用户名: 密码: 验证码:
异型拱桥的非线性受力行为研究及动力特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于太原市南中环蝶形拱桥的施工监控项目,利用Fortran语言编写了多个计算分析模块,并在此基础上开展了以该蝶形拱桥为代表的异型拱桥的几何非线性、施工阶段的索力优化、动力冲击系数等方面的研究,主要研究内容如下:
     1、推导了空间变截面梁单元积分格式的单元刚度矩阵;编写了结构几何非线性分析的程序模块,程序中考虑了各种特殊问题的处理,如用龙贝格积分求解变截面梁单元的刚度矩阵、通过三次坐标轴旋转进行坐标转换、单元刚度矩阵是否考虑剪切变形、计算任意带刚臂单元的刚度矩阵、释放梁端约束、利用行变换和列变化来处理任意相关关系的主从约束;在非线性分析模块中设置了两级标识符,在索的垂度标识符下设置了主吊杆、斜拉杆和副吊杆的子标识符,在梁柱效应标识符下设置了拱肋单元和主梁单元的子标识符,在大位移效应标识符下设置了横向位移和竖向位移的子标识符。
     2、对太原市南中环蝶形拱桥这种异型拱桥的受力行为进行了分析;并在非线性有限元程序的基础上,利用独立模型分析了典型施工阶段的几何非线性特性以及成桥状态时在桥面恒活载的作用下拱肋、主梁和索的几何非线性特性;更加细致地研究了结构各点的横向位移和竖向位移、拱肋和主梁单元的梁柱效应及三种索的垂度效应对各量值的非线性影响;讨论了拱肋外倾角、矢跨比、含钢率、索的疏密度及布置形式等对结构几何非线性特性的影响;针对月牙形拱桥、飞燕式拱桥和拱塔斜拉桥等新型桥型,对比总结了各种异型拱桥的几何非线性特点。
     3、利用结构稳定性分析的计算模块,在南中环桥原设计的基础上改变各种设计参数,研究了该桥型稳定性的影响因素及其影响程度。
     4、提出了用于施工阶段索力优化的割线迭代法,并与传统的正装迭代法进行了比较;结合实际工程,针对拱梁组合式桥梁提出了确定调索顺序及索的初始张拉力的思路及应遵循的原则和方法,并与实测数据对比验证了该方法的有效性;针对多索面的复杂桥型,在成桥状态下对各种索的敏感度进行了分析,提出了根据敏感度分析确定不同类型索的调索顺序的新思路;
     5、利用子空间迭代法编写了结构自振特性分析的计算程序,并将计算结果和实测结果进行了对比;编写了路面不平度的数值模拟和利用耦联系统模型进行车桥耦合动力分析的计算程序,在此基础上研究了行车速度、偏载距离、结构阻尼、路面不平度、行车方向、轴距、车间距、及索的布置方式等对该异型拱桥各构件动力冲击系数的影响,并从拱肋的外倾角、矢跨比等角度分析了各参数对结构动力性能的影响。
Several calculation and analysis modules are compiled in Fortran language and then against the special-shape arch bridge represented by butterfly-shape arch bridge, the geometrical nonlinearity, optimization of cable tension in construction stage and dynamic impact factors are studied based on the construction monitoring project of the butterfly-shape arch bridge in south central region of Taiyuan City. The main research contents include:
     1. The stiffness matrix of spatial tapered beam element in integration scheme is deduced; the program module on geometrical nonlinearity analysis of structure is compiled. Alternative managements are given to various special problems in the module, such as adopting romberg integration to count stiffness matrix of tapered beam element, transforming coordinates by three coordinate axis rotation, considering the shearing deformation on element stiffness matrix or not, calculating stiffness matrix of element with any rigid arm, releasing beam-end restraint, solving master-slave constrains with any correlation through row and rank transformation;two-stage identifiers are set in nonlinearity analysis program modules, among which, sub identifiers of main cable,stay cable and side cable are set under identifiers of cable sag, sub identifiers of arch rib elements and main girder elements are set under identifiers of beam-column effect, and sub identifiers of lateral displacement and vertical displacement are set under identifiers of large displacement effect.
     2. Taking the butterfly-shape arch bridge in south central region of Taiyuan City as an example, explanation to mechanical behavior of special-shape arch bridge is conducted; on the basis of nonlinear finite element program, geometrical nonlinearity character of structure in typical construction stage as well as that of arch rib, main girder and cable under dead and live load in finished bridge state are described using independent model; further research on nonlinear effects of lateral displacement and vertical displacement of nodes, beam-column effects of arch rib and girder element, and sag effects of three kinds of cables on different contents are provided; influences of angle of depression, rise/span ratio, steel ratio, stand density and arrangement form of cables on geometrical nonlinearity character of structure are discussed; through contrasts of various new bridges such as crescent-shaped arch bridge, flying-swallow-type arch bridge and arch pylon cable-stayed bridge, a summary on geometrical nonlinearity characters of various special-shape arch bridges is made.
