用户名: 密码: 验证码:
牛体细胞核移植重编程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体细胞核移植是将高度分化的体细胞移入去核的卵母细胞内,成功的体细胞核移植需要在很短的时间内消除原有的供体细胞的分化记忆,将供体细胞核重编程为全能的、胚胎化的状态,并接受卵胞质内的信息,表现出一种新的与胚胎发育密切相关的基因表达模式,这其中包括了复杂的表观遗传的改变。已分化的供体细胞在很短的时间内很难完成如此大量的工作,因此也就造成了核移植效率的低下。本文以研究牛体细胞核移植重构胚的重编程为目标,进行了Ca~(2+)在牛卵母细胞成熟、体外受精(IVF)、孤雌激活(PA)及核移植(SCNT)胚胎发育过程中的分布规律及其动态变化的研究;探讨了MG-132对重构胚重编程的作用,研究了核纤层蛋白(lamin A/C)在PA、IVF和NT胚胎的表达情况,对比了Oct-4在SCNT和IVF胚胎发育过程中的表达变化。
     1.南阳牛耳源组织成纤维细胞的培养?
     以南阳牛耳缘组织为研究材料,体外培养了成纤维细胞,并对其进行了形态学、细胞生长动力学观察、染色体核型和乳酸脱氢酶、苹果酸脱氢酶的同工酶分析及,作为后续研究的实验材料。
     2.南阳牛卵母细胞成熟和早期胚胎发育过程中Ca~(2+)分布规律及其动态变化?
     采用激光扫描共聚焦显微镜对南阳牛卵母细胞成熟、IVF、PA及SCNT胚胎发育过程中Ca~(2+)分布规律及其动态变化进行了全面的研究。Ca~(2+)在GV期主要分布在卵皮质区域;GVBD期开始向细胞中心扩散;MⅠ期到MII期Ca~(2+)均匀分布于整个细胞。Ca~(2+)浓度从GV期开始不断上升,MⅠ期时达到最大,随后开始下降。IVF胚胎原核形成前Ca~(2+)主要分布在卵皮质区域;原核形成后,Ca~(2+)在整个细胞中都分布;随后Ca~(2+)均匀分布于整个卵裂球中,至到囊胚期Ca~(2+)明显降低,且分布不均匀,Ca~(2+)荧光强度有明显的规律性变化;PA胚胎0~24 h Ca~(2+)主要分布在卵皮质区;48 h左右时Ca~(2+)在整个卵裂球中都有分布,在核区荧光强度稍强;4-细胞、8-细胞、桑葚胚时,Ca~(2+)均匀分布于卵裂球中;囊胚时Ca~(2+)分布不均匀;整个过程中Ca~(2+)荧光强度变化没有明显规律;核移植24 h后Ca~(2+)分布于供体细胞并均匀分布于胞质中;2-细胞、4-细胞、8-细胞中Ca~(2+)均匀分布于各卵裂球中;桑葚胚和囊胚期Ca~(2+)分布不均匀。整个过程Ca~(2+)荧光强度变化呈明显的规律性变化。
     3. MG-132对牛SCNT重构胚重编程的影响?
     通过MG-132作用于SCNT全过程所得重构胚的发育情况,研究MG-132的作用,并通过免疫组化方法进行验证。5μmol/mL MG-132作用于MI期卵母细胞可有效阻止MPF活性的下降。未添加MG-132组,融合4 h后lamin A/C着色显著,说明染色体凝集不完全,添加组融合4 h后,核膜不完全着色,明显发生了染色体凝集。说明5μmol/mL MG-132就能够促进重构胚的重编程。在SCNT整个过程中添加5μmol/mL MG-132,通过对比lamin A/C在孤雌激活、IVF和核移植重构胚的表达,首先确定lamin A/C可以作为表征重编程的一个因素,其次lamin A/C在核移植重构胚的早期胚胎发育中几乎不表达,8-细胞期开始表达,囊胚期滋养层细胞中正常表达,但内细胞团中表达减弱,这一模式同IVF胚胎的表达模式相近,进一步证明MG-132的添加能够促进重构胚的重编程。
     4. Oct-4在SCNT重构胚中的表达
     应用激光扫描共聚焦显微镜研究显示,添加MG-132后,Oct-4在2-4细胞期几乎不表达,到8-16细胞期开始表达;到桑葚胚期和致密桑葚胚期Oct-4强表达;囊胚期Oct-4在内细胞团和滋养层细胞中都持续强表达;孵化囊胚期Oct-4的表达同囊胚期,并未见滋养层细胞中表达明显减弱,这一结果与IVF胚胎中Oct-4起始表达相同,但孵化囊胚期的表达略有不同。
     以上研究分析了Ca~(2+)在牛卵母细胞成熟、IVF、PA和SCNT胚胎中的分布规律及其动态变化,有望通过进一步研究提高核移植激活效率,最终达到提高核移植效率的目的;lamin A/C可以作为表征核移植重编程的一个因素,MG-132用于核移植过程,并对重构胚的重编程具有促进作用,添加MG-132后Oct-4的起始表达与IVF胚胎相同。通过上述研究有望提高核移植效率。
Somatic cell nuclear transfer (SCNT) requires cytoplast-mediated reprogramming of the donor nucleus. Successful SCNT requires erasing the inherent differentiation memory or program, present in differentiated donor nuclei and reprogram dedifferentiated state of nucleus to development-specific totipotent pattern like the normal embryos. All these changes refer to remodeling. Differentiated donor cells were difficult to accomplish such a lot of work in a short period, so it was one of the reasons of low SCNT efficiency. In this study, we used confocal microscopy to investigate the distribution pattern of Ca~(2+) and its dynamic changes in the processes of bovine oocytes maturation, in vitro fertilization (IVF), parthenogenetic activation (PA) and SCNT embryo development. To investigate the effect of MG-132 on the nuclear remodeling of donor cells after transferring into bovine oocytes.
     1. The establishment of an ear marginal fibroblast cell from Nanyang bovine
     An ear marginal fibroblast cell was established from Nanyang bovine using a primary explant technique and cell cryopreservation biotechniques. Cell morpHology, dynamic growth and contamination were tested, and the karyotype, levels of isoenzymes of lactic dehydrogenase and malic dehydrogenase were analyzed.
     2. Ca~(2+) and its dynamic changes in the processes of bovine oocytes maturation, in IVF, PA and SCNT embryo development.
     In this study, we used confocal microscopy to investigate the distribution pattern of Ca~(2+) and its dynamic changes in the processes of bovine oocytes maturation, IVF, PA and SCNT embryo development. During the germinal vesicle (GV) and GV breakdown stage, Ca~(2+) was distributed in the cortical ooplasm and throughout the oocytes from the MI to MII stage. In IVF embryos, Ca~(2+) was distributed in the cortical ooplasm before the formation of the pronucleus. In 4-8 cell embryos and morulas, Ca~(2+) was present throughout the blastomere. In PA embryos, Ca~(2+) was distributed throughout the blastomere at 48 h, similar to in the 4-cell and 8-cell pHase and the morula. At 6 h after activation, there was almost no distribution of Ca~(2+) in the SCNT embryos. However, Ca~(2+) was distributed in the donor nucleus at 10 h and it was distributed throughout the blastomere in the 2-8 cell embryos. In this study, Ca~(2+) showed significant fluctuations with regularity of IVF and SCNT groups, but PA did not. Systematic investigation of the Ca~(2+) location and distribution changes during oocyte maturation and early embryo development processes should facilitate a better understanding of the mechanisms involved in oocyte maturation, reconstructed embryo activation and development, ultimately improving the reconstructed embryo development rate.
