种生物活性,使得它们在生物医学研究等方面起着不可忽视的重要作用。近年来,希夫碱配合物与DNA相互作用的研究,越来越受到人们的重视。但是系统性对比结构相似的希夫碱配合物与DNA之间作用的报道不多。因此,有必要筛选具有特定结构的一系列希夫碱金属配合物,研究它们与DNA的作用机制,总结规律,以期为实现药物初步筛选获得一些有价值的规律。
     识别和检测血液、组织、体液等实际样品中特定序列的DNA片段,可以在分子水平上确定感染疾病的根源,对药物研发、食品及环境污染的控制和疾病的诊断治疗等意义重大。电化学DNA传感器检测技术不仅可以用来识别特定序列的DNA,还可以检测DNA的损伤,以及研究一些药物与DNA的作用机理,进行特定药物的设计合成,在临床诊断、体外药物筛选等方面都有应用。它提供了一种操作简便、价廉、无污染、灵敏度和选择性好的快速响应的DNA检测技术,已成为当今生物医学领域的前沿性课题。各种新颖的设计思路不断涌现,使电化学DNA传感器的性能不断得到改善,为在药物研究、医学诊断、卫生防疫、环境科学及生物工程等领域的应用中实现低浓度DNA的快速检测提供了有力的研究手段和方法。
     本论文是基于希夫碱配合物与DNA相互作用的研究现状及特定序列DNA检测技术的发展状况而展开的,研究了同系列希夫碱金属配合物与DNA的相互作用,同时将纳米材料技术和核酸杂交技术相结合构造了两种新颖的电化学DNA传感器。主要进行了以下几个方面的工作:
     (1)采用电化学方法研究了两种希夫碱配合物[CuL(CH_3COO)(H_2O)]·H_2O、[CoL(CH_3COO)(H_2O)] (L: 2-羟基~(-1)-萘醛)与DNA的相互作用,紫外可见光谱学方法辅助验证。实验结果表明,配合物[CuL(CH_3COO)(H_2O)]·H_2O、[CoL(CH_3COO)(H_2O)]与DNA之间均存在着一定程度的嵌插作用,两种配合物在电极上都发生不可逆氧化还原反应。而且这两种配合物与DNA的结合常数分别为3.24×10~4 L·mol~(-1)、1.36×10~4 L·mol~(-1)。希夫碱配合物与DNA之间的作用明显强于相应的配体;在配体相同的情况下,希夫碱铜配合物与DNA的结合常数略大于希夫碱钴配合物。同时,研究发现以[CuL(CH_3COO)(H_2O)]·H_2O作为电化学探针,能在2.0×10~(-5) mol·L~(-1)~1.2×10~(-4) mol·L~(-1)浓度范围内对溶液中的DNA进行定量检测。以[CoL(CH_3COO)(H_2O)]作为电化学探针,能在1.0×10~(-5) mol·L~(-1)~9.0×10~(-5) mol·L~(-1)浓度范围内对溶液中的DNA进行定量检测。
     (2)采用电化学方法研究了两种氨基酸希夫碱铜配合物[CuL1(H_2O)3] (L1: L-天冬酰胺缩邻香草醛)、和[Cu_3(L2)2(CH_3COO)2(H_2O)]·2H_2O (L2: L-谷氨酰胺缩邻香草醛)与DNA的相互作用,紫外可见光谱学方法辅助验证以上结果。实验结果表明,配合物[CuL_1(H_2O)3]与[Cu_3(L2)2(CH_3COO)2(H_2O)]·2H_2O均与DNA之间存在静电作用,两种配合物在电极上发生的电化学过程均为不可逆氧化还原反应。而且两者与DNA的结合常数分别为9.6×10~3 L·mol~(-1)、5.46×10~3 L·mol~(-1)。配合物与DNA之间的作用明显强于相应的配体;在与同一金属配位的情况下空间位阻大、平面性较差的氨基酸希夫碱铜配合物与DNA的结合常数略小。同时,研究发现以[CuL1(H_2O)3]作为电化学探针,能在1.0×10~(-5) mol·L~(-1) ~9.0×10~(-5) mol·L~(-1)浓度范围内对溶液中的DNA进行定量检测。以[Cu_3(L_2)_2(CH_3COO)2(H_2O)]·2H_2O作为电化学探针,能在2.0×10~(-5) mol·L~(-1)~9.0×10~(-5) mol·L~(-1)浓度范围内对溶液中的DNA进行定量检测。
     (3)采用电化学方法研究了三种希夫碱铜配位聚合物[C_(19)H_(11)NO_5Cu]n·n CH_3CH_2OH、[C_(16)H_(10)O_6NCu]n·2nH_2O和[C_(15)H_9NO_5Cu]n·n(CH_3CH_2OH)(H_2O)与DNA的相互作用,紫外可见光谱学方法辅助验证。实验结果表明,配位聚合物[C_(19)H_(11)NO_5Cu]n·nCH_3CH_2OH、[C_(16)H_(10)O_6NCu]n·2nH_2O和[C_(15)H_9NO_5Cu]n·n(CH_3CH_2 OH)(H_2O)均与DNA之间存在着一定程度的嵌插作用,三种配位聚合物在电极上发生了不可逆氧化还原反应。配位聚合物与DNA之间的作用明显强于相应的配体;不论分子中是否存在类似萘环等具有较好平面性的结构,在生成希夫碱铜配位聚合物后,均与DNA之间存在不同程度的嵌插作用,这可能与配位聚合物的特殊结构有关。
     同时,研究发现以[C_(19)H_(11)NO_5Cu]n·nCH_3CH_2OH作为电化学探针,能在0.4×10~(-5) mol·L~(-1)~4.0×10~(-5) mol·L~(-1)浓度范围内对溶液中的DNA进行定量检测。以[C_(16)H_(10)O_6NCu]n·2nH_2O作为电化学探针,能在1.0×10~(-5) mol·L~(-1)~1.2×10-4 mol·L~(-1)浓度范围内对溶液中的DNA进行定量检测。以[C_(15)H_9NO_5Cu]n·n (CH_3CH_2OH)(H_2O)作为电化学探针,能在1.0×10~(-5) mol·L~(-1)~1.2×10-4 mol·L~(-1)浓度范围内对溶液中的DNA进行定量检测。
     (4)用硝酸腐蚀金银合金箔片,制成纳米多孔金片(NPG),然后将其修饰到玻碳电极上,得到NPG修饰电极,将NPG电极作为固定DNA探针的电极并结合DNA-Au生物条形码的多次放大技术研制了一种新型电化学DNA检测传感器。其构造过程如下:将探针DNA固定在NPG电极上,然后探针DNA与目标DNA的一端互补杂交,目标DNA的另一端与修饰在30 nm Au上的连接DNA杂交。然后为了进一步放大信号,连接在NPG电极表面的30 nm Au再修饰上大量的带有信号DNA的13 nm Au。单个30 nm Au NPs修饰后可以负载多个带有信号DNA的13 nm Au NPs,而一个13 nm Au上标记有大量的信号DNA。这样检测目标DNA就可以转化为检测成倍放大后的信号DNA,通过两种不同粒径的Au NPs的联合放大作用达到提高检测灵敏度的目的。然后将层层组装后的电极放入[Ru(NH_3)6]~(3+)的溶液中,单链DNA上吸附[Ru(NH_3)_6]~(3+),用计时电量法进行检测。而利用多孔金片修饰电极作为固定DNA探针的平台有两方面优势,一是相对于裸金电极,NPG电极有更大的表面积,使得它可以固定更多的DNA探针;另外,多孔金片的高导电性也进一步增强了DNA传感器的灵敏度。结合DNA-Au生物条码的多步放大和多孔金片修饰电极两方面的优势,这种传感器检测目标DNA的线性范围是8.0×10~(-1)6 mol·L~(-1)~5.0×10~(-17) mol·L~(-1),检测限是2.0×10~(–17) mol·L~(-1)。并在单碱基错配DNA的测定上显示出良好的选择性。
     (5)将纳米材料技术、核酸杂交技术和电化学分析技术相结合,构造了一种高灵敏度、高选择性的新型电化学DNA传感器。其创新点主要有两方面:其一,采用羧基修饰的纳米级磁珠作为捕获和放大目标DNA的载体。磁珠本身较大的表面积使其可以捕获更多的目标DNA,同时,磁珠捕获目标DNA后,通过杂交互补作用,在其表面层层组装上两种不同粒径的修饰过的Au NPs,对目标DNA的量进行了多步放大,而检测目标DNA的量就转化为直接检测放大后的信号DNA的量,从而大大提高了检测的灵敏度。其二,信号DNA是通过二硫键连接在层层组装后的磁珠外层,加入二硫苏糖醇(Dithiothreitol,DTT)后打开二硫键,可以将信号DNA从磁珠上解离下来,与磁珠磁性分离,即得到含有信号DNA的溶液,然后用“三明治夹心法”在NPG电极上检测解离下来的信号DNA溶液,将NPG电极上固定DNA探针,与解离下来的信号DNA一端杂交,信号DNA的另一端再与DNA-Au生物条码上的探针DNA进行杂交,将层层组装后的电极放入[Ru(NH_3)_6]~(3+)溶液中,在信号DNA上吸附[Ru(NH_3)_6]~(3+),用计时电量法进行检测。在最佳条件下,该DNA传感器可检测到0.12 amol·L~(-1)级的较低浓度的目标DNA,并在单碱基错配DNA的测定上显示出良好的选择性。
Under the push of the“human genome project”, the study of DNA diagnosis and treatment are developed rapidly and various technologies in the fields of disease diagnosis or drug screening have been greatly advanced.