     3. As with the use of stability analysis program, influencing factors of stability of butterfly-shape arch bridge and the influence degree are studied by the alteration of design parameters on the basis of original design of the bridge.
     4. The secant iterative method used for cable tension optimization in construction stage is put forward and put into comparison with traditional forward-analysis iterative method. According to condition monitoring, some basic principles and methods for the determination of the adjusted order and cable initial tension in view of arch-beam composite structured bridge are proposed, and those methods are proved to be effective in comparison with measured data; sensitivity of various cables in finished bridge state are analyzed, on the above basis, a new way for the adjust order of different cables is put forward in view of the complicated multi-cable bridge.
     5. As with the adoption of subspace iteration method, the calculation program used to analyze self-vibration characteristic of structure is compiled, and the results are brought into comparison with measured data; the road surface roughness is simulated using the numerical method and vehicle-bridge coupling vibration analysis based on coupling system model are conducted, on the basis of related calculation program, influences of running speed, unbalance loading distance, structural damping, road surface roughness, moving direction, wheelbase, vehicle gap, and arrangement form of cables on dynamic impact coefficients of the special-shape arch bridge are studied, simultaneously, effects of various design parameters such as angle of depression and rise/span ratio on dynamic characteristics of structure are presented.
引文
[1]钟善桐.钢管混凝土结构(第3版)[M].北京:清华大学出版社,2003.
    [2]陈宝春.钢管混凝土拱桥(第二版)[M].北京:人民交通出版社,2007.
    [3]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,2001.
    [4]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2004.
    [5]Brotton D.M.. A General Computer Program for the Solution of Suspension Bridge Problems[J]. The Structural Engineer,1966,44(5):161-167.
    [6]Saafan S.A.. Theoretical Analysis of Suspension Bridges[J]. Proc. ASCE,1966,92(4):1-11.
    [7]Fleming J.F.. Nonlinear Static Analysis of Cable-stayed Bridge Structures[J]. Computers and Structures,1979,10:621-635.
    [8]Nazmy A.S., Abdel-Ghaffer A.M.. Three-Dimensional Nonlinear Static Analysis of Cable-stayed Bridges[J]. Computers and Structures,1990,34(2):257-271.
    [9]Fleming J.F., Egeseli E.A.. Dynamic Behavior of a Cable-Stayed Bridge[J]. Earthquake Engineering and Strucural Dynamics,1980,8:1-16.
    [10]Fleming J.F.. Computer Analysis of Structure System[M]. New York:McGraw-Hill Book Co.,1989.
    [11]Wang P.H.,Tseng T.C., Yang C.G.. Initial Shape of Cable-Stayed Bridges [J]. Computers and Structures,1993,46:1095-1106.
    [12]Wang P.H., Yang C.G.. Parametric Studies on Cable-Stayed Bridges[J]. Computers and Structures, 1996,60(2):243-260.
    [13]Wang P.H., Lin H.T., Tang T.Y.. Study on Nonlinear Analysis of a highly Redundant Cable-Stayed Bridge[J]. Computers and Structures,2002,80:165-182.
    [14]Wang P.H., Tang T.Y., Zheng H.N.. Analysis of Cable-Stayed Bridges during Construction by Cantilever Methods[J]. Computers and Structures,2004,82:329-346.
    [15]Ernst HJ. Der E-Modul von Soilen unter Beruecksichtigung des Durchhangers[J]. Der Bauingenieur, 1965,40(2):52-55.
    [16]Kiyohiro Imai, Dan M.Frangopol. Geometrically Nonlinear Finite Element Reliability Analysis of Structural Systems[J]. Computers & Structures.2000,77(6):677-691.
    [17]Dan M.Frangopol, Kiyohiro Imai. Geometrically Nonlinear Finite Element Reliability Analysis of Structural Systems[J]. Computers & Strutures.2000.10,77(6):692-709.
    [18]Hsiao K.M., Hou F.Y.. Nonlinear Finite Element Analysis of Elastic Frames[J]. Computers and Structures,1987,26(4):693-701.
    [19]Forde BWR, Stiemer SF. Improved Arc Length Orthogonality Methods for Nonlinear Finite Element Analysis [J]. Computers and Structures,1987,27(5):625-630.
    [20]Narayanan G., Krishnamoorthy C.S.. An Investigation of Geometric Nonlinear Formulations for 3D Beam Elements[J]. Non-linear Mechanics,1990,25(6):643-662.
    [21]Chen Z.Q., Agar T.J.A.. Geometric Nonlinear Analysis of Flexible Spatial Beam Strctures[J]. Computers & Structures,1993,49(6):1083-1094.