     3. The effect of MG-132 on the nuclear remodeling
     To investigate the effect of MG-132 on the nuclear remodeling of donor cells after transferring into bovine oocytes. We studied the role of MG-132 by examination the developmental potential of reconstructed embryos that got from nuclear transfer. The entire process of nuclear transfer was acting by MG-132, we verify the results by immunofluorescence. The reconstructed embryos 4 h after fusion showed strong lamin staining of the control group. The group of adding MG-132 at 4h after fusion there showed patchy nuclear membrance attaining and significant chromatin condensation. The results indicate that adding of 5μmol/mL MG-132 in SCNT might promote the reprogramming of reconstructed embryos. Then 5μmol/mL MG-132 was addedn in nuclear transfer operation. We compared the expression of lamin A/C in PA、IVF and SCNT embryos. The results indicate that lamin A/C is an indicator of erroneous reprogramming. Lamin A/C signal was negative in early reconstructed embryos, expressed in 8-cell stage. Lamin A/C was expressed in tropHectodermal cells of blastocysts, but signal was diminished in ICM. This is same to IVF embryos of lamin A/C expression. It proved that adding of MG-132 can improve reprogramming. In SCNT embryos, no lamin A/C was expressed in 4-cell stage. It began to express in 8-cell stag; Lamin A/C was expressed in 16-cell stage, morula stage and blastocysts. Signal was expressed in trophectodermal cells and ICM of blastocysts. But in IVF embryos, Lamin A/C was expressed in trophectodermal cells of blastocysts, but signal was diminished in ICM. It need further study to define the different expression in blastocysts effecton the embryonic development.
     4. The expressiong of Oct-4 in IVF and SCNT embryos
     Oct-4 was almost no expressed in 2-4 cell phase, and expressed from 8-16 cell stage. Strong oct-4 signal was expressed in morula and blastocysts. The expression of oct-4 in hatching blastocyst stage was same to hatching blastocyst stage, but it was not decreased in trophoblast cells. The initial expression of SCNT oocytes was same to IVF, but the expression was not decreased in trophoblast cells in IVF oocytes. If this different expression will affect the development of post-implantation embryo, it remains to be study.
     This rearcher was investigated the distribution pattern of Ca2+ and its dynamic changes in the processes of bovine oocytes maturation, IVF, PA and SCNT embryos development, further research is expected to improve the SCNT efficiency. The research of lamin A/C expression showed that MG132 could be used for nuclear transfer process, and could improve the reprogramming of reconstructed embryos, and the expression of Oct-4 was same to IVF embryos.
引文
毕春明,陈彦,戴谷,陆金春,李朝军,张锡然. 2000.小鼠卵母细胞生发泡破裂前的钙离子波动及分布.南京师大学报(自然科学版), 23(1): 80~83
    陈艳玫,姚鑫. 2004.转录因子oct-4调控下游靶基因及其与胚胎发育全能/多能性的关系.细胞生物学杂志, 26(5): 445~449
    丁向彬. 2008.牛体细胞核移植胚胎表观遗传修饰研究. [博士学位论文].杨凌.西北农林科技大学方廖琼,王智彪. 2007.卵细胞受精相关胞质钙离子波、钙离子震荡信号特征及其形成机制.生物科学进展, 38(4): 358~361
    关娜,徐燕宁,张庆华,雷蕾. 2008.体细胞核重编程中表观遗传学的研究进展.生物化学与生物物理进展, 35(5): 496~501
    雷初朝,陈宏,詹铁生,杨学义,张有财. 2000.晋南种公牛染色体的监测.西北农业大学学报, 28(6): 110~113
    李朝军,王斌,范必勤. 1995.小鼠卵母细胞减数分裂过程中钙离子的三维分布.解剖学报, 26(1): 71~76
    李东伟,李文雍. 2007.转录因子Oct4、Sox2和Nanog在早期胚胎发育过程中的表达调控。生物学杂志, 24(3): 6~8
    李明文,刘辉,孙青原,焦日,庄大中,宋祥芬,陈大元. 1997.小鼠卵母细胞成熟和受精过程Ca2+分布变化的研究.动物学报, 43 (1): 80~84
    李世杰,杜卫华,李宁. 2004.体细胞克隆中核的重编程.科学通报, 49(8): 721~726
    李雁,冯云,孙贻娟. 2006.体细胞核移植后核重编程的影响因素.生命科学, 18(4): 355~360
    刘丽清. 2007.猪卵母细胞和早期胚胎中c-mos和Oot-4基因表达以及RNAi研究. [博士学位论文]. 哈尔滨.东北农业大学
    马育芳,卫恒习,李燕,李秋艳,方锐,赵蕊,张坤,薛恺,娄颜坤,戴蕴平,连林生,李宁. 2009.化学激活和季节对克隆猪出生率的影响.中国科学C辑:生命科学, 39(4): 384-391
    门正明,刘霞,马海明,韩建林. 2002.兰州大尾羊染色体组型分析.甘肃农业大学学报, 2(6): 158~160
    彭礼繁,罗光彬. 2008.供体核和受体胞质在核移植重构胚重编程中的研究进展.中国草食动物, 28(5): 61~64
    邱云志,王红,杨庆仁,王秀卿,王志玲. 2006.钙调素及其对细胞增殖的影响研究现状.华北国防医药, 18(3): 214~216
    张开洲,张瑞璋,张凌洪. 2005.南阳牛若干独特经济性状评价与育种.黄牛杂志, 5(10): 79~80
    周向梅,马月辉,关伟军,赵德明. 2004.云南矮马耳缘组织成纤维细胞系的建立及其生物学特性. 动物学杂志, 50(5): 863~868
    Amarnath D, Kato Y, Tsunoda Y. 2007. Effect of the timing of first cleavage on in vitro developmental potential of nuclear-transferred bovine oocytes receiving cumulus and fibroblast cells. J Reprod Dev, 53(3): 491~497
    Anckaert E, Adriaenssens T, Romero S, Dremier S, Smitz J. 2009. Unaltered imprinting establishment of key imprinted genes in mouse oocytes after in vitro follicle culture under variable follicle-stimulatinghormone exposure. Int J Dev Biol, 53(4): 541~548
    Arai T, Inoue A, Uematsu Y, Sako T, Kimura N. 2003. Activities of enzymes in the malate–aspartate shuttle and the isoenzyme pattern of lactate dehydrogenase in plasma and peripHeral leukocytes of lactating Hostein cows and riding horses. Res Vet Sci, 75(1): 15~19
    Armstrong L, Lako M, Dean W, Stojkovic M. 2006. Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells, 24(4): 805~814
    Arnault E, Doussau M, Pesty A, Lefèvre B, Courtot AM. 2010. Review: Lamin A/C, caspase-6, and chromatin configuration during meiosis resumption in the mouse oocyte. Reprod Sci, 17(2): 102~115
    Ashtiani SK, Nasr-Esfahani MH, Hosseini SM, Moulavi F, Hajian M, Foruzanfar M. 2008. Royana: Successful experience in cloning the sheep. Yakhteh, 10(3): 193-200
    Aston KI, Li GP, Hicks BA, Sessions BR, Davis AP, Rickords LF, Stevens JR, White KL. 2010. Abnormal levels of transcript abundance of developmentally important genes in various stages of preimplantation bovine somatic cell nuclear transfer embryos. Cell Reprogram, 12(1): 23~32
    Bai C, Li C, Jin D, Guo Y, Guan W, Ma Y, Zhao Q. 2010. Establishment and characterization of a fibroblast line from landrace. Artif Cells Blood Substit Immobil Biotechnol, 38(3): 129~135
    Berridge MJ, Lipp P, Bootman MD. 2000. The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol, 1(1): 11~21.
    Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6~21
    Bogdanovi? O, Veenstra GJ. 2009. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma, 118(5): 549~565
    Boiani M, Eckardt S, Sch?ler HR, McLaughlin KJ. 2002. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev, 16(10): 1209~1219
    Boni R, Gualtieri R, Talevi R, Tosti E. 2007. Calcium and other ion dynamics during gamete maturation and fertilization. Theriogenology, 68(suppl 1): S156~64
    Campbell KH, Alberio R, Choi I, Fisher P, Kelly RD, Lee JH, Maalouf W. 2005. Cloning: eight years after Dolly. Reprod Domest Anim, 40(4): 256~268 Cao Z, Sui L, Li Y, Ji S, Zhang X, Zhang Y. 2011. Effects of chemically defined medium on early development of porcine embryos derived from parthenogenetic activation and cloning. Zygote, DOI: 10.1017/S096719941100015
    Carroll J, FitzHarris G, Marangos P, Halet G. 2004. Ca2+ signalling and cortical re-organisation during the transition from meiosis to mitosis in mammalian oocytes. Eur J Obstet Gynecol Reprod Biol, 15 (Suppl 1): 61~67
    Carroll J, Swann K. 1992. Spontaneous cytosolic calcium oscillations driven by inositol trispHospHate occur during in vitro maturation of mouse oocytes. J Biol Chem, 267(16): 11196~11201 cellular pHysiology, 206(3): 565~573
    Cervera R, Silvestre M, MartíN, García-Mengual E, Moreno R, Stojkovic M. 2010. Effects of different oocyte activation procedures on development and gene expression of porcine pre-implantation embryos. Reprod Domest Anim, 45(5): e12~20
    Che L, Lalonde A, Bordignon V. 2007. Chemical activation of parthenogenetic and nuclear transfer porcine oocytes using ionomycin and strontium chloride. Theriogenology, 67(7): 1297~1304
    Chédin F. 2011. The DNMT3 Family of Mammalian De Novo DNA Methyltransferases. Prog Mol BiolTransl Sci, 101: 255~285
    Choi YH, Love LB, Westhusin ME, Hinrichs K, 2004. Activation of equine nuclear transfer oocytes: methods and timing of treatment in relation to nuclear remodeling. Biol Reprod 70(1): 46~53
    Cibelli JB, Campbell KH, Seidel GE, West MD, Lanza RP. 2002. The health profile of cloned animals. Nat Biotechnol, 20(1): 13~14
    Collas P. 2003. Nuclear reprogramming in cell-free extracts. PHiloS Trans RSoc Lond B Biol Sci, 358(2436): 1389~1395
    Couldrey C, Lee RS. 2010. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming. BMC Dev Biol, doi:10.1186/1471-213X-10-27
    Crosier AE, Farin CE, Rodriguez KF, Blondin P, Alexander JE, Farin PW. 2002. Development of skeletal muscle and expression of candidate genes in bovine fetuses from embryos produced in vivo or in vitro. Biol Reprod, 67(2): 401~408
    Czolowska R, Modlinski JM, Tarkowski AK. 1984. Behavior of thymocyte nuclei in non-activated and activated mouse oocytes. J Cell Sci, 69: 19~34
    Dalman A, Eftekhari-Yazdi P, Valojerdi M, Shahverdi A, Gourabi H, Janzamin E, Fakheri R, Sadeghian F, Hasani F. 2010. Synchronizing cell cycle of goat fibroblasts by serum starvation causes apoptosis. Reprod Domest Anim, 45(5): e46~53
    Das ZC, Gupta MK, Uhm SJ, Lee HT. 2010. Increasing histone acetylation of cloned embryos, but not donor cells, by sodium butyrate improves their in vitro development in pigs. Cell Reprogram, 12(1): 95~104 David E. ClapHam. 2007. Calcium Signaling. Cell, 131(6): 1047~1058
    Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R. 2000. Lamina-associated polypeptide 2a binds intranuclear A-type lamins. J Cell Sci, 113(19): 3473~3484
    Degrouard J, Hoza′k P, Heyman Y, Fle′chon JE. 2004. Nucleoskeleton of early bovine embryos and differentiated somatic cells: An ultrastructure and immunocytochemical comparison. Histochem Cell Biol, 121(6): 441~451
    Delcuve GP, Rastegar M, Davie JR. 2009. Epigenetic control. J Cell Physiol, 219(2): 243~250
    Ding X, Wang Y, Zhang D, Wang Y, Guo Z, Zhang Y. 2008. Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2'-deoxycytidine and trichostatin A. Theriogenology, 70(4): 622~630
    Du Y, Kragh PM, Zhang Y, Li J, Schmidt M, B?gh IB, Zhang X, Purup S, J?rgensen AL, Pedersen AM, Villemoes K, Yang H, Bolund L, Vajta G. 2007. Piglets born from handmade cloning, an innovative cloning method without micromanipulation. Theriogenology, 68(8): 1104~1110
    Du Y, Lin L, Schmidt M, B?gh IB, Kragh PM, S?rensen CB, Li J, Purup S, Pribenszky C, Molnár M, Kuwayama M, Zhang X, Yang H, Bolund L, Vajta G. 2008. High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival. Cloning Stem Cells, 10(3): 325~330
    Ducibella T, Schultz RM, Ozil JP. 2006. Role of calcium signals in early development. Semin Cell Dev Biol, 17(2): 324~332
    Dumollard R, Marangos P, Fitzharris G, Swann K, Duchen M, Carroll J. 2004. Sperm-triggered [Ca2+]oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development, 131(13): 3057~3067
    Dupont G, Heytens E, Leybaert L. 2010. Oscillatory Ca2+ dynamics and cell cycle resumption at fertilization in mammals: a modelling approach. Int J Dev Biol, 54(4): 655~665
    Eilertsen KJ, Power RA, Harkins LL, Misica P. 2007. Targeting cellular memory to reprogram the epigenome, restore po-tential, and improve somatic cell nuclear transfer. Anim Reprod Sci, 98(1–2): 129~146
    Eilertsen KJ, Power RA, Harkins LL, Misica P. 2007. Trgetinge cellular memory to reprogram the epigenome, restore potential and improve somatic cell nuelear transfer. Anim Reprod Sei, 98(1-2): 129~146
    Enright BP, Jeong BS, Yang X, Tian XC. 2003. Epigenetic characteristics of bovine donor cells for nuclear transfer: 1evel s of histoneacetylation. Biol Reprod, 69 (5): 1525~1530
    Enright BP, Sung LY, Chang CC, Yang X, Tian XC. 2005. Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-29-deoxycytidine. Biol Reprod, 72(4): 944~948
    Esteves TC, Balbach ST, Pfeiffer MJ, Araúzo-Bravo MJ, Klein DC, Sinn M, Boiani M. 2011. Somatic cell nuclear reprogramming of mouse oocytes endures beyond reproductive decline. Aging Cell, 10(1): 80~95
    Fu J, Guan P, Zhao L, Li H, Huang S, Zeng F, Zeng Y. 2008. Effects of donor cells on in vitro development of cloned bovine embryos. J Genet Genomics, 35(5): 273~278
    Fujiwara T, Nakada K, Shirakawa H, Miyazaki S. 1993. Development of inositol trispHospHate-induced calcium release mechanism during maturation in hamster oocytes. Dev Biol, 156(1): 69~79
    Fulka J Jr, Fulka H. 2007. Somatic cell nuclear transfer (SCNT) in mammals: the cytoplast and its reprogramming activities. Adv Exp Med Biol, 591: 93~102
    Gajda B. 2009. Factors and methods of pig oocyte and embryo quality improvement and their application in reproductive biotechnology. Reprod Biol, 9(2): 97~112 Gao S, Chung YG, Williams JW, Riley J, Moley K, Latham KE. 2003. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol. Reprod, 69(1): 48~56 Gao S, Czirr E, Chung YG, Han Z, Latham KE. 2004. Genetic variation in oocyte pHenotype revealed through parthenogenesis and cloning: correlation with differences in pronuclear epigenetic modification. Biol. Reprod. 70(4): 1162~1170
    Gao S, Han Z, Kihara M. 2005, Protease inhibitor MG132 in cloning: no end to the nightmare. Trends Biotechnol, 23(2): 66~68
    Gao S, Latham KE. 2004. Maternal and environmental factors in early cloned embryo development. Cytogenet Genome Res, 105(2-4): 279~284
    Gao,S. Chung YG, Williams JW, Riley J, Moley K, Latham KE. 2003. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol. Reprod, 69(1): 48~56
    Gardner AJ, Knott JG, Jones KT, Evans JP. 2007. CaMKII can participate in but is not sufficient for the establishment of the membrane block to polyspermy in mouse eggs. J Cell Physiol, 212(2): 275~280
    Gilkey JC, Jaffe LF , Reynolds GT. Ridgway EB. A free calcium waves tranverses the activating egg of the Medaka Oryzias altipes. Annu Res Biochem, 1978 ,615(2): 649
    Goldman RD, Gruenbaum Y, Moir RD, ShumakerDK, Spann TP. 2002. Nuclear lamins: Building blocks of nuclear architecture. Genes Dev, 16(5): 533~547
    Gómez-Fernández C, Pozo-Guisado E, Ga?án-Parra M, Perianes MJ, Alvarez IS, Martín-Romero FJ. 2009. Relocalization of STIM1 in mouse oocytes at fertilization: early involvement of store-operated calcium entry. Reproduction, 138(2): 211~221
    Gruenbaum Y, Wilson KL, Harel A, Goldberg M, Cohen M. 2000. Review: nuclear lamins-structural proteins with fundamental functions. J Struct Biol, 129(2-3): 313~323
    Guan W, H X, Li L, Liang H, Zhao Q, P Y, Ma YH. 2010b. Establishment and characterization of a fibroblast cell line from the Langshan chicken. Cell Prolif, 43(2): 157~163
    Guan WJ, Liu CQ, Li CY, Liu D, Zhang WX, Ma YH. 2010a. Establishment and cryopreservation of a fibroblast cell line derived from Bengal tiger (Panthera tigris tigris). Cryo Letters, 31(2): 130~138
    Guilliams M, Bosschaerts T, Hérin M, Hünig T, Loi P, Flamand V, De Baetselier P, Beschin A. 2008.