     Most anti-cancer drugs work through the interactions with DNA in tumor cells. Investigating the interaction mechanism of metal or metal complex with biomolecule, such as DNA, protein and amino acid, provides a starting point for the diagnosis of human disease. Schiff base complexes have been proved to have biological activities in many fields, such as anti-cancer, antibacterial, and interactions with DNA, which causes widespread concern in the scientific community. In recent years, several reports on the interactions of Schiff base complexes with DNA have been published. However, there are rarely reports about the comparison of the interaction mechanism between homologous series of Schiff base complexes and DNA. So to summarize differences of the interactions between homologous series of Schiff base metal complexes and DNA is valuable for drug screening.
     The recognition and detection of DNA in the human blood, organization or body fluid sample have become more and more important for drug research and development, diseases diagnosis and environmental pollution control. DNA electro chemical sensors hold an enormous potential for the DNA recognition, detection of DNA damage, drug screening or disease diagnosis. It provides an inexpensive, non-pollution, sensitive, easy-to-use and fast response device which therefore stays in the center of interest of many biomedical scientists. At present, many new procedures are under intense investigation in order to improve the function of DNA electrochemical sensors and to meet the new challenges connected to the simple, fast response of low levels DNA in different fields.
     This dissertation aims to study the interaction mechanism between homologous series of Schiff base complexes and DNA. Moreover, nanomaterials and nucleic acid hybridization technique are introduced to develop two novel DNA electrochemical sensors. The main researches are as follows:
     (1) The interaction mechanism of [CuL(CH_3COO)(H_2O)]·H_2O and [CoL (CH_3COO) (H_2O)] with DNA was studied by means of electrochemical methods. Uv-vis spectroscopic methods validated the results. The interaction mode of two Schiff base complexes with deoxyribonucleic acid are intercalation and binding constants are 3.24×10~4 L·mol~(-1), 1.36×10~4 L·mol~(-1), respectively. Two complexes have the irreversible electrochemical redox reaction process in electrode. The binding functions of Schiff base complexes are positively related to the concentration. The binding functions of Schiff base complexes are stronger than the ligand. The binding constant of [CuL(CH_3COO)(H_2O)]·H_2O is greater than the [CoL(CH_3COO)(H_2O)]. Meanwhile, experimental results demonstrate that using [CuL(CH_3COO)(H_2O)]·H_2O or [CoL(CH_3 COO)(H_2O)] as electrochemical probes could detect 2.0×10–5 mol·L~(-1) ~1.2×10–4 mol·L~(-1) or 1.0×10–5 mol·L~(-1)~9.0×10~(-5) mol·L~(-1) DNA in solution, respectively.
     (2) The interaction mechanism of [CuL_1(H_2O)3] and [Cu_3(L_2)_2(CH_3COO)_2 (H_2O)]·2H_2O with DNA was studied by means of electrochemical methods. Uv-vis spectroscopic methods validated the results. The interaction mode of two Schiff base complexes with deoxyribonucleic acid are electrostatic force and binding constants are 9.6×10~3 L·mol~(-1),5.46×10~3 L·mol~(-1), respectively. Two complexes have the irreversi ble electrochemical redox reaction process in electrode. The binding functions of Schiff base complexes are positively related to the concentration. The binding functions of Schiff base complexes are stronger than the ligand. The binding ratios are related to the planar area of the complexes. Meanwhile, experimental results demonstrate that using [CuL_1(H_2O)3] or [[Cu_3(L2)2(CH_3COO)2(H_2O)]·2H_2O as electro chemical probes could detect 1.0×10~(-5) mol·L~(-1)~9.0×10~(-5) mol·L~(-1) or 2.0×10~(-5) mol·L~(-1) ~9.0×10~(-5) mol·L~(-1) DNA in solution, respectively.
     (3) The interaction mechanism of [C_(19)H_(11)NO_5Cu]n·n CH_3CH_2OH, [C_(16)H_(10)O_6NCu]n·2nH_2O and [C_(15)H_9NO_5Cu]n·n(CH_3CH_2OH)(H_2O) with DNA was studied by means of electrochemical methods. Uv-vis spectroscopic methods validated the results. The interaction mode of three Schiff base coordination polymers with deoxyribonucleic acid are intercalation. Three coordination polymers have the irreversible electro chemical redox reaction process in electrode. The binding functions of Schiff base coordination polymers are positively related to the concentration. The binding functions of Schiff base coordination polymers are stronger than the ligand. The binding constant of [CuL(CH_3COO)(H2O)]·H2O is greater than the [CoL(CH_3COO) (H2O)]. No matter whether there are some flat areas like naphthalene molecular in the structure, all the coordination polymers showed intercalation with DNA. It is speculated that this might be caused by the special structure of coordination polymer. Meanwhile, experimental results demonstrate that using [C_(19)H_(11)NO_5Cu]n·nCH_3 CH2OH, [C_(16)H_(10)O_6NCu]n·2nH2O or [C_(15)H_9NO_5Cu]n·n(CH_3CH2OH)(H2O) as electro chemical probes could detect 0.4×10~(-5) mol·L~(-1)~4.0×10~(-5) mol·L~(-1), 1.0×10~(-5) mol·L~(-1)~ 1.2×10-4 mol·L~(-1) and 1.0×10~(-5) mol·L~(-1)~ 1.2×10-4 mol·L~(-1) DNA in solution, resp ectively.