    [22]Wen Robert K., Rahimzadeh Jalil Nonlinear Elastic Frame Analysis by Finite Element[J]. Journal of Sructural Engineering,1983,109(8):1952-1971.
    [23]Bathe Klaus-Jurqen, Bolourchi Said. Large Displacement Analysis of 3D Beam Structures [J]. International Journal for Numerical Methods in Engineering,1979,14(7):961-986.
    [24]周上君.斜拉桥非线性静力分析[J].桥梁建设,1982,4:11-24.
    [25]陈德伟.斜拉桥的非线性分析及工程控制[D].同济大学博士学位论文,1990.
    [26]赵雷、张金平.大跨度钢管混凝土拱桥施工阶段稳定性分析的非线性问题[J].四川建筑科学研究,1995,4:7-10.
    [27]胡大琳,艾夫·哈依姆,黄安录.大跨径钢管混凝土拱桥空间几何非线性分析[J].中国公路学报,1998,11(2):45-51.
    [28]李顺国.大跨度钢管混凝土拱桥拱肋吊装过程几何非线性分析[D].武汉理工大学硕士学位论文,2002.
    [29]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].西南交通大学博士学位论文,2003.
    [30]梁鹏.超大跨度斜拉桥几何非线性及随机模拟分析[D].同济大学博士学位论文,2004.
    [31]陈常松.超大跨度斜拉桥施工全过程几何非线性精细分析理论及应用研究[D].中南大学博士学位论文,2007.
    [32]何雄君,孙国正,周莉娜.钢管混凝土拱桥几何非线性分析[J].武汉理工大学学报,2002,24(4):66-70.
    [33]张阳,邵旭东,蔡松柏,等.大跨桁式钢管混凝土拱桥空间非线性有限元分析[J].中国公路学报,2006,19(4):65-70.
    [34]Timoshenko SP.弹性稳定理论[M].北京:科学出版社,1958.
    [35]Yabuki Tetsuya, Vinnakota Sriramulu. Stability of Steel Arch Bridges. A State-of-the-Art Report[J]. SM archives.1984,9(2):155-158.
    [36]Wen Robert K., Medallah Khaled. Elastic Stability of Deck-Type Arch Bridges[J]. Journal of Structural Engineering.1987,113(4):757-768.
    [37]Stussi F.. Lateral Buckling and Vibration of Arches[J]. Int. Assoc. of Bridges and Structural Engng Pubs,1973,7.
    [38]Godden W.G.. The lateral Buckling of Tied Arches[J]. Prco. Inst. Civil Eng. Vol.3, Part Ⅲ, August, 1954.
    [39]Wastlund G.. Stability problems of Compressed Steel Members and Arch Bridge[J]. Porc. ASCE, 1960,86(6).
    [40]Almeida P.N.. Lateral buckling of Twin Arch Ribs with Transverse Bars[J]. Dissertation of Ohio State Univ., Columber, Ohio, USA,1979.
    [41]Shukla S. N., Ojalvo M.. Lateral Buckling of Parabolic Arches with Tilting Loads[J]. Proc., ASCE, 1971,97(6).
    [42]Harvey W.J.. Assessment of Masonry Arch Bridges using Stability Analysis [J]. Structures Congress-Proceedings,1995,1:996-999.
    [43]Qiu Wen-Liang, Kaou Chin-Sheng Kou, Chang-Huan, et al. Stability Analysis of Special-Shape Arch Bridge[J].Tamkang Journal of Science and Engineering,2010,13(4):365-373.
    [44]向中富.中承式拱桥横向屈曲临界荷载实用计算[J].重庆交通学院学报,1995,14(1):27-31.
    [45]杨永清.钢管混凝土拱桥横向稳定性研究[D].西南交通大学博士学位论文,1998.
    [46]杨美良,李传习,赵冰,等.钢管混凝土拱桥空间稳定分析[J].中南公路工程,2004,29(4):79-82.
    [47]邱文亮,黄才良,邓安泰.钢管混凝土拱桥拱肋侧倾角对稳定性影响的研究[J].公路交通科技,2004,21(4):53-55.
    [48]李传习,曾昭东,董创文.哑铃型钢管混凝土拱桥拱肋混凝土灌注施工稳定分析[J].公路工程,2007,32(4):142-145.
    [49]陈淮,孙应桃.斜靠式拱桥拱肋倾角变化对稳定性能的影响[J].铁道科学与工程学报,2009,6(1):21-24.
    [50]陈彦江.大跨度钢管混凝土拱桥的横向稳定研究[D].哈尔滨工业大学博士学位论文,2001.
    [51]黄东洲.桁梁桥的弹塑性侧倾稳定性研究[D].同济大学博士学位论文,1989.
    [52]刘彬斌.外倾式钢箱拱桥稳定性能研究[D].同济大学硕士学位论文,2006.