    Experimental expansion of the regulatory T cell population increases resistance to African trypanosomiasis. J Infect Dis. 198(5): 781~791
    Gurdon J B. 1999. Genetic reprogramming following nuclear transplantation in AmpHibia. Semin Cell Dev Biol, 10(3): 239~243
    Hall VJ, Cooney MA, Shanahan P, Tecirlioglu RT, Ruddock NT, French AJ. 2005. Nuclear lamin antigen and messenger RNA expression in bovine in vitro produced and nuclear transfer embryos. Mol Reprod, 72(4): 471~482
    Hashizume K, Ishiwata H, Kizaki K, Yamada O, Takahashi T, Imai K, Patel OV, Akagi S, Shimizu M, Takahashi S, Katsuma S, Shiojima S, Hirasawa A, Tsujimoto G, Todoroki J, Izaike Y. 2002. Implantation and placental development in somatic cell clone recipient cows. Cloning Stem Cells, 4(3): 197~209
    Hassan YI, Zempleni J. 2008. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nutr Rev, 66(12): 721~725
    Herr W, Sturm RA, Clerc RG, Corcoran LM, Baltimore D, Sharp PA, Ingraham HA, Rosenfeld MG, Finney M, Ruvkun G. 1988. The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene product. Genes Dev, 2(12A): 1513~1516
    Hill JR, Winger QA, Long CR. 2000. Development rates of male bovine nuclear t ransfer embryos derived from adult and fetal cells. Biol Reprod, 62(5):1135~1140.
    Himaki T, Yokomine TA, Sato M, Takao S, Miyoshi K, Yoshida M. 2010. Effects of trichostatin A on in vitro development and transgene function in somatic cell nuclear transfer embryos derived from transgenic Clawn miniature pig cells. Anim Sci J, 81(5): 558~563
    Homa ST, Carroll J, Swann K. 1993. The role of calcium in mammalian oocyte maturation and egg activation. Hum Reprod, 8(8): 1274~1278
    Hua S, Zhang Z, Zhang C, Zhang Y. 2007. An improved enucleation method of bovine somatic cell nuclear transfer. J Genet Genomics, 34(6): 491~496
    Huang B, Cui K, Li T, Wang X, Lu F, Liu Q, da Silva FM, Shi D. 2010. Generation of buffalo (Bubalus bubalis) transgenic chimeric and nuclear transfer embryos using embryonic germ-like cells expressing enhanced green fluorescent protein. Reprod Domest Anim, 45(1): 103~108
    Hyslop LA, Nixon VL, Levasseur M, Chapman F, Chiba K, McDougall A, Venables JP, Elliott DJ, Jones KT. 2004. Ca2+ promoted cyclin B1 degradation in mouse oocytes requires the establishment of ametapHase arrest. Dev Biol, 269(1): 206~219
    Iager AE, Ragina NP, Ross PJ, Beyhan Z, Cunniff K, Rodriguez RM, Cibelli JB. 2008. Trichostatin a improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells, 10(3): 371~379
    Ideta A, Hayama K, Urakawa M, Tsuchiya K, Aoyagi Y, Saeki K. 2010. Comparison of early development in utero of cloned fetuses derived from bovine fetal fibroblasts at the G1 and G0/G1 pHases. Anim Reprod Sci, 119(3-4): 191~197
    Im GS, Samuel M, Lai L, Hao Y, Prather RS. 2007. Development and calcium level changes in pre-implantation porcine nuclear transfer embryos activated with 6-DMAP after fusion. Mol Reprod Dev, 74(9): 1158~1164
    Ito J, Hirabayashi M, Kato M, Takeuchi A, Ito M, Shimada M, Hochi S. 2005. Contribution of high p34cdc2 kinase activity to premature chromosome condensation of injected somatic cell nuclei in rat oocytes. Reproduction, 129(2): 171~180
    Ito J, Kato M, Hochi S, Hirabayashi M. 2007. Effect of enucleation on inactivation of cytostatic factor activity in matured rat oocytes. Cloning Stem Cells, 9(2): 257~266.
    Ito J, Yoon SY, Lee B, Vanderheyden V, Vermassen E, Wojcikiewicz R, Alfandari D, De Smedt H, Parys JB, Fissore RA. 2008. Inositol 1,4,5-trisphosphate receptor 1, a widespread Ca2+ channel, is a novel substrate of polo-like kinase 1 in eggs. 320(2): 402~413
    Ito M, Shikano T, Oda S, Horiguchi T, Tanimoto S, Awaji T, Mitani H, Miyazaki S. 2008. Difference in ca2+ oscillation-inducing activity and nuclear translocation ability of PLCZ1, an egg-activating sperm factor candidate, between mouse, rat, human, and medaka fish. Biol Reprod, 78(6): 1081~1090
    Jang G, Hong SG, Lee BC. 2011. Cloned calves derived from somatic cell nuclear transfer embryos cultured in chemically defined medium or modified synthetic oviduct fluid. J Vet Sci, 12(1): 83~89
    Jeon BG, Betts D, King W, Rho GJ. 2011. In Vitro Developmental Potential of Nuclear Transfer Embryos Cloned with Enucleation Methods using Pre-denuded Bovine Oocytes. Reprod Domest Anim, doi: 10.1111/j.1439-0531.2011.01781.x
    Josefsberg LB, Galiani D, Dantes A, Amsterdam A, Dekel N. 2000. The proteasome is involved in the first metapHase-to-anapHase transition of meiosis in rat oocytes. Biol Reprod, 62(5): 1270~1277
    Kato Y, Tani T, Tsunoda Y. 2000. Cloing of calves from various somatic cell types of male and female adult, newborn and fetal cows. Repord Fertil, 120(2): 231~237
    Kim JK, Samaranayake M, Pradhan S. 2009. Epigenetic mechanisms in mammals. 66(4): 596~612.
    Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Scholer H, Niemann H. 2000. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod, 63(6): 1698~1705
    Klose RJ, Zhang Y. 2007. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 8(4): 307~318
    Knott JG, Poothapillai K, Wu H, He CL, Fissore RA, Robl JM. 2002. Porcine sperm factor supports activation and development of bovine nuclear transfer embryos. Biol Reprod. 66(4): 1095~1103
    Kong QR, Luo YB, Tian JT, Wang ZK, Zhang L, Liu ZH. 2008. Production of porcine reconstructed embryos by whole-cell intracytoplasmic microinjection. Fen Zi Xi Bao Sheng Wu Xue Bao, 41(1): 70~74
    Koo OJ, Hossein MS, Hong SG, Martinez-Conejero JA, Lee BC. 2009. Cell cycle synchronization ofcanine ear fibroblasts for somatic cell nuclear transfer. Zygote, 17(1): 37~43
    Kotani S, Tanaka H, Yasuda H, Todokoro K. 1999. Regulation of APC activity by pHospHorylation and regulatory factors. J Cell Biol, 146(4): 791~800
    Kuga T, Nozaki N, Matsushita K, Nomura F, Tomonaga T. 2010. Phosphorylation statuses at different residues of lamin B2, B1, and A/C dynamically and independently change throughout the cell cycle. Exp Cell Res, 316(14): 2301~2312
    Kurihara Y, Kawamura Y, Uchijima Y, Amamo T, Koba-yashi H, Asano T, Kurihara H. 2008. Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev Biol, 313(1): 335~346
    Kurosaka S, Eckardt S, McLaughlin KJ. 2004. Pluripotent lineage definition in bovine embryos by Oct4 transcript localization. Biol Reprod, 71(5): 1578~1582
    Lan J, Hua S, He X, Zhang Y. 2010. DNA methyltransferases and methyl-binding proteins of mammals. Acta Biochim Biophys Sin (Shanghai), 42(4): 243~252
    Lanza RP, Cibelli JB, Diaz F, Moraes CT, Farin PW, Farin CE, Hammer CJ, West MD, Damiani P. 2000. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning, 2(2): 79~-90
    Larman MG, Saunders CM, Carroll J, Lai FA, Swann K. 2004. Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCzeta. J Cell Sci, 117(Pt 12): 2513~2521
    Latham KE, Gao S, Han Z. 2007. Somatic cell nuclei in cloning: strangers traveling in a foreign land. Adv Exp Med Biol, 591: 14~29
    Laurincik J, Maddox-Hyttel P. 2007. Nucleolar remodeling in nuclear transfer embryos. Adv Exp Med Biol, 591: 84~92
    Le Bourhis D, Beaujean N, Ruffini S, Vignon X, Gall L. 2010. Nuclear remodeling in bovine somatic cell nuclear transfer embryos using MG132-treated recipient oocytes. Cell Reprogram. 12(6): 729~738
    Lee HS, Yu XF, Bang JI, Cho SJ, Deb GK, Kim BW, Kong IK. 2010. Enhanced histone acetylation in somatic cells induced by a histone deacetylase inhibitor improved inter-generic cloned leopard cat blastocysts. Theriogenology, 74(8): 1439~1449
    Lee JH, Campbell KH. 2006. Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biol Reprod, 74(4): 691~698
    Lee JH, Yoon SY, Bae IH. 2004. Studies on Ca2+-channel distribution in maturation arrested mouse oocyte. Mol Reprod Dev, 69(2): 174~185
    Lee JW, Wu SC, Tian XC, Barber M, Hoagland T, Riesen J, Lee KH, Tu CF, Cheng WT, Yang X. 2003. Production of cloned pigs by whole-cell intracytoplasmic microiniection. Biol Reprod, 69(3): 995~1001
    Lee K, Fodor WL, Machaty Z. 2007. Dynamics of lamin A/C in porcine embryos produced by nuclear transfer. Mol Reprod Dev, 7 4(9): 1221~1227
    Li CB, Wang ZD, Zheng Z, Hu LL, Zhong SQ, Lei L. 2010. Number of blastomeres and distribution of microvilli in cloned mouse embryos during compaction. Zygote, 25(8): 1~6
    Li H, Han ZM. 2010. Effect of DNA methylation and histone modification during the development of cloned animals. Yi Chuan, 32(8): 762~768
    Li J, Svarcova O, Villemoes K, Kragh PM, Schmidt M, B?gh IB, Zhang Y, Du Y, Lin L, Purup S, Xue Q,
    Bolund L, Yang H, Maddox-Hyttel P, Vajta G. 2008. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology, 70(5): 800~808
    Li LF, Guan WJ, Hua Y, Bai XJ, Ma YH. 2009a. Establishment and characterization of a fibroblast cell line from the Mongolian horse. In Vitro Cell Dev Biol Anim, 45(7): 311~316
    Li LF, Guan WJ, Li H, Zhou XZ, Bai XJ, Ma YH. 2009b. Establishment and characterization of a fibroblast cell line derived from Texel sheep. Biochem Cell Biol, 87(3): 485~492
    Li LF, Yue H, Ma JZ, Guan WJ, Ma YH. 2009c. Establishment and characterization of a fibroblast line from Simmental cattle. Cryobiology, 59(1): 63~68
    Li X, Kato Y, Tsuji Y, Tsunoda Y. 2008. The effects of trichostatin A on mRNA expression of chromatin structure-, DNA methylation-, and development-related genes in cloned mouse blastocysts. Cloning Stem Cells, 10(1): 133~142
    Lima-Neto JF, Fernandes CB, Alvarenga MA, Golim MA, Landim-Alvarenga FC. 2010. Viability and cell cycle analysis of equine fibroblasts cultured in vitro. Cell and Tissue Banking, 11(3): 261~268
    Liu C, Ngai CY, Huang Y, Ko WH, Wu M, He GW, Garland CJ, Dora KA, Yao X. 2006. Depletion of intracellular Ca2+ stores enhances flow-induced vascular dilatation in rat small mesenteric artery. Br J PHarmacol, 147(5): 506~515
    Liu CQ, Guo Y, Guan WJ, Ma YH, Zhang HH, Tang XX 2008. Establishment and biological characteristics of Luxi cattle fibroblast bank. Tissue and Cell, 40(6): 417~424
    Liu FJ, Zhang Y, Zheng YM, Zhao MT, Zhang YL, Wang YS, Wang GH, Quan FS, An ZX. 2007.