     (4) An novel electrochemical DNA detection method was developed based on the Nanoporous Gold Electrode (NPG) and singal multiple amplification with two different diameters of DNA-Au bio-barcodes. The target DNA signal amplification assay used here was fabricated by immobilizing probe DNA on the NPG electrode and then being hybridized with one end of target DNA. The other end of target DNA was further hybridized with the linker DNA loaded on the carboxyl group modified Au NPs of 30 nm. To further amplify the target DNA signals, the immobilized 30 nm Au NPs was also modified with 13 nm DNA-Au bio-barcodes which were labelled many reporter DNA. In this means, one target signal could be transformed into multiple signals of the markers since a single 30 nm Au NP could be loaded with dozens of 13 nm Au NPs, and an 13 nm Au NPs could be loaded with thousands of signal DNA. Electrochemical signals of [Ru(NH_3)_6]~(3+) bound to the signal DNA via electrostatic interactions were measured by chronocoulometry (CC). Using NPG electrode as the platform for fixing DNA probes has two advantages, one is because NPG electrode has larger surface area than the gold electrodes which makes it fixed more DNA probes. In addition, NPG electrode has high conductivity which further enhances the sensor sensitivity. Combining the two advantages of DNA-Au bio-barcodes and the NPG electrode, this assay could detect as low as amol·L~(-1) target DNA and exhibited excellent selectivity against one-base mismatched DNA. This DNA biosensor could detect DNA target quantitatively in the range of 8.0×10~(-16) mol·L~(-1) to 5.0×10~(-17) mol·L~(-1), with the detection limit of 2.0×10~(–17) mol·L~(-1) and exhi bited excellent selectivity even for single-mismatched DNA detection.
     (5) An ultrasensitive electrochemical DNA detection method was developed based on multiple amplification of Nanoporous Gold Electrode, DNA-Au bio-barcodes and dithiothreitol-induced oligonucleotide releasing from bio-barcodes. Its innovations has two aspects: first, using carboxyl modified nanoscale magnetic beads as the carrier of probe DNA in order to capture more target DNA. The probe DNA which was immobilized in the magnetic beads captured the specific target DNA and then assembled layer-by-layer with the two different diameters of modified Au NPs. And the detection of target DNA is transformed into directly measure the amplified amount of reporter DNA, which greatly improve the detection sensitivity. Second, this assay relied on the ability to liberate the adsorbed thiolated oligonucleotides from the gold nanoparticle surface with dithiothreitol (DTT). DTT was added to break up disulfide bonds and remove the reporter DNA from the surface of the layer-by-layer assembly magnetic beads. After magnetic separation, DTT-released reporter DNA were subsequently detected using the“sandwich-type”NPG-DNA assay by chronocou lometry (CC) analysis. The“sandwich-type”NPG-DNA assay was fabricated by immobilizing probe DNA on the NPG electrode and being hybridized with DTT-released reporter DNA which further hybridized with the barcode DNA loaded on the Au NPs. Electrochemical signals of [Ru(NH_3)_6]~(3+) bound to the reporter DNA via electrostatic interactions were measured by chronocoulometry (CC). Under the optimum conditions, this assay could detect as low as 0.12 amol·L~(-1) target DNA and exhibited excellent selectivity against one-base mismatched DNA.
引文
[1] Skladanowski A., Bozko P., Sabisz M. DNA Structure and Integrity Checkpoints during the Cell Cycle and Their Role in Drug Targeting and Sensitivity of Tumor Cells to Anticancer Treatment. Chem. Rev., 2009, 109: 2951-2973
    [2] Pitie M., Pratviel G. Activation of DNA Carbon Hydrogen Bonds by Metal Complexes. Chem. Rev., 2010, 110: 1018-1059
    [3] Samantha L. H. H., Travis A. W., Brenda S. J. W., Karen J. B. Redox, Spectroscopic, and Photophysical Properties of Ru-Pt Mixed-Metal Complexes Incorporating 4,7-Diphenyl-1,10- phenanthroline as Efficient DNA Binding and Photocleaving Agents. Inorg. Chem., 2011, 50: 463-470
    [4]杨频,宋宇飞.金属配合物键合DNA的研究进展[J] .化学进展, 2000, 12: 32-38
    [5] Liu Z, Wang H, Luo G A, et al. The interaction of DNA with dopamine by spectroscopic and electrochemical methods. Anal.Sci., 2002, 18(7): 751-756
    [6] Lin X Q, Lu L P, Jiang X H. Voltammetric behavior of dopamine at ct-DNA modified carbon fiber microelectrode. Microchim. Acta., 2003, 143(4): 229-235
    [7] Drummond T G, Hill M G, Barton J K. Electrochemical DNA sensor. Nature biotechnology, 2003, 21(10): 1192-1199
    [8] Wang J. Survey and summary: from DNA biosensors to gene chips. Nucleic Acid Res., 2000, 28: 3011-3016
    [9] Palecek E. Past, present and future of nucleic acids electrochemistry. Talanta, 2002, 56(5): 809-819
    [10]庞代文,颜蔚.基因传感技术及目前存在的问题和发展对策.高等学校化学学报, 2001, 22(3): 389-392
    [11] Yin B.C., Wu D., Ye B.C. Sensitive DNA-Based Electrochemical Strategy for Trace Bleomy cin Detection. Anal.Chem., 2010, 82: 8272-8277
    [12]黄海珍,杨秀荣.脱氧核糖核酸电分析化学研究进展.分析化学, 2002, 30(4): 491-497
    [13]杨丽菊,彭图治.特定序列的脱氧核糖核酸电化学生物传感器进展.分析化学, 2001, 29(3): 355-360
    [14] Wei X, Hao Q L, Zhou Q, et al. Interaction between promethazine hydrochloride and DNA andits application in electrochemical detection of DNA hybridization [J]. Electrochim.Acta, 2008, 53(24): 7338-7343
    [15]李静,李景印,郭玉凤.生物小分子与DNA相互作用的光谱及电化学研究进展[J].化学研究, 2005, 16(4):101-104
    [16] Li F, Chen W, Tang C F, et al. Recent development of interaction of transition metal complexes with DNA based on biosensor and its applications[J]. Talanta, 2008, 77(1): 1-8
    [17] Long E C, Barton J K, On demonstrating DNA intereallation, Acc.Chem.Res., 1990, 23: 271-273
    [18] Zhou Y.L., Li Y.Z. Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods. Biophysical Chem., 2004, 107(3): 273-281
    [19]徐春,何品刚,方禹之.溴化乙锭标记DNA电化学探针的研究.高等学校化学学报. 2000, 21(8): 1187-1190