    [53]张天航,李清富.多跨连续斜靠式异型拱桥的设计与稳定分析[J].郑州大学学报(工学版),2006,27(2):107-109.
    [54]申永刚,项贻强,言明忠,等.设有纵向连杆的异型拱桥受力性能分析[J].中国市政工程,2006,(5):18-20.
    [55]杨光.异型拱桥的拱轴线优化和稳定分析[D].大连理工大学硕士学位论文,2008.
    [56]Wang P.H., Tseng T.C., Yang C.G.. Initial shape of cable-stayed bridges[J]. Computers & Structures, 1993,47(1):111-123.
    [57]Yu-Chi Sung, Dyi-Wei Chang, Eng-Huat Teo. Optimum post-tensioning cable forces of Mau-Lo Hsi cable-stayed bridge[J]. Engineering Structure,2006,28:1407-1417.
    [58]Cohn M.Z., Lounis Z.. Optimal Design of Structural Concrete Bridge Systems[J]. Journal of Structural Engineering,1994,120(9):2653-2674.
    [59]Yang Jun. Determining the Rational Completion Cable Forces based on Influence Matrix Method united Minimum Bending Energy Method[J].Proceedings of the Conference on Traffic and Transportation Studies,2010,383:1417-1424.
    [60]Furuta Hitoshi, Kawamura Yukio, Arimura Hideki, et al. Cable Tension Control of Tsuneyoshi Bridge using Multi-Objective Genetic Algorithm[J]. Structures Congress 2000:Advanced Technology in Structural Engineering,2004,(103).
    [61]He Xiongjun, Shen Chenwu, Chen Qiaosheng, et al. Adjustment of Buckle-cable Forces under Cable-hoisting Construction of Concrete-filled Steel Tubular Arch Bridges [J]. Journal of Wuhan Transportation University,1999,(4):575-578.
    [62]Kasuqa A., Arai H., Breen J.E., et al. Optimum Cable-force Adjustments in Concrete Cable-stayed Bridge[J]. Journal of Structural Engineering,1995,121(4):685-693.
    [63]Kim K.S., Lee H.S.. Analysis of Target Configurations under Dead Loads for Cable-Supported Bridges [J]. Computers & Structures,2001,79(29-30):2681-2692.
    [64]Chen D.W., Tham L.G., Lee P.K.. Determination of Initial Forces in Prestressed Concrete Cable-stayed Bridges for Given Design Deck Profiles Using the Force Equilibrium Method[J]. Computers & Structures,2000,74(1):1-9.
    [65]Michel. Erection of Cable-Stayed Bridges the Control of the Desiged Geometry[J]. Bridge into the 21st Century:321-349.
    [66]Virlogeux M.. Recent Evolution of Cable-stayed Bridges[J]. Engineering Structures,1999,21(8): 737-755.
    [67]Nakayama H., Kaneshige K., Takemoto S, et al. An Application of a Multi-objective Programming Technique to Construction Accuracy Control of Cable-stayed Bridges[J]. European Journal of Operational Research,2005,87(3):731-738.
    [68]Lounis Z., Cohn M.Z.. Engineering Approach to Multicriteria Optimization of Bridge Structures[J]. Microcomputers in Civil Engineering,1995,10(4):233-238.
    [69]Sung Y.C., Chang D.W., Teo E.H.. Optimum Post-tensioning Cable Forces of Mau-Lo His Cable-stayed Bridge[J]. Engineering Structures,2006,28(10):1407-1417.
    [70]Du P.J., Huang C.L., Zhang Z., et al. Construction Monitoring and Controlling of Gonghe Cable-stayed bridge[J]. Technology,2003,43(6):783-786.
    [71]Fujisawa N., tomo H.. Computer-Aided Cable Adjustment of Cable Stayed Bridges[J]. IABSE, 1985,(4):23-28.
    [72]Furukawa Kohei, Sugimoto Hiroyuki, Inoue Kohichi, et al. Optimization of Cable Prestresses of Cable Stayed Bridges based on Minimum Strain Energy Criterion[J]. Comput Util Struct Eng,1989, 227-236.
    [73]Walther R.. Cable-stayed Bridge[M]. London Thomas Telford Ltd,1999.
    [74]颜东煌.斜拉桥合理设计状态确定与控制[D].湖南大学博士学位论文,2001.
    [75]施笃铮,汪劲丰,项贻强,等.斜拉桥施工过程中的索力控制与优化研究[J].中国公路学报,2002,15(2):57-60.
    [76]杜蓬娟,张哲,谭素杰.斜拉桥合理成桥状态索力确定的优化方法[J].公路交通科技,2005,22(7):82-84.
    [77]戚良俊.预应力混凝土斜拉桥成桥和施工阶段索力优化理论研究和实践[D].重庆交通大学硕士学位论文,2008.