    Optimization of electrofusion protocols for somatic cell nuclear transfer. Small Ruminant Research, 73(1): 246~251
    Liu L, Czerwiec E, Keefe DL. 2004. Effect of ploidy and parental genome composition on expression of Oct-4 protein in mouse embryos. Gene Expr Patterns, 4(4): 433~441
    Lluis F, Cosma MP. 2009. Somatic cell reprogramming control: signaling pathway modulation versus transcription factor activities. Cell Cycle, 8(8): 1138~1144
    Loi P, Matsukawa K, Ptak G, Clinton M, Fulka J Jr, Nathan Y, Arav A. 2008. Freeze-dried somatic cells direct embryonic development after nuclear transfer. PLoS One, 3(8): 2978
    Loi P, Ptak G, Barboni B, Fulka J Jr, Cappai P, Clinton M. 2001. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol, 19(10): 962~964
    Lorthongpanich C, Solter D, Lim CY. 2010. Nuclear reprogramming in zygotes. Int J Dev Biol, 54(11-12): 1631~1640
    Maalouf WE, Liu Z, Brochard V, Renard JP, Debey P, Beaujean N, Zink D. 2009. Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term. BMC Dev Biol, doi:10.1186/1471-213X-9-11
    Malcuit C, Fissore RA. 2007. Activation of fertilized and nuclear transfer eggs. Adv Exp Med Biol, 591: 117~131
    Malcuit Kurokawa M, Fissore RA. 2006. Calcium oscillations and mammalian egg activation. J Cell PHysiol, 206(3): 565~573
    Martinez-Diaz MA, Che L, Albornoz M, Seneda MM, Collis D, Coutinho AR, El-Beirouthi N, Laurin D, Zhao X, Bordignon V. 2010. Pre- and postimplantation development of swine-cloned embryos derived from fibroblasts and bone marrow cells after inhibition of histone deacetylases. Cell Reprogram, 12(1):85~94
    Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H. 2007. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol, 9(6): 625~635
    Meng Q, Polgar Z, Liu J, Dinnyes A. 2009. Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning Stem Cells, 11(1): 203~208
    Miranda Mdos S, Bressan FF, Zecchin KG, Vercesi AE, Mesquita LG, Merighe GK, King WA, Ohashi OM, Pimentel JR, Perecin F, Meirelles FV. 2009. Serum-starved apoptotic fibroblasts reduce blastocyst production but enable development to term after SCNT in cattle. Cloning Stem Cells, 11(4): 565~573
    Mitalipov SM, Kuo HC, Hennebold JD, Wolf DP. 2003. Oct-4 Expression in Pluripotent Cells of the Rhesus Monkey. Biol reprod, 69(6): 1785~1792
    Mitalipov SM, Zhou Q, Byrne JA, Ji WZ Norgren RB, Wolf DP. 2007. Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum Reprod, 22(8): 2232~2242
    Miyamoto K, Hoshino Y, Minami N, Yamada M, Imai H. 2007. Effects of synchronization of donor cell cycle on embryonic development and DNA synthesis in porcine nuclear transfer embryos. Reprod Dev, 53(2): 237~246
    Miyoshi K, Mori H, Mizobe Y, Akasaka E, Ozawa A, Yoshida M, Sato M. 2010a. Valproic acid enhances in vitro development and Oct-3/4 expression of miniature pig somatic cell nuclear transfer embryos. Cell Reprogram, 12(1): 67~74
    Miyoshi K, Mori H, Mizobe Y, Akasaka E, Ozawa A, Yoshida M, Sato M. 2009. Development of a noninvasive monitoring system for evaluation of Oct-3/4 promoter status in miniature pig somatic cell nuclear transfer embryos. J Reprod Dev, 55(6): 661~669
    Miyoshi K, Mori H, Mizobe Y, Himaki T, Yoshida M, Sato M. 2010b. Beneficial effects of reversine on in vitro development of miniature pig somatic cell nuclear transfer embryos. J Reprod Dev, 56(2): 291~296
    Mizumoto S, Kato Y, Taunoda Y. 2008. The developmental potential of parthenogenetic and somatic cell nuclear-transferred rat oocytes in vitro. Cloning stem cells, 10(4): 453~459 Mizuno N, Kosaka M. 2008. Novel Variants of Oct-3/4 Gene Expressed in Mouse Somatic Cells, 283(45): 30997~31004
    Mohan M, Ryder S, Claypool PL, Geisert RD, Malayer JR. 2002. Analysis of gene expression in the bovine blastocyst produced in vitro using suppression-subtractive hybridization. Biol Reprod, 67(2): 447~453
    Monteiro FM, Oliveira CS, Oliveira LZ, Saraiva NZ, Mercadante ME, Lopes FL, Arnold DR, Garcia JM. 2010. Chromatin modifying agents in the in vitro production of bovine embryos. Vet Med Int, doi: 10.4061/2011/694817
    Moosmang S, Lenhardt P, Haider N, Hofmann F, Wegener JW. 2005. Mouse models to study L-type calcium channel function. PHarmacol Ther, 106(3): 347~355
    Muller JM, Davis MJ, Kuo L, Chilian WM. 1999. Changes in coronary endothelial cell Ca2+ concentration during shear stress-and agonist-induced vasodilation. Am J PHysiol, 276(5 Pt 2): 1706~1714
    Na RS, Zhao QJ, Jin DP, Su XH, Chen XW, Guan WJ, Ma YH. 2010. Establishment and biological characteristics of Ujumqin sheep fibroblast line. Cytotechnology, 62(1): 43~52
    Nagdas SK, Araki Y, Chayko CA, Orgebin-Crist MC, Tulsiani DR. 1994. O-linked Trisaccharide and N-linked poly-N-Acetyllactos-aminyl Glycans are present on mouse ZP2 and ZP3.Biology. Reproduction, 51(2): 262~272
    Nakajima N, Inomata T, Ito J, Kashiwazaki N. 2008. Treatment with proteasome inhibitor MG132 during cloning improves survival and pronuclear number of reconstructed rat embryos. Cloning stem cells, 10(4): 461~468
    Nandedkar P, Chohan P, Patwardhan A, Gaikwad S, Bhartiya D. 2009. Parthenogenesis and somatic cell nuclear transfer in sheep oocytes using Polscope. Indian J Exp Biol, 47(7): 550~558
    Nasr-Esfahani MH, Hosseini SM, Hajian M, Forouzanfar M, Ostadhosseini S, Abedi P, Khazaie Y, Dormiani K, Ghaedi K, Forozanfar M, Gourabi H, Shahverdi AH, Vosough AD, Vojgani H. 2011.
    Development of an optimized zona-free method of somatic cell nuclear transfer in the goat. Cell Reprogram, 13(2): 157~170
    Ng SS, Yue WW, Oppermann U, Klose RJ. 2009. Dynamic protein methylation in chromatin biology. Cell Mol Life Sci, 66(3): 407~422
    Niemann H, Tian XC, King WA, Lee RS. 2008. Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction, 135(2): 151~163
    Oback B, Wells D. 2002. Donor cells for nuclear cloning: many are called, but few are chosen. Cloning Stem Cells, 4(2): 147~168
    Oback B, Wells DN. 2007. Cloning cattle: the methods in the madness. Adv Exp Med Biol, 591: 30~57 Oh HJ, Hong SG, Park JE, Kang JT, Kim MJ, Kim MK, Kang SK, Kim DY, Jang G, Lee BC. 2009.
    Improved efficiency of canine nucleus transfer using roscovitine-treated canine fibroblasts. Theriogenology, 72(4): 461~470
    Ohkoshi K, Takahashi S, Koyama S, Akagi S, Adachi N, Furusawa T, Fujimoto J, Takeda K, Kubo M, Izaike Y, Tokunaga T. 2003. In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat. Cloning Stem Cells, 5(2): 109~115 Ono Y, Shimozawa N,Ito M, Kono T. 2001. Cloned mice from fetal fibroblast cells arrested at metapHase by a serial nuclear transfer. Biol Reprod, 64(1): 44~50
    Ozil JP, Huneau D. 2001. Activation of rabbit oocytes: the impact of the Ca2+ signal regime on development. Development, 128(6): 917~928
    Palmieri C, Loi P, Ptak G, Della Salda L. 2008. Review paper: a review of the pathology of abnormal placentae of somatic cell nuclear transfer clone pregnancies in cattle, sheep, and mice. Vet Pathol, 45(6): 865~880
    Palmieri S L, Peter W, Hess H, Sch?ler HR. 1994. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Developmental Biology, 166(1): 259~267
    Park MC, Kim JY, Kim SB, Park YS, Park HD, Lee JH, Oh DS, Kim JM. 2009. The effect of cryopreservation on the mouse embryos at various pronuclear stages. Asian-Australas. J. Anim. Sci, 22(2): 174~180
    Parodi B, Aresu O, Bini D. 2002. Species identification and confirmation of human and animal cell lines: a PCR-based method. BioTechniques, 32(2): 432~440
    Patra SK, Bettuzzi S. 2009. Epigenetic DNA-(cytosine-5-carbon) modifications: 5-aza-2'-deoxycytidineand DNA-demethylation. Biochemistry (Mosc), 74(6): 613~619
    Pedro N. Moreira1, James M. Robl, PHilippe Collas. 2003. Architectural defects in pronuclei of mouse nuclear transplant embryos. Journal of Cell Science, 116 (18): 3713~3720
    Pesce M, Scholer HR. 2001. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells, 19(4): 271~278
    Pfeiffer MJ, Balbach ST, Esteves TC, Crosetto N, Boiani M. 2010. Enhancing somatic nuclear reprogramming by Oct4 gain-of-function in cloned mouse embryos. Int J Dev Biol, 54 (11-12): 1649~1657
    Popova E, Bader M, Krivokharchenko A. 2011. Effects of electric field on early preimplantation development in vitro in mice and rats. Hum Reprod, 26(3): 662~670
    Prather RS, Kubiak J, Maul GG, First NL, Schatten G. 1991. The expression of nuclear lamin A and C epitopes is regulated by the developmental stage of the cytoplasm in mouse oocytes or embryos. J Exp Zool, 257(1): 110~114
    Rizos D, Clemente M, Bermejo-Alvarez P, de La Fuente J, Lonergan P, Gutiérrez-Adán A. 2008. Consequences of in vitro culture conditions on embryo development and quality. Reprod Domest Anim, 43(Suppl 4): 44~50
    Rizos D, Gutiérrez-Adán A, Pérez-Garnelo S, De La Fuente J, Boland MP, Lonergan P. 2003. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod, 68(1): 236~243
    Ross JW, Whyte JJ, Zhao J, Samuel M, Wells KD, Prather RS. 2010. Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Res, 19(4): 611~620
    Ross PJ, Rodriguez RM, Iager AE, Beyhan Z, Wang K, Ragina NP, Yoon SY, Fissore RA, Cibelli JB. 2009. Activation of bovine somatic cell nuclear transfer embryos by PLCZ cRNA injection. Reproduction, 137(3): 427~437
    Rrather RS, Sutovsky P, Green JA. 2004. Nuclear remodeling and reprogramming in transgenic pig production. Exp Biol Med, 229(11): 1120~1126 Rybouchkin, A., Kato, Y., Tsunodaz, Y. 2006. Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol Reprod, 74(6): 1083~1089.