    [20] Carvlin M.J., Fiel R.J. Intercalative and nonintercalative binding of large cationic porphyrin ligands to calf thymus DNA. Nucleic Acids Res., 1983, 11(17): 6121-6139
    [21]李启隆,黄清泉,胡劲波.博莱霉素与DNA在镍离子注入修饰电极上的相互作用及其应用.化学学报, 2001, 59(6): 836-541
    [22]郑允飞,陈文纳,李德昌等.Schiff碱及其配合物的应用研究进展.化工技术与开发, 2004, 33(4): 26-28
    [23] Isse A.A., Gennaro A., Vianello E. Electrochemical reducation of Schiff bases ligand Hsalen and Hsalophen. Electrochemical Acta, 1997, 42(13-14): 2065-2071
    [24] Bastos M. B. R., Moreira J. C., Farias P. A. M. Adsorptive striooing Voltammetric behavior of UO2(Ⅱ) complexed with the Schiff base N,N-prime-ethylenebis(salicylidenimine)in 4-(2-hy droxyethyl)-1-piperazine ethanesulfonic acid medium. Anal.Chim.Acta, 2000, 408: 83-88
    [25]唐波,张杰,王栩.新型主体试剂交联聚合-环糊精-邻香草醛苯甲酰腙的合成及荧光法识别锌.分析化学, 2002, 30(10): 1196-1200
    [26]忤博万,李惠成,刘建宁.新试剂4-羟基苯乙酮缩-2-氨基苯甲酸高灵敏荧光猝灭测定食品中痕量锌.分析检测, 2007, 9(28): 193-194
    [27] Yu-Bin Dong, Xia Zhao, A Bo Tang, et al. Novel organic-inorganic composite coordination polymers generated from new multidentate Schiff-base ligand and Ag(I)salts. Chem.Commun., 2004, 220-221
    [28] Yu-Bin Dong, Xia Zhao, Ru-Qi Huang. New Ag(I)-containing coordination polymers gen-erated from multidentate Schiff-base ligands. Inorganic Chemistry, 2004, 43(18): 5603 -5612
    [29] Ming-Liang Tong, Xiao-Ming Chen, Bao-Hui Ye, et al. Self-assembled three-Dimensional coordination polymers with unusual ligand-unsupported Ag-Ag Bonds: syntheses, structures and Luminescent properties. Angew.Chem.Int.Ed., 1999, 38(15): 2237-2239
    [30] Chi-Ming Che, Siu-Chung Chan, Hai-Feng Xiang, et al. Tetradentate Schiff base platinum(II)complexes as new class of phosphorescent materials for high-efficiency and white-lightelectroluminescent devices. Chem.Commun., 2004, 13: 1484-1485
    [31] Yong-Yue Lin, Siu-Chung Chan, Michael C.W.Chan, et al. Structural, photophysical and electrophosphorescent properties of platinum(II) complexes supported by tetradentate N2O2 chelates. Chem.Eur.J., 2003, 9(6): 1263-1272
    [32] Olivier Lavastre, Ilya Illitchev, Gwenaelle Jegou, et al. Discovery of new fluorescent materials from fast synthesis and screening of conjugated polymers. J. Am. Chem. Soc., 2002, 124: 5278-5279
    [33] Amiraslanov I.R., Usubaliev B.T., Nadzhafov G.N., et al. X-ray diffraction study of complex es of p-aminobenzoic acid with metals.Ⅷ.Crystal and molecular structure of silver(I) p-amino benzoate. Zh. strukt.khim., 1980, 21(5): 112-118
    [34] Amiraslanov I.R., Dzhafarov N.Kh., Nazhafov G.N., et al. X-ray structural study of comple xes of p-aminobenzoic acid with metals. V. Crystal and molecular structure of bis(p-aminoben zoato) lead(II). Zh.Strukt.Khim., 1980, 21(1): 131-136
    [35] Khiyalov M.S., Amiraslanov I.R., Mamedov Kh.S., et al. Crystal and molecular structure of neodymium(III) p-aminobenzoate.Zh.strukt.khim., 1981, 22(3): 113-119
    [36] Ruihu Wang, Feilong Jiang, Youfu Zhou, et al. Syntheses and characterizations of four mixed-ligand hydrogen bonding supramolecular architectures with different structural motifs. Inorg. Chim.Acta., 2005, 358(3): 545-554
    [37]蒋春芳.氨基苯甲酸及其希夫碱金属配合物的研究:[硕士学位论文],广西师范大学无机化学系, 2006
    [38] Ruihu Wang, MaoChun Hong, Junhua Luo, et al. The role of spacers between carboxylate groups in self-assembly process: Syntheses and characterizations of two novel cadmium(II)complexes derived from mixed ligands. Inorg. Chim. Acat., 2004, 357(1): 103-114
    [39] Frank Wiesbrock, Hubert Schmidbaur. The structural chemistry of lithium, sodium and potassium anthranilate hydrates. J.chem.Soc., Dalton trans., 2002, (24): 4703-4708
    [40] Frank Wiesbrock, Hubert Schmidbaur. Crystal Structures of Rubidium and Cesium Anthranilates and Salicylates. Inorg Chem., 2003, 42(22): 7283-7289
    [41]李三华,刘蒲,王岚.壳聚糖席夫碱钯催化碘代苯与丙烯酸生成肉桂酸.应用化学, 2005, 22(5): 227-229
    [42]赵昌后,毛翼萍,方禹之.新荧光试剂HNHND荧光猝灭法测定痕量锰(Ⅶ)的研究.上海环境科学, 1996, 11(15): 28-29
    [43] Vogt A., Wolowiec S. Synthesis and characterization of nickel(Ⅱ), copper(Ⅱ), manganese (Ⅲ) and iron(Ⅲ) complexeswith new chiral salen-type ligand [N,N′-bis(3,5-di-tert- butylsali cylicdene)-(1R,3S)-1,3-diamine-1,2,2-trimethylcyclopentane]. Polyhedron, 1998, 17(8): 1231 -1240
    [44] Hodnett E.M., Dunn W. J. 3rd.Structure-antitumor activity correlation of some Schiff bases. J Med Chem, 1970, 13(4): 768-770
    [45]吴自慎,严振寰.4-氯苯甲醛甘氨酸席夫碱及其Cu(Ⅱ)、Zn(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)配合物的合成、表征及抗菌活性研究.华中师范大学学报, 1995, 29(2): 197-201
    [46] Girousi S.T., Golia E.E., Voulgaropoulos A.N. Fluorometric etermination of formaldehyde. Springer-Verlag, 1997, 358: 667-668
    [47] H.Yamini Shrivastava. A luorescence-based assay for nanogramquantification of proteins using a protein binding ligand. Anal Bioanal Chem, 2003, 375: 169-174
    [48]王慧芹,杨志斌. 2-羟基苯甲醛异烟酞膝的合成及其与铝的荧光反应.分析化学研究简报, 1996, 24(5): 587-590
    [49]杨昌晖,杨志斌.新型希夫碱3,5-二溴水杨醛缩氨基硫脲的的合成及其在荧光滴定中的应用.分析试验室, 1994, 13(4): 9-11
    [50] Asuero A.G. Schiff bases derived from biacetyl as analytical reagents: A Review. Microchem., 1981, 26(4): 527-545
    [51]叶勇,胡继明,曾云鹗. 2-氯代苯甲醛丙氨酸席夫碱类抗癌药物对DNA作用的谱学研究.无机化学学报, 1998, 14(1): 84-91
    [52]廖见培,刘国东,黄杉生.水溶性金属希夫碱与DNA相互作用的荧光光谱.分析测试学报, 2001, 20(3): 5-8
    [53]刘流,张海涛,王云普.水溶性高分子担载二茂铁希夫碱与DNA的作用.有机化学, 2003, 23(6): 570-573
    [54]杨新斌,张金生,陈朝晖,曾仁权.三羟甲基氨基甲烷缩2-吡啶甲醛席夫碱铜配合物的合成、表征及与DNA相互作用.应用化学, 2010, 27(8): 903-906
    [55] Desai S B, Desai P B, Desia K. R. Synthesis of some Schiff bases thiazolinones and azetidinones from 2,6-di-aminobonzol[1,2-d;4,5-d']bisthiazole and their anticancer activities. Hetercycl Commun., 2001, 7(1): 83-90
    [56]江银枝,陈德余,陈伟国.邻香草醛谷氨酸铜、锌配合物的合成、波谱及其抗O2-·性能.化学研究与应用, 1999, 11(4): 402-405
    [57] Isse A A, Gennaro A, Vianelloee. E1ectrochemical reduction of Schiff bases ligands H2 salen and H2 salophen. E1echtrochimical Acta., 1997, 42 (13-14): 2065-2071
    [58]赵建章,赵冰,徐蔚青. Schiff碱N,N’-双水杨醛缩-1,6-己二胺的光致变色光谱的研究.高等学校化学学报, 2001, 22(6): 971-975