    [78]刘邵平.大跨度多肋拱桥施工控制索力优化分析研究[D].重庆交通大学硕士学位论文,2009.
    [79]任亮,方志,上官兴.钢管混凝土拉索组合拱桥索力优化研究[J].工程力学,2010,27(5):153-158.
    [80]Zhai W.M.,True H.. Vehicle-track dynamics on a ramp and on the bridge:Simulation and measurement[J].Vehicle System Dynamics,1999,33(Supplement):604-615.
    [81]Yeong-Bin Yang,Jong-Dar Yau and Lin-Ching Hsu. Vibration of simple beams due to trains moving at high speeds[J]. Engineering Structures,1997,19(11):936-944.
    [82]Veletsos A.S., Huang T., Analysis of Dynamic Response of Highway Bridges[J].Engrg. Mech. Div., ASCE,1970,90(5):1648-1659.
    [83]Wang T.L., Huang D.Z.. Cable-stayed Bridge Vibration Due to Road Surface Roughness[J]. Journal of Structural Engineering, ASCE,1992,118(5):1354-1373.
    [84]Huang D.Z., Wang T.L., Shahawy M.. Impact Analysis of Continuous Multigirder Bridges Due to Moving Vehicles[J]. Journal of Structure Engineering, ASCE,1992,118(12):3427-3443.
    [85]Huang D.Z., Wang T.L.. Impact of Multigirder Concrete Bridges[J]. Journal of Structure Engineering, ASCE,1992,119(21):2387-2401.
    [86]Zheng D.Y., Cheung Y.K., Au F.T.K., Cheng Y.S.. Vibration of Multi-span Non-nniform Beams under Moving Loads by Using Modified Beam Vibration Fucitions[J]. Journal of Sound and Vibration,1998,14:455-467.
    [87]Yeong-Bin Yang, Shu-Shyan Liao, Bing-Houng Lin. Impact Formulas for Vehicles Moving over Simple and Continuous Beams[J]. Journal of Structure Engineering, ASCE,1995,121(11): 1644-1650.
    [88]Kawatani, Komatsu. Nonstationary Random Response of Highway-Bridges under a series of Moving Vehicles[J]. Structure Engineering, ASCE,1998, (23):285-292.
    [89]Kawatani, Komatsu. Nonstationary Random Response of Highway-Bridges under a series of Moving Vehicles[J]. Structure Engineering,1998, (23):285-292.
    [90]Ji Ruichen, Song Jian. Simulation of the Road Irregularity and Study of Nonlinear Random Vibration of the Automobile[J]. Journal of Tsing-hua University(Sci & Tech).1999,39(8):76-79.
    [91]Au FTK, Cheng YS, Cheung YK. Effects of Randomroad Surface Roughness and Long-term Deflection of Prestressed Concrete Girder and Cable-Stayed Bridges on Impact due to Moving Vehicles[J]. Computers and Structures.2001,79:853-872.
    [92]E.S.Hwang, A.S.Nowak. Simulation of Dynamic Load for Bridges[J]. Journal of Structural Engineering, ASCE,1991,117(5):1413-1434.
    [93]D.Z.Huang, T.L.Wang. Impact Analysis of Continuous Multigirder Bridge due to Move Vehicles[J]. Journal of Structural Engineering, ASCE,1992,118(10):3427-3443.
    [94]Fryba L. Vibration of Solids and Structures under Moving Loads[M]. London:Thomas Telford, 1999.
    [95]林梅,肖盛燮.汽车荷载作用下梁式桥的动态分析[J].重庆交通学院学报,2000,19(1):1-5.
    [96]王元丰,许士杰.桥梁在车辆作用下空间动力响应的研究[J].中国公路学报,2000,13(4):37-41.
    [97]刘献栋,邓志党,高峰.公路路面不平度的数值模拟方法研究[J].北京航空航天大学学报,2003,29(9):843-846.
    [98]王解军,张伟,吴卫祥.重型汽车荷载作用下简支梁桥的动力反应分析[J].中南公路工程,2005,30(2):55-57.
    [99]张洁.公路车辆与桥梁耦合振动分析研究[D].西南交通大学硕士学位论文,2005.
    [100]袁明,余钱华,颜东煌.基于车-桥系统耦合振动理论的大跨PC连续刚构桥冲击系数研究[J].中国公路学报,2008,21(1):72-76.
    [101]徐文涛.车辆与道路/桥梁耦合随机动力分析及优化[D].大连理工大学博士学位论文,2009.
    [102]倪静哲.关于公路桥梁冲击系数问题的研究[J].技术与市场,2008,(10):62-63.
    [103]赵青.移动车辆荷载作用下梁桥的冲击系数研究[J].安徽建筑工业学院学报(自然科学版),2004,12(6):31-33.