    Sawada M, Kyozuka K, Morinaga C, Izumi K, Sawada H. 1997. The proteasome is an essential mediator of the activation of pre-MPF during starfish oocyte maturation. Biochem BiopHys Res Commun, 236(1): 40~43
    Sawai K, Takahashi M, Moriyasu S, Hirayama H, Minamihashi A, Hashizume T, Onoe S. 2010. Changes in the DNA methylation status of bovine embryos from the blastocyst to elongated stage derived from somatic cell nuclear transfer. Cell Reprogram, 12(1):15~22
    Sawai K. 2009. Studies on gene expression in bovine embryos derived from somatic cell nuclear transfer. J Reprod Dev, 5(1): 11~16
    Schatten G, Maul GG, Schatten H, Chaly N, Simerly C, Balczon R, Brown DL. 1985. Nuclear lamins and peripHeral nuclear antigens during fertilization and embryogenesis in mice and sea urchins. Proc Natl Acad Sci USA, 82(14): 4727~4731
    Scholer HR. 1991. Octamania: the POU factors in murine development.Trends in Geneties. 7(10): 323~329
    Sebastiano V, Gentile L, Garagna S, Redi CA, Zuccotti M. 2005. Cloned pre-implantation mouse embryos show correct timing but altered levels of gene expression. Mol Reprod Dev, 70(2): 146~154
    Shah RA, George A, Singh MK, Kumar D, Anand T, Chauhan MS, Manik RS, Palta P, Singla SK. 2009. Pregnancies established from handmade cloned blastocysts reconstructed using skin fibroblasts in buffalo (Bubalus bubalis). Theriogenology, 71(8): 1215~1219
    Shi LH, Miao YL, Ouyang YC, Huang JC, Lei ZL, Yang JW, Han ZM, Song XF, Sun QY, Chen DY. 2008.
    Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos. Dev Dyn, 237(3): 640~648
    Shi Y, Whetstine JR. 2007. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell, 25(1): 1~14
    Simonsson S, Gurdon J. 2004. DNA demethylation is neeessary for the epigenetic reprogranuning of somatic cell nuclei. Nat Cell Biol, 6(10): 984~990
    Sparman M, Dighe V, Sritanaudomchai H, Ma H, Ramsey C, Pedersen D, Clepper L, Nighot P, Wolf D, Hennebold J, Mitalipov S. 2009. Epigenetic reprogramming by somatic cell nuclear transfer in primates. Stem Cells, 27(6): 1255~1264
    Srirattana K, Lorthongpanich C, Laowtammathron C, Imsoonthornruksa S, Ketudat-Cairns M, Phermthai T, Nagai T, Parnpai R. 2010. Effect of donor cell types on developmental potential of cattle (Bos taurus) and swamp buffalo (Bubalus bubalis) cloned embryos. J Reprod Dev, 56(1): 49~54
    Steen RL, Collas P. 2001. Mistargeting of B-type lamins at the end of mitosis: implications on cell survival and regulation of lamins A/C expression. J Cell Biol, 153(3): 621~626
    Sterthaus O, Skoczylas E, De Geyter C, Bürki K, Ledermann B. 2009. Evaluation of in vitro cultured rat oocytes, from different strains, by spindle morphology and maturation-promoting-factor activity combined with nuclear-transfer experiments. Cloning Stem Cells, 11(3): 463~472
    Su JM, Yang B, Wang YS, Li YY, Xiong XR, Wang LJ, Guo ZK, Zhang Y. 2011. Expression and methylation status of imprinted genes in placentas of deceased and live cloned transgenic calves. Theriogenology, 75(7): 1346~1359
    Su Y, Wang X, Zhu WG. 2009. DNA methyltransferases: the role in regulation of gene expression and biological processes. Yi Chuan, 31(11): 1087~1093
    Sugimura T, Ushijima T. 2000. Genetic and epigenetic alterations in carcinogenesis . Mutat Res, 462(2-3): 235~246
    Sullivan EJ, Kasinathan S, Kasinathan P, Robl JM, Collas P. 2004. Cloned calves from chromatin remodeled in vitro. Bio Reprod, 70(17): 146~153
    Sun L, Haun S, Jones RC, Edmondson RD, Machaca K. 2009. Kinase-dependent regulation of inositol 1,4,5-trisphosphate-dependent Ca2+ release during oocyte maturation. J Biol Chem, 284(30): 20184~20196
    Sun YL, Lin CS and Chou YC. 2006. Establishment and characterization of a spontaneously immortalized porcine mammary epithelial cell line. Cell Biology International 30(12): 970~976
    Sutovsky P, Lai LX, Manandhar G. 2004. Proteasomal activity is required for pronuclear development after IVF, and for donor cell-nuclear remodeling after SCNT. Biol Reprod, 70(37): 225~226.
    Sutoysky P, Prather RS. 2004. Nuclear remodeling after SCNT: acontractor’nightmare. Trends Biotechnol, 22(5): 205~208Tamashiro KL, Sakai RR, Yamazaki Y, Wakayama T, Yanagimachi R. 2007. Developmental, behavioral, and physiological phenotype of cloned mice. Adv Exp Med Biol, 591: 72~83
    Tani T, Kato Y, Tsunoda Y. 2001. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biol Reprod, 64(1): 324~30
    Tian XC, Smith SL, Zhang SQ, Kubota C, Curchoe C, Xue F, Yang L, Du F, Sung LY, Yang X. 2007.