    [59] Kerman K, Kobayashi M, Tamiya E. Recent trends in electrochemical DNA biosensor tech nology. Meas.Sci.Technol., 2004, 15: R1-R11
    [60] Wang J, Ozsoz M, Cai X, et al. Interactions of antitumor drug daunomycin with DNA in solution and at the surface. Bioelectrochem.Bioenerg., 1998, 45: 33-40
    [61] Kerman K, Ozkan D, Kara P, et al. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on Au electrodes. Anal.Chim.Acta, 2002, 462: 39-47
    [62] Erdem A, Meric B, Kerman K, et al. Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor. Electroanalysis, 1999, 11: 1372-1376
    [63] Millan K M, Saraullo S, Mikkelsen S R. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal.Chem., 1994, 66: 2943-2948
    [64] Yang I V, Ropp P A, Thorp H H. Toward electrochemical resolution of two genes on one electrode:using 7-deaza analogues of guanine and adenine to prepare PCR products with differential redox activity. Anal.Chem., 2002, 74: 347-354
    [65] Kara P, Kerman K, Ozkan D, et al. Electrochemical genosensor for the detection of interactionbetween methylene blue and DNA. Electrochem.Commun., 2002, 4: 705-709
    [66] Lin X H, Wu Ping, Chen W, et al. Electrochemical DNA biosensor for the detection of short DNA species of chronic myelogenous leukemia by using methylene blue. Talanta, 2007, 72: 468-471
    [67] Jelen F, Erdem A, Palecek E. Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode. Bioelectrochemistry, 2002, 55: 165-167
    [68] Fujimoto B S, Clendenning J B, Delrow J J, et al. Fluorescence and photobleaching studies of methylene blue binding to DNA. J.Phys.Chem., 1994, 98: 6633-6643
    [69] Zhao G C, Zhu J J, Zhang J J, et al. Voltammetric studies of the interaction of methylene blue with DNA by means ofβ-cyclodextrin. Anal.Chim.Acta, 1999, 394: 337-344
    [70] Kang J, Li X, Wu G, et al. A new scheme of hybridization based on the Au nano-DNA modi fied glassy carbon electrode. Anal.Biochem., 2007, 364: 165-170
    [71] Zhu N N, Chang Z, He P G, et al. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochim.Acta, 2006, 51: 3758-3762
    [72] Liu S, Li Y, Li J, et al. Enhancement of DNA immobilization and hybridization on goldelectrode modified by nanogold aggregates. Biosens.Bioelectron., 2005, 21: 789-795
    [73] Erdem A, Kerman K, Meric B, et al. Methylene blue as a novel electrochemical hybrid dization indicator. Electroanal., 2001, 13: 219-223
    [74] Tani A, Thomson A J, Butt J N. Methylene blue as an electrochemical discriminator of singl e-and double-stranded oligonucleotides immobilised on gold substrates. Analyst, 2001, 126: 1756-1759
    [75] Ostatna V, Dolinnaya N, Andreev S, et al. The detection of DNA deamination by electro catalysis at DNA-modified electrodes. Bioelectrochemistry, 2005, 67: 205-210
    [76] Pividori M I, Merkoci A, Alegret S. Classical dot-blot format implemented as an amperometric hybridisation genosensor. Biosens.Bioelectron., 2001, 16: 1133-1142
    [77]王丰,府伟灵,夏涵等.应用“酶生物信号放大系统”放大DNA压电传感器检测信号的研究.重庆医学, 2007, 36: 599-603
    [78] Challa Kumar. Nanomaterials for Biosensors[M]. Wiley-VCH,Weinheim, 2007, 8: 278-310
    [79] Wang J. Nanomaterial-based electrochemical biosensors. Analyst, 2005, 130: 421-426
    [80] Taft B J, Lazareck A D, Withey G D, et al. Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. J.Am.Chem.Soc.,2004,126:12750-12751
    [81] Cai H, Cao X, Jiang Y, et al. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal.Bioanal.Chem., 2003, 375: 287-293
    [82] Wang S G, Wang R, Sellin P J, et al. DNA biosensors based on self-assembled carbon nanotubes. Biochem.Biophys.Res.Commun., 2004, 325: 1433-1437
    [83]王存嫦,阳明辉,鲁亚霜等.一种新的多层碳纳米管复合膜修饰的葡萄糖生物传感器制备.传感技术学报, 2007, 20(1): 18-21
    [84]麦智彬,谭学才,邹小勇.一种基于碳纳米管的安培型过氧化氢生物传感器.分析化学研究简报.2006, 34(6): 801-804
    [85] Valentini F, Palleschi G, Morales E L, et al. Functionalized single-walled carbon nanotubes modified microsensors for the selective response of epinephrine in presence of ascorbic acid. Electroanalysis, 2007, 19(7-8): 859-869
    [86]陈雄,吕慧丹,王建秀等.纳米生物传感器的研究, 2007, 29(5): 39-43
    [87]胡瑞省,刘善堂.纳米粒子通过形成Au2S键的组装[J].物理化学学报, 1999, 15(11): 12-15
    [88] Park S.J., Taton T.A., Mirkin C.A. Array-Based Electrical Detection of DNA with Nanopar ticle Probes. Science, 2002, 295: 1503-1506
    [89] Taton T.A., Mirkin C.A., Letsinger R.L. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289: 1757-1760
    [90] Wang J., Polsky R., Danke X. Silver-Enhanced Colloidal Electrochemical Stripping Detect ion of DNA Hybridization. Langmuir, 2001, 17(19): 5739-5741
    [91] Ozsoz M., Erdem A., Kerman K., et.al. Electrochemical genosensor based on colloidal Gold nanoparticles for the detection of factor V Leiden mutation using disposable pencil graphite electrodes. Anal.Chem., 2003, 75(9): 2182-2187
    [92] Palecek E, Fojta M, Tomschik M, et al. Electrochemical biosensors for DNA hybridization and DNA damage [J]. Biosen and Bioeletron, 1998, 13: 621-628
    [93] Wang J, Rivas G, Cai X. Sequence-specfic electrochemical biosensing of M.tube culosis DNA [J]. Anal Chim Acta., 1997, 337(l): 41-48
    [94] Wang J, Gustavo R, Parrado C, et al. Electrochemical biosensor for detecting DNA sequen cesfrom the pathogenie protozoan cryptosporidium parvum [J]. Talanta, 1997, 44: 2003-2010
    [95] Wang J, Rivas G, Parrado C, et.al. Electrochemical biosensor for detection DNA sequence From the pathogenic protozoan Cryptosporidium [J].Talanta, 1997, 44: 2003-2010
    [96] Marrazza G, Chianella I, Mascini M. Disposable DNA biosensor for environmental Monito ring [J]. Anal Chim Acta., 1999, 387: 297-307
    [97] Miroslav F, Veronika S, Emil P, et. al. A superooiled DNA-modifiedmercury electrode-based biosensor for the detection of DNA strand cleaving agents [J]. Talanta, 1998, 46: 155-161
    [98] Brabec V. DNA sensor for the determination of antitum or Platinum compounds[J]. Electro chim Acta., 2000, 45: 2929-2932