    [104]张利宁.统计方法分析桥梁冲击系数的研究[J].公路交通科技,2004,21(5):67-69.
    [105]刘伯权,黄华,刘鸣.简支梁桥在车辆荷载谱作用下的动力分析[J].土木工程学报,2006,39(3):76-80.
    [106]王海城,施尚伟.桥梁冲击系数影响因素分析及偏差成因[J].重庆交通大学学报(自然科学版),2007,26(5):25-28.
    [107]张鹤,张治成,谢旭,等.月牙形多拱肋钢管混凝土桁架拱桥动力冲击系数研究[J].工程力学,2008,25(7):118-124.
    [108]李传习,夏桂云.大跨度桥梁结构计算理论[M].人民交通出版社,2002.
    [109]贺栓海.桥梁结构理论与计算方法[M].人民交通出版社,2003.
    [110]雷俊卿.大跨度桥梁结构理论与应用[M].清华大学出版社,北京交通大学出版社,2007.
    [111]戴公连,李德建.桥梁结构空间分析设计方法与应用[M].人民交通出版社,2001.
    [112]张元海.桥梁结构理论分析[M].北京:科学出版社,2005.
    [113]洪锦如.桥梁结构计算力学[M].上海:同济大学出版社,2002.
    [114]金成棣.预应力混凝土梁拱组合桥梁—设计研究与实践[M].人民交通出版社,2001.
    [115]刘尔烈,崔恩第,徐振铎.有限单元法及程序设计(第二版)[M].天津大学出版社,2004.
    [116]阳日,燕柳斌.结构分析的计算机方法及程序[M].重庆大学出版社,1998.
    [117]冯紫良,戴仁杰.杆系结构的计算机分析[M].同济大学出版社,1991.
    [118]罗定安.工程结构数值分析方法与程序设计[M].天津大学出版社,1995.
    [119]王道斌.结构矩阵分析原理与程序设计[M].西南交通大学出版社,2004.
    [120]侯建国,安旭文.有限单元法程序设计[M].武汉大学出版社,2007.
    [121]吴鸿庆,任侠.结构有限元分析[M].中国铁道出版社,2000.
    [122]朱伯芳.有限单元法原理与应用(第二版)[M].中国水利水电出版社,1998.
    [123]赵均海,王敏强,魏雪英.高等有限元[M].武汉理工大学出版社,2004.
    [124]李景湧.有限单元法[M].北京邮电大学出版社,1999.
    [125]徐士良.FORTRAN常用算法程序集(第二版)[M].清华大学出版社,1995.
    [126]刘卫国.FORTRAN 90程序设计教程[M].北京邮电大学出版社,2003.
    [127]徐荣桥.结构分析的有限元法与MATLAB程序设计[M].人民交通出版社,2006.
    [128]丁星,王清远.MATLAB杆系结构分析[M].科学出版社,2008.
    [129]王勇,黄炎生.结构分析的计算机方法[M].华南理工大学出版社,2005.
    [130]蔺鹏臻,刘世忠.桥梁结构有限元分析[M].科学出版社,2008.
    [131]肖汝诚.桥梁结构分析及程序设计[M].人民交通出版社,2002.
    [132]张海龙.桥梁的结构分析·程序设计·施工监控[M].人民交通出版社,2002.
    [133]赵振铭,陈宝春.杆系与箱型梁桥结构分析及程序设计[M].华南理工大学出版社,1997.
    [134]何雄君.桥梁结构实用电算[M].科学出版社,1996.
    [135]阮百尧,熊彬.大型对称变带宽方程组的Cholesky分解法[J].物探化探计算技术,2000,22(4):361-363.
    [136]李书岐.关于总刚度方程的变带宽存储与解法[J].河北大学学报(自然科学版),1989,(3、4):9-13.
    [137]康彤,余德浩.一维变带宽存储矩阵子阵的方法[J].北京广播学院学报(自然科学版),2000,(3):19-23.
    [138]华孝良,徐光辉.桥梁结构非线性分析[M].人民交通出版社,1997.
    [139]凌道盛,徐兴.非线性有限元及程序[M].浙江大学出版社,2004.
    [140]殷有泉.非线性有限元基础[M].北京大学出版社,2007.
    [141]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].机械工业出版社,2003.
    [142]魏德敏.拱的非线性理论及其应用[M].科学出版社,2004.
    [143]宋天霞.非线性结构有限元计算[M].华中理工大学出版社,1996.
    [144]周凌远.斜拉桥非线性理论及极限承载力研究[D].西南交通大学博士学位论文,2007.
    [145]匡震邦.非线性连续介质力学基础[M].西安交通大学出版社,1987.
    [146]张汝清,詹先义.非线性有限元分析[M].重庆大学出版社,1990.