    [99] Jamieson E.R., Lippard S.J. Structure, Recognition and Processing of Cisplatin-DNA Adducts. Chem.Rev. 1999, 99: 2467-2498
    [100] Mrksich M., Dervan P.B. Recognition in the Minor Groove of DNA at 5'-(A,T)GCGC(A,T)-3' by a Four Ring Tripeptide Dimer. Reversal of the Specificity of the Natural Product Distamycin. J.Am.Chem.Soc.1995, 117: 3325-3332
    [101] Erkkila K.E., Odom D.T., Barton J.K. Recognition and Reaction of Metallointercalators with DNA Chem.Rev. 1999, 99: 2777-2795
    [102] Clarke M.J. Ruthenium metallopharmaceuticals. Coord.Chem.Rev. 2003, 236: 209-233
    [103] Chifotides H.T., Dunbar K.R. Interactions of Metal-Metal-Bonded Antitumor Active Complex es with DNA Fragments and DNA. Acc.Chem.Res. 2005, 38: 146-156
    [104] Pitchumony T.S., Helen S.E., Mallavan P. Synthesis, structure and DNA interaction of cobalt(Ⅲ) bis-complexes of 1,3-bis(2-pyridylimino)isoindoline and 1,4,7-triazacyclononane. J.Inorg. Biochem. 2005, 99: 2110-2118
    [105] Rajendiran V., Karthik R., Palaniandavar M., Stoeckli-Evans H., Periasamy V.S., Akbarsha M.A., Srinag B.S., Krishnamurthy H. Mixed-Ligand Copper(Ⅱ)-phenolate Complexes: Effect of Coligand on Enhanced DNA and Protein Binding, DNA Cleavage and Anticancer Activity. Inorg.Chem. 2007, 46: 8208-8221
    [106] Biver T., Secco F., Venturini M. Mechanistic aspects of the interaction of intercalating metal complexes with nucleic acids. Coor.Chem.Rev. 2008, 252: 1163-1177
    [107] Xu H., Zheng K.C., Chen Y., Li Y.Z., Lin L.J., Li H., Zhang P.X., Ji L.N. Effects of ligand planarity on the interaction of polypyridyl Ru(Ⅱ)complexes with DNA. J.Chem.Soc., DaltonTrans. 2003, 11: 2260-2268
    [108]杨浩,陈文涛,邱东方等.新型三齿多吡啶钴(Ⅱ)、钌(Ⅱ)配合物的合成、表征及与DNA的作用研究[J].化学学报, 2007, 65(24): 2959-2964
    [109]刘建超,刘珊珊,行文茹等.三齿多吡啶钴(Ⅱ)配合物与DNA的相互作用研究[J].化学试剂, 2010, 32(5): 407-410
    [110] Xu H., Zheng K.C., Deng H., Lin L.J., Zhang Q.L., Ji L.N. Effects of the ancillary ligands of polypyridyl ruthenium(Ⅱ)complexes on the DNA-binding behaviors. New.J.Chem. 2003, 27: 1255-1263
    [111]郭峰.甘氨酸希夫碱配合物的合成、表征及生物活性的研究.[博士学位论文].青岛:中国海洋大学, 2007
    [112]张霞.希夫碱配合物的合成、表征及抗肿瘤活性研究.[博士学位论文].青岛:中国海洋大学, 2009
    [113]肖艳.新型氨基酸希夫碱配合物的合成及铜(Ⅱ)、铂(Ⅱ)配合物的生物活性研究.[博士学位论文].青岛:中国海洋大学, 2009
    [114]胡明,赵永亮.邻菲啰啉-水杨酸-稀土三元配合物的合成与表征.化学试剂, 2001, 23(6): 328-332
    [115] Philip E. Pjura, Kazimierz Grzeskowiak, Richard E. Dickerson. Binding of Hoechst 33258 to the minor groove of B-DNA. 1987, 197: 257-271
    [116] Reichmann M.E., Rice S.A., Thomas C.A., Doty P. A Further Examination of the Molecul ar Weight and Size of Desoxypentose Nucleic Acid. J.Am.Chem.Soc.,1954,76: 3047-3053
    [117]刘信玉. 2-氨基-5-甲基吡啶类希夫碱配合物的合成、表征及生物活性研究. [硕士学位论文].青岛:中国海洋大学, 2010
    [118] Carter M T, Rodriguez M, Bard A J. Voltametric studies of interaction of metal chelates with DNA. 2.Tris-chelated complexes of cobalt(Ⅲ) and iron(Ⅱ) with 1,10-phenanthroline and 2,2-bipyridine. J.Am.Chem.Soc., 1989, 111(24): 8901-8911
    [119] Carter M T, Bard A J. Voltammetric studies of the interaction of tris(1,10-phenanthroline) Cobalt (Ⅲ) a with DNA. J.Am.Chem.Soc., 1987, 109(24): 7528-7530
    [120] Rodriguez M, Bard A.J. Electrochemical studies of the interaction of metal chelates with DNA. 4.Voltammetric and eletrogenerated chemilu-minescent studies of the interaction of tris(2,2- bipyridine)osmium(Ⅱ)with DNA. Anal.Chem., 1990, 62(64): 2658-2662
    [121]孙星炎,徐春,刘盛辉等. DNA电化学传感器在DNA损伤研究中的应用.高等化学学报, 1998, 19(9): 1393-1396
    [122] Tysoe S.A., Morgan R.J., Baker A.D., et al. Spectroscopic Investigation of Differential Bind ing Modes ofΔ– andΔ–Ru(bpy)2(ppz)2+ with Calf Thymus DNA. J.Phys.Chem., 1993, 97(8): 1707-1711
    [123] Mahadevan S., Palaniandavar M. Spectroscopic and Voltammetric Studies on Copper Comp lexes of 2,9-Dimethyl-1,10-phenanthrolines Bound to Calf Thymus DNA. Inorg. Chem., 1998, 37: 693-700
    [124] Wolfe A., Shimer G.H., Mcchan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 1987, 26: 6392-6396
    [125] Long E.C., Barton J.K. On demonstrating DNA intercalation. Acc.Chem.Res., 1990, 23: 271-277
    [126] Kumar C.V., Asuncion E.H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J.Am.Chem.Soc., 1993, 115: 8547-8553
    [127] Liu H.Q., Peng S.M., Che C.M. Interaction of a luminescent platinum(II) complex of subs tituted 2,2’-bipyridine with DNA.Spectroscopic and photophysical studies. J.Chem.Soc., Chem.Commun., 1995, 509-510
    [128] Rodriguez M., Bard A J. Electrochemical studied of the interaction of metal chelates with DNA.4.Voltammetric and electro-generated chemiluminesent studies of the interaction of (2,2-bipyridine)osmium(Ⅱ) with DNA. Anal.Chem., 1990, 62(24): 2658-2662
    [129]韩大雄,杨频.分子模拟手性金属配合物△,Λ-[Co(phen)2dppz]3+与B-DNA的作用模型.中国科学(B辑), 2000, 30: 393-398
    [130] Xiao,Y., Bi,C.F., Fan,Y.H., et al. L-glutamine Schiff base copper complex as a proteasome inhibitor and an apoptosis inducer in human cancer cells. International journal of oncology, 2008, 33(5): 1073-1079
    [131] Zhang X., Bi C.F., Fan Y.H., et al. Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated with the inhibition of proteasomal activity. International journal of molecular medicine, 2008, 22(5): 677-682
    [132] Wang R. M., Hao C. J., Wang Y. P.,et al. Amino acid Schiff base complex catalyst for effective oxidation of olefins with molecular oxygen. Journal of molecular catalysis, 1999, 147(1-2):173-178
    [133]陈德余,张平,史卫良.邻香草醛缩天冬氨酸铜、锌、钴、镍配合物的合成.应用化学, 1999, 16(2): 76-77
    [134]范玉华,毕彩丰.邻香草醛缩邻苯二胺与Y(Ⅲ)、Pr(Ⅲ)、Er(Ⅲ)配合物的合成与表征.合成化学, 1997, 5(1): 79-82
    [135] Zhang S C, Zhu Y G, Tu C, et al. A Novel Cytotoxic Ternary Copper(Ⅱ) Complex of 1,10-Phenanthroline and Lthreonine with DNA Nuclease Activity[J]. J.Inorg.Biochem., 2004, 98(12): 2099-2106
    [136] Mariappan M, Maiya B G. Effects of Anthracene and Pyrene Units on the Interactions of Novel Polypyridylruthenium(Ⅱ) Mixed-Ligand Complexes with DNA [J]. J.Inorg.Chem., 2005, (11): 2164-2173.