    [147]潘永仁.悬索桥结构非线性分析理论与方法[M].人民交通出版社,2004.
    [148]Seif S.P., Dilger W.H.. Nonlinear anasis and collapse load of P/C cable-stayed bridges[J]. Journal of Structures Engineering,1990,116(3):829-849.
    [149]Kanok-Nukulchai, Guan hong. Nonlinear Modelling of Cable-stayed Bridges[J]. Journal of Structures Engineering,1993,26:249-266.
    [150]Ali H.M., Abdel-Ghaffar A.M.. Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings[J]. Computers and Structures.1995,54(3):461-492.
    [151]Nazmy A.S., Abdel-Ghaffar A.M.. Three dimensional nonlinear static analysis of cable-stayed bridges[J]. Computers&Structure,1990,34(2):257-271.
    [152]Ekhande Shantaram G., Selvappalam Mohan, Maduqula Murty K.S.. Stability Functions for Three-Dimensional Beam-Columns[J]. Journal of structural engineering,1989,115(2):467-479.
    [153]Narayanan G., Kishnamoorthy C.S.. An investigation of geometric nonlinear formulations for 3D beam element[J]. International Journal of Non-Linear Mechanics,1990,25(6):643-662.
    [154]Dennis J.E., JR, Robert B.. Secantmethods for systems of nonlinear equations[J]. Numerical Methods for Unconstrained Optimization and Nonlinear Equations,1992,65(3):756-823.
    [155]Leu L.J., Yang Y.B.. Effects of rigid body and stretching on nonlinear analysis of trusses[J]. Journal of Structural Engineering,1990,116(10):245-356.
    [156]Crisfield M.A.. An arc-length method including linesearches and accelerations[J]. International Journal for Numerica Methods in Engineering,1983,19(3):1269-1289.
    [157]Holzer S.M., Plaut R.H., Somers A.E.. Stability of Lattice structures under combined loads[J]. J. Engrg.Mech.Div.,1980,106(2):289-305.
    [158]Huria Vikas, Lee Kuo-Liang, Aktan A.Emin. Nonlinear finite element analysis of RC slab bridge[J]. Journal of Structural engineering,1993,119(1):88-107.
    [159]Wang Ji, Zhang Ming-Zhong, Guo Xiao-Li. Nonlinear Stability Analysis on the Concrete Casting Step of Long-Span Concrete-Filled Steel Tube Arch Bridge[J]. Materials Science Forum,2009, 614:275-282.
    [160]罗滔,胡道华,肖伦斌.几何非线性空间杆系有限元程序开发[J].四川理工学院学报(自然科学版),2008,21(4):115-117.
    [161]付军.预应力混凝土子母斜拉桥索力及施工优化研究[D].武汉理工大学博士学位论文,2006.
    [162]李健,辛克贵,张崇厚,等.梁拱组合体系桥梁的设计实例[J].河北工程大学学报(自然科学版),2008,25(1):5-8.
    [163]樊启武,钱永久,黄道全.拱肋刚度的选取对钢管混凝土拱桥稳定计算的影响[J].公路交通科技,2008,25(3):75-78.
    [164]李玲瑶,陈政清,葛耀君.钢管混凝土拱桥拱肋横撑对动力和稳定性的影响[J].公路交通科技,2008,25(3):70-74.
    [165]李征,亓路宽,宋建永,等.钢筋混凝土拱桥参数化建模及特征值屈曲分析[J].公路交通科技,2007,24(4):113-116.
    [166]颜全胜,骆宁安,韩大建,等.大跨度拱桥的非线性与稳定分析[J].华南理工大学学报(自然科学版),2000,28(6):64-68.
    [167]罗涛.营口辽河公路大桥稳定性能研究[J].公路交通科技,2009,26(3):105-109.
    [168]谢尚英,钱冬生.混凝土拱桥在施工阶段的非线性稳定分析[J].西南交通大学学报,1999,34(1):32-35.
    [169]王钧利,贺拴海.高墩大跨径弯桥在悬臂施工阶段刚构的非线性稳定分析[J].交通运输工程学报,2006,6(2):30-34.
    [170]熊仲明,韦俊,曹欣,等.46.5m大跨度弧形钢拱结构的稳定及其缺陷影响分析[J].工程力学,2009,26(11):172-178.
    [171]杨永清.抛物线双肋拱在保向力作用下的横向稳定性[J].西南交通大学学报,2003,38(1):43-48.
    [172]Yang Li, Danqing Liu. A New Method of Cable Arrangement Optimization for Cable Supported Bridges[J]. Proceedings of the 2nd International Conference on Modelling and Simulation,2009, 3:85-90.
    [173]Jin Qingping, Li Xuejun. Optimization of Cable Force for Single Tower Cable-Stayed Bridge without Back Cable based on Influence Matrix Method[J].Proceedings of the 2nd International Conference on Modelling and Simulation,2009,4:528-531.