    [137]冯莉,顾文,马小芳等. 5-硝基水杨醛氨基酸Schiff-bases铜配合物与DNA相互作用的研究.南开大学学报, 2007, 40(1): 27-31
    [138]党元林,谢海泉,郭戈,包晓玉. 2-氯苯甲醛缩L-天冬氨酸合铜的合成及与DNA相互作用研究.化学研究与应用, 2008, 20(12): 1585-1590
    [139]古琴,任祥祥,乐学义. TATP-铜(II)-L-丝氨酸(L-精氨酸)配合物与DNA的相互作用.物理化学学报, 2008, 24(6): 1068-1072
    [140] Crawford J., Cohen H.J. The essential role of L-glutamine in lymphocyte differentiation in vitro. Journal of Cellular Physiology, 1985, 124: 275-282
    [141] Darmaun D., Matthews D.E., Bier D.M. Glutamine and glutamate kinetics in human. Ameri can Journal of Physiology, 1966, 251(11): 117-126
    [142] Newsholme P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury,surgery of infection. The Journal of Nutrition, 2001, 131(9): 2515-2522
    [143] Saito H., Furukawa S., Matsuda T. Glutamine as an immunoenhancing nutrient. Journal of Parenteral and Enteral Nutrition, 1999, 23(55): 59-61
    [144]中本一雄著.黄德如,汪庆仁译.无机和配位化合物的红外和拉曼光谱.北京:化学工业出版社, 1986, 224-231
    [145]王光斌. DL-蛋氨酸的希夫碱的铜(Ⅱ)、锌(Ⅱ)配合物的抑菌作用.氨基酸和生物资源, 1994, 16(1): 1-3
    [146]黄在银,屈松生,冯英等.西佛碱配合物对大肠杆菌代谢抑制的热化学研究.武汉大学学报(自然科学版), 1998, 44(2), 187-189
    [147]余绚,吴瑶曼译.生物无机化学入门.北京:科学出版社, 1984, 116-118
    [148]吴自慎,严振寰. L-甲硫氨酸希夫碱及其锰(Ⅱ)化合物的合成、表征与抗癌活性.华中师范大学学报(自然科学版), 1989, 23(3): 351
    [149]祝振富,黎植昌,张积霞等.胡椒醛甘氨酸席夫碱的合成、表征及抑菌性能.西南师范大学学报(自然科学版), 1997, 22(1): 50
    [150]殷卫峰,欧植泽,高云燕等. 1,4-二羟基蒽醌及其Y3+配位聚合物与DNA相互作用研究.化学学报(自然科学), 2010, 68(14): 1343-1348
    [151] Li Y. T., Liu Z. Q., Wu Z. Y. One-dimensional copper(Ⅱ) coordination polymers bridged both by l-trans-oxamidates and phenyldicarboxylates:Synthesis,crystal structure. Journal of Inorganic Biochemistry., 2008, 102: 1790-1797
    [152]刘军,罗国安,王义明等.小分子与核酸相互作用的研究进展.药学学报, 2001, 36(1):74-78
    [153]李培凡,刘燕,王智等.大茴香醛缩邻氨基苯甲酸Schiff碱及其配合物的合成、结构和Cu(Ⅱ)配合物的抑菌活性.天津师范大学学报(自然科学版), 2003, 23(4): 13-14
    [154]邵江娟,王锦堂.邻氨基苯甲酸类Schiff碱铕配合物合成、表征及荧光性质.化工时刊, 2005, 19(8): 10-13
    [155]李冬青,谭明雄,董玉花.吡啶-3-甲醛缩对氨基苯甲酸希夫碱及其铅(Ⅱ)配合物的合成及抑菌性能研究.玉林师范学院学报(自然科学), 2009, 30(3): 34-37
    [156]王玉芳.邻氨基对苯二甲酸类希夫碱配位聚合物的合成、表征及抑菌活性研究:[硕士学位论文].山东:中国海洋大学海洋化学系, 2010
    [157]蔡宏,王延琴,何品刚等.基于纳米金胶标记DNA探针的电化学DNA传感器研究[J].高等学校化学学报, 2003, 24(8): l390-l394
    [158]唐婷,彭图治,时巧翠.碳纳米管修饰金电极检测特定序列DNA[J].化学学报, 2005, 63(22): 2042-2046
    [159]漆红兰,张成孝.纳米粒子在电化学DNA生物传感器研究中的应用[J].化学进展, 2005, 17(5): 911-915
    [160]杨海朋,陈仕国,李春辉等.纳米电化学生物传感器[J].化学进展, 2009, 21(1): 210-216
    [161]项纯.谈纳米材料修饰电极在生物电化学中的应用[J].中国新技术新产品, 2009, 9: 17
    [162] Wang J., Liu G., Merkoci A. Electrochemical Coding Technology for Simultaneous Detectionof Multiple DNA Targets. J.Am.Chem.Soc., 2003, 125: 3214-3215
    [163] Hansen J.A., Mukhopadhyay R., Hansen J.O., et.al. Femtomolar Electrochemical Detection of DNA Targets Using Metal Sulfide Nanoparticles. J.Am.Chem.Soc., 2006, 128: 3860-3861
    [164] Patolsky F., Weizmann Y., Willner I., et.al. Magnetically Amplified DNA Assays(MADA): Sensing of Viral DNA and Single-Base Mismatches by Using Nucleic Acid Modified Magnetic Particles. Angew.Chem., Int.Ed., 2003, 42: 2372-2376
    [165] Wang J., Xu D., Kawde A.N., et.al. Metal Nanoparticle-Based Electrochemical Stripping Potentiometric Detection of DNA Hybridization. Anal.Chem., 2001, 73: 5576-5581
    [166] Cai H., Xu Y., Zhu N., et.al. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst., 2002, 127: 803-808
    [167] Elghanian R., Storhoff J.J., Mucic R.C., et.al. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science, 1997, 277: 1078-1081
    [168] Storhoff J.J., Marla S.S., Bao P., et.al. Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens. Bioelectron., 2004, 19: 875-883
    [169]蔡宏.新型DNA电化学生物传感器的研制及纳米材料在其中的应用[D].上海:华东师范大学, 2003
    [170] Zhang J., Song S.P., Wang L.H., et.al. Sequence-Specific Detection of Femtomolar DNA via a Chronocoulometric DNA Sensor(CDS): Effects of Nanoparticle-Mediated Amplification and Nanoscale Control of DNA Assembly at Electrodes. J.Am.Chem.Soc., 2006, 128: 8575-8580
    [171] Liu J., Lu Y. Functional DNA nanotechnology:emerging applications of DNAzymes and aptamers. Current Opinion in Biotechnology, 2006, 17: 580-588
    [172] Famulok M., Mayer G. Aptamers in nanoland. Nature, 2006, 439: 666-669
    [173] Han M.S., Lytton-Jean A.K.R., Oh B.K., et.al. Colorimetric screening of DNA binding molecules with gold nanoparticle probes. Angew.Chem.Int.Ed., 2006, 45: 1807-1810
    [174]杨胤,吴一辉,郝鹏,张志强.一种用于表面等离子体共振传感器的纳米多孔金膜[J].光谱学与光谱分析, 2010, 30(7): 1898-1901
    [175]邱华军,徐彩霞,姬广磊等.漆酶在纳米多孔金上的固定化及其酶学性质研究[J].化学学报, 2008, 66(18): 2075-2080
    [176] Hu K C, Liu P, Ye S J, Zhang S S. Ultrasensitive electrochemical detection of DNA hybridization based on PbS nanoparticle tags and nanoporous gold electrode[J]. Biosensors and Bioelectronics., 2009, 24(10): 3113-3119
    [177] Liu S.L., Li C., Cheng J., Zhou Y.X. Selective Photoelectrochemical Detection of DNA with High-Affinity Metallointercalator and Tin Oxide Nanoparticle Electrode[J]. Anal.Chem., 2006, 78: 4722-4726
    [178] Liu, J., Lu, Y., Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes [J]. Nature protocols. 2006, (1): 246~252.