    [174]Wei, Jianjun, Li Chuanfu. Optimization Analysis of Cable Tensions for Suspension Erection of Long-Span CFST Arch Bridge[J].Proceedings of the 2nd International Conference on Transportation Engineering,2009,345:1808-1813.
    [175]Lee Tae-Yeol, Kim Young-Hoon, Kang Sung-Won. Optimization of Tensioning Strategy for Asymmetric Cable-Stayed Bridge and its Effect on Construction Process[J]. Structural and Multidisciplinary Optimization,2008,35(6):623-629.
    [176]Baldomir A., Hernandez S., Nieto F., et al. Cable Optimization of a Long Span Cable Stayed Bridge in La Coruna (Spain)[J]. Advances in Engineering Software,2010,41(7-8):931-938.
    [177]Janjic D., Pircher M., Pircher H.. Optimization of Cable Tensioning in Cable-Stayed Bridges[J].Journal of Bridge Engineering,2003,8(3):131-137.
    [178]Negrao J.H.O., Simoes L.M.C.. Optimization of Cable-Stayed Bridges with Three-Dimensional Modelling[J]. Computers and Structures,1997,64(1-4):741-758.
    [179]肖汝诚.确定大跨径桥梁结构合理设计状态的理论与方法研究[D].同济大学博士学位论文,1996.
    [180]杨俊.基于影响矩阵的大跨度桥梁合理成桥状态与施工控制研究[D].武汉理工大学博士学位论文,2008.
    [181]李波.斜拉桥索力优化及程序设计[D].长沙理工大学硕士学位论文,2007.
    [182]周正茂,龚振球,王素娟.倒退分析法确定拉索中钢绞线的张拉力[J].公路交通科技,2009,26(4):73-77.
    [183]李启乾,李光波,邬晓光.结合影响矩阵的正装迭代法在优化施工索力中的应用[J].交通标准化,2008,(4):61-63.
    [184]张建民,肖汝诚.预应力混凝土斜拉桥空间非线性恒载索力优化[J].计算力学学报,2008,25(1):117-122.
    [185]任亮,徐海燕,严云.钢管混凝土拉索拱桥成桥索力优化研究[J].世界桥梁,2007,(1):47-49.
    [186]肖汝诚,项海帆.斜拉桥索力优化及其工程应用[J].计算力学学报,1998,15(1):118-126.
    [187]杨兴,张敏,周水兴.影响矩阵法在斜拉桥二次调索中的应用[J].重庆交通大学学报(自然科学版),2009,28(3):508-511.
    [188]张文献,刘旭光,李东炜,等.斜拉桥成桥及施工阶段的索力优化[J].东北大学学报(自然科学版),2009,30(8):1201-1204.
    [189]张建民,肖汝诚.千米级斜拉桥空间非线性两阶段索力优化[J].中国公路学报,2006,19(3):34-40.
    [190]张杨永,孙斌,肖汝诚.超千米级斜拉桥的恒载索力优化[J].华南理工大学学报(自然科学版),2009,37(6):142-146.
    [191]王福敏,张锋,杜逢彬.基于倒拆法对重庆朝天门长江大桥进行力学分析[J].公路交通技术,2007,(6):43-47.
    [192]谭红梅,姜竹生,刘世同,等.P.C.斜拉桥施工索力优化的影响线法[J].结构工程师,2006,22(5):29-33.
    [193]孙昊,钱永久,窦勇芝.基于信赖域优化算法的斜拉桥索力优化设计[J].公路交通科技,2008,25(11):78-81.
    [194]施光燕,董加礼.最优化方法[M].高等教育出版社,1999.
    [195]解可新,韩立兴,林友联.最优化方法[M].天津大学出版社,1997.
    [196]于建华,谢用九,魏泳涛.高等结构动力学[M].四川大学出版社,2001.
    [197]李耀庄,管品武.结构动力学及应用[M].安徽科学技术出版社,2005.
    [198]夏禾,张楠.车辆与结构动力相互作用(第二版)[M].科学出版社,2005.
    [199]余志生.汽车理论(第4版)[M].机械工业出版社,2006.
    [200]Dave Crolla,喻凡.车辆动力学及其控制[M].人民交通出版社,2004.
    [201]Xia He,De Roeck G,Zhang Nan,Maeck J. Dynamic analysis of high speed railway bridge under articulated trains[J]. Computers&Structures,2003,(81):2467-2478.
    [202]张钧博,高芳清.公路桥梁车桥耦合振动的随机响应分析[J].路基工程,2008,(4):144-146.
    [203]严志刚,盛洪飞,陈彦江.桥面平整度对大跨度钢管混凝土拱桥车辆振动的影响[J].中国公路学报,2004,17(4):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700