    [179]赵红秋,林琳,唐季安.利用纳米金颗粒增强DNA探针在传感器上的固定程度和识别能力[J].科学通报, 2001, 46(4): 292-296
    [180] Drummond T. G., Hill M. G., Barton J. K. Electrochemical DNA sensors [J]. Nat. Biotechnol. 2003, 21: 1192-1199
    [181] Park S. J., Taton T. A., Mirkin C. A. Arry-based electrical detection of DNA with nanoparticle [J]. Science, 2002, 295: 1503-1506
    [182] Hahm J., Lieber C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J]. Nano Lett, 2004, 4: 51-54
    [183] Wang, J., Liu, G., Merkocüi, A. Electrochemical Coding Technology for Simultaneous Detection of Multiple DNA Targets [J]. J. Am. Chem. Soc., 2003, 125: 3214-3215
    [184] Jung, D. H., Kim, B. H., Ko, Y. K., Jung, M. S., Jung, S., Lee, S. Y., Jung, H. T. Covalent attachment and hybridization of DNA oligonucleotides on patterned single-walled carbon nanotube films [J]. Langmuir, 2004, 20: 8886-8891
    [185] Wang, J., Dai, J., Yarlagadda, T. Carbon nanotube-conductingpolymer composite nanowires [J]. Langmuir, 2005, 21: 9-12
    [186] Tang, X., Bansaruntip, S., Nakayama, N., Yenilmez, E., Chang, Y., Wang, Q. Carbon nanotube DNA sensor and sensing mechanism [J]. Nano Lett., 2006, 6: 1632-1636
    [187] Chang, H., Yuan, Y., Shi, N., Guan, Y. Electrochemical DNA biosensor based on conducting polyaniline nanotube array [J]. Anal. Chem., 2007, 79: 5111-5115
    [188] Liu, G., Lee, T. M. H., Wang, J. Nanocrystal-Based Bioelectronic coding of single nucleotide polymorphisms [J]. J. Am. Chem. Soc., 2005, 127: 38-39
    [189] Frenkel J, Dorfman J. Spontaneous and induced magnetisation in ferromagnetic bodies [J].Nature, 1930, 126: 274-275
    [190] Vazquez M, Luna C, Morales M P, et al. Magnetic nanoparticles: synthesis, ordering and properties[J]. Physica B, 2004, 354: 71-79
    [191] Mallinson J C. The foundations of Magnetic Recording[M]. Berkeley:Academic, 1987, Chapter 3
    [192] Pedro T. Teresit G C. Carlos J Serna. Single-step Nanoengineering of Silica Coated Maghe mite Hollow Sphere with Tunable Magnetic Properties [J]. Adv.Mater., 2001, 13: 1620-1624
    [193] Battle X, Labrta A. Finite-size effects in fine particles:magnetic and transport properties [J]. J.Phy.D:Appl.Phys., 2002, 35: R15-R42
    [194] Nam J M, Stoeva S I, Mirkin C A. Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity[J]. J. Am. Chem. Soc., 2004, 126(19): 5932-5933
    [195] Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-Based Bio-Bar Codes for the Ultrasen sitive Detection of Proteins [J]. Science, 2003, 301: 1884-1886
    [196] Zhu N.N., Zhang A.P., Wang Q.J., et al. Lead sulfide nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Electroanalysis, 2004, 16: 572-582
    [197] Herne T M, Tarlov M J. Characterization of DNA Probes Immobilized on Gold Surfaces. J. Am. Chem. Soc., 1997, 119: 8916-8920
    [198] Thaxton C S, Hill H D, Georganopoulou D G, Stoeva S I, Mirkin C A. A Bio-Bar-Code Assay Based upon Dithiothreitol-Induced Oligonucleotide Release. Anal. Chem., 2005, 77: 8174-8178
    [199] Katz E, Weizmann Y, Willner I. Magnetoswitchable Reactions of DNA Monolayers on Electrodes: Gating the Processes by Hydrophobic Magnetic Nanoparticles. J. Am. Chem. Soc., 2005, 127: 9191-9200
    [200] He L, Musick M D, Nicewarner S R, Salinas F G, Benkovic S J, Natan M J, Keating C D. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. J. Am. Chem. Soc., 2000, 122: 9071-9077
    [201] Parak W J, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams S C, Boudreau R, Gros M A Le, Larabell C A, Alivisatos P. Biological applications of colloidal nanocrystals. Nanotechnology., 2003, 14: R15-R27
    [202] Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticleprobes. Science., 2000, 289: 1757-1760
    [203] Zhang J, Song S P, Zhang L Y, Wang L H, Wu H P, Pan D, Fan C H. Sequence-Specific Detection of Femtomolar DNA via a Chronocoulometric DNA Sensor (CDS): Effects of Nanoparticle-Mediated Amplification and Nanoscale Control of DNA Assembly at Electrodes. J. Am. Chem. Soc., 2006, 128: 8575-8580
    [204] Li D, Yan Y, Wieckowska A, Willner I. Amplified electrochemical detection of DNA through the aggregation of Au nanoparticles on electrodes and the incorporation of methylene blue into the DNA-crosslinked structure. Chem. Commun., 2007, 34: 3544-3546
    [205] Sato K., Hosokawa, K., Maeda, M. Rapid Aggregation of Gold Nanoparticles Induced by Non-Cross-Linking DNA Hybridization. J. Am. Chem. Soc., 2003, 125: 8102-8103
    [206] Cai H, Xu Y, Zhu N, Fang P, He Y. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst., 2002, 127: 803-808
    [207] Sun W, Zhong J H, Qin P, Jiao. Electrochemical biosensor for the detection of cauliflower mosaic virus 35S gene sequences using lead sulfide nanoparticles as oligonucleotide labels. Analytical Biochemistry, 2008, 377: 115-119
    [208] Gerion D, Chen F Q , Kannan B, Fu A H, Parak W J, Chen D J, Majumdar A, Alivisatos A P. Room-Temperature Single-Nucleotide Polymorphism and Multiallele DNA Detection Using Fluorescent Nanocrystals and Microarrays. Anal. Chem., 2003, 75: 4766-4772
    [209] Zhang S S, Zhong H, Ding C F. Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Signal DNA Probe Modified with Au and CuS Nanoparticles. Anal. Chem., 2008, 80: 7206-7212
    [210] Wang, J., Liu, G., Jan, M. R., Zhu, Q., Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags[J]. Electrochem. Commun., 2003, (5): 1000-1004
    [211] Pumera, M., Castaneda, M. T., Pividori, M. I., Eritja, R., Merkocui, A., Alegret, S. Magnetically trigged direct electrochemical detection of DNA hybridization quantum dot as electrical tracer [J]. Langmuir, 2005, (21): 9625-9629
    [212] Patolsky, F., Lichtenstein, A., Willner, I. Electrochemical transduction of liposome-amplified DNA sensing [J]. Angew. Chem., Int. Ed. 2000, (39): 940-943
    [213] Cai, H., Xu, Y., He, P., Fang, Y. Indicator Free DNA Hybridisation Detection by Impedance Measurement Based on the DNA-Doped Conducting Polymer Films Formed on the Carbon Nanotube Modified Electrode [J]. Electroanalysis., 2003, (15): 1864-1870

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700