    Nuclear reprogramming by somatic cell nuclear transfer--the cattle story. Soc Reprod Fertil Suppl, 64: 327~339
    Tomii R, Kurome M, Wako N, Ochiai T, Matsunari H, Kano K, Nagashima H. 2009. Production of cloned pigs by nuclear transfer of preadipocytes following cell cycle synchronization by differentiation induction. J Reprod Dev, 55(2): 121~127
    Tosti E. 2006. Calcium ion currents mediating oocyte maturation events. Reprod Biol Endocrinol, 4(26): 1~9
    Tsuji Y, Kato Y, Tsunoda Y. 2009. The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2'-deoxycytidine. Zygote, 17(2): 109~111
    Tsunoda Y, Kato Y. 2003. Nuelear transfer and reprogramming mechanism. Nippon Rinsho, 61(3): 406~410
    Ulloa Ulloa CM, Yoshizawa M, Komoriya E, Mitsui A, Nagai T, Kikuchi K. 2008. The blastocyst production rate and incidence of chromosomal abnormalities by developmental stage in in vitro produced porcine embryos. Journal of Reproduction and Development, 54(1): 22~29
    Urakawa M, Ideta A, Sawada T, Aoyagi Y. 2004. Examination of a modified cell cycle synchronization method and bovine nuclear transfer using synchronized early G1 pHase fibroblast cells. Theriogenology, 62(3-4): 714~728
    Vaissière T, Sawan C, Herceg Z 2008. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res, 659(1–2): 40~48
    Van Eijk MJ, van Rooijen MA, Modina S, Scesi L, Folkers G, van Tol HT, Bevers MM, Fisher SR, Lewin HA, Rakacolli D, Galli C, de Vaureix C. 1999. Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biol Reprod , 60(5): 1093~1103
    Van Thuan N, Bui HT, Kim JH, Hikichi T, Wakayama S, Kishigami S, Mizutani E, Wakayama T. 2009.
    The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction, 138(2): 309~317
    Vanderheyden V, Wakai T, Bultynck G, De Smedt H, Parys JB, Fissore RA. 2009. Regulation of inositol 1,4,5-trisphosphate receptor type 1 function during oocyte maturation by MPM-2 phosphorylation. Cell Calcium, 46(1): 56~64
    Varga E, Pataki R, Lorincz Z, Koltai J, Papp AB. 2008. Parthenogenetic development of in vitro matured porcine oocytes treated with chemical agents. Anim Reprod Sci, 105(3-4): 226~233
    Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cellnuclei. Nature, 394 (6691): 369~370
    Wang H, Ao H, Pan Q, Li R, Zhao M, Lian Z, Li N, Wu C. 2007. Effects of different states of sheep fetal fibroblasts as donor cells on the early development in vitro of reconstructed sheep embryos. Sci China C Life Sci, 50(2): 178~185
    Wang P, Branch DR, Bali M, Schultz GA, Goss PE, Jin T. 2003. The POU homeodomain protein OCT3 asa potential transcriptional activator for fibroblast growth factor-4 (FGF-4) in human breast cancer cells. Biochem J 375(Pt 1): 199~205
    Wang Y, Su J, Wang L, Xu W, Quan F, Liu J, Zhang Y. 2011. The Effects of 5-Aza-2'-Deoxycytidine and Trichostatin A on Gene Expression and DNA Methylation status in Cloned Bovine Blastocysts. Cell Reprogram, doi:10.1089/cell.2010.0098
    Wang Y, Tang S, An ZX, Li WZ, Liu J, Quan FS, Hua S, Zhang Y. 2010. Effect of mSOF and G1.1/G2.2 Media on the Developmental Competence of SCNT-Derived Bovine Embryos. Reprod Domest Anim, doi:10.1111/j.1439-0531.2010.01679.x
    Wang YS, Xiong XR, An ZX, Wang LJ, Liu J, Quan FS, Hua S, Zhang Y. 2011. Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2/-deoxycytidine and trichostatin A. Theriogenology, 75(5): 819~825
    Wang ZG, Wu JX. 2009. DNA methyltransferases: classification, functions and research progress. Yi Chuan, 31(9): 903~912
    Wani NA, Wernery U, Hassan FA, Wernery R, Skidmore JA. 2010. Production of the first cloned camel by somatic cell nuclear transfer. Biol Reprod, 82(2): 373~379
    Washizu T, Nakamura M, Izawa N, Suzuki E, Tsuruno S, Washizu M, Nakajo S, Arai T. 2002. The activity ratio of the cytosolic MDH/LDH and the isoenzyme pattern of LDH in peripHeral leukocytes of dogs, cats, and rabbits. Vet Res Commun, 26(5): 341~346
    Whitworth KM, Li R, Spate LD, Wax DM, Rieke A, Whyte JJ, Manandhar G, Sutovsky M, Green JA, Sutovsky P, Prather RS. 2009. Method of oocyte activation affects cloning efficiency in pigs. Mel Reprod Dev, 76(5): 490~500.
    Whitworth KM, Prather RS. 2010. Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogramming? Mol Reprod Dev. 77(12): 1001~1015
    Wu WT, Chi KH, Ho FM, Tsao WC, Lin WW. 2004. Proteasome inhibitors up-regulate haem oxygenase-1 gene expression: requirement of p38 MAPK (mitogen-activated protein kinase) activation but not of NF-kappaB (nuclear factor kappaB) inhibition. Biochem J, 379(Pt 3): 587~593
    Wu YG, Zhou P, Lan GC, Wang G, Luo MJ, Tan JH. 2007. The effects of delayed activation and MG132 treatment on nuclear remodeling and preimplantation development of embryos cloned by electrofusion are correlated with the age of recipient cytoplasts. Cloning Stem Cells. 9(3): 417~431
    Yamanaka K, Sugimura S, Wakai T, Kawahara M, Sato E. 2009. Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J Reprod Dev, 55(6): 638~44
    Yan ZH, Zhou YY, Fu J, Jiao F, Zhao LW, Guan PF, Huang SZ, Zeng YT, Zeng FY. 2010. Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev Biol, 10(3): 1~9
    Yang F, Hao R, Kessler B, Brem G, Wolf E, Zakhartchenko V. 2007. Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation. Reproduction, 133(1): 219~230
    Ye J, Flint AP, Luck MR, Campbell KH. 2003. Independent activation of MAP kinase and MPF during the initiation ofmeiotic maturation in pig oocytes. Reproduction, 125(5): 645~656
    Yin XJ, Lee HS, Kim LH, Shin HD, Kim NH, Kong IK. 2007. Effect of serum starvation on the efficiencyof nuclear transfer using odd-eyed white cat fibroblasts. Theriogenology, 67(4): 816~823
    You J, Lee J, Kim J, Park J, Lee E. 2010. Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs. Mol Reprod Dev, 77(2): 149~157
    Young L.E, Beaujean N. 2007. DNA methylation in the preimplantation embryo:the differing stories of the
    mouse and sheep.,Animal reproduction science,82-83: 61~78 Yu Y, Yong J, Li X, Qing T, Qin H, Xiong X, You J, Ding M, Deng H. 2005. The proteasomal inhibitor MG132 increases the efficiency of mouse embryo production after cloning by electrofusion. Reprodution, 130(4): 553~558
    Zakhartchenko V, Durcova-Hills G, Schernthaner W, Stojkovic M, Reichenbach HD, Mueller S, Steinborn R, Mueller M, Wenigerkind H, Prelle K, Wolf E, Brem G. 1999. Potential of fetal germ cells for nuclear transfer in cattle. Mol Reprod Dev, 52(4): 421~426
    Zhang Y, Li J, Villemoes K, Pedersen AM, Purup S, Vajta G. 2007. An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning Stem Cells, 9(3): 357~363
    Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS. 2010. Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram, 12(1): 75~83
    Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS. 2009.
    Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod, 81(3): 525~530
    Zhao J, Whyte J, Prather RS. 2010. Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res, 341(1): 13~21
    Zhao LW, Yang XY, Guan PF, Fu J, Li H, Zhou YY, Huang SZ, Zeng YT, Zeng FY. 2009. Improved efficiency of bovine somatic cell nuclear transfer by optimizing operational procedures. J Reprod Dev, 55(5): 542~546
    Zhou Q, Jounesu A, Brochard V, Adenot P, Renard JP. 2001. Developmental potential of mouse embryos reconstructed from metapHase embryonic stem cell nuclei. Biol Reprod, 65(5): 412~419
    Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J. 2003. Generation of fertile cloned rats by regulating oocyte activation. Science, 302(5648): 1179.
    Zhou XM, Ma YH, Guan WJ, Zhao DM 2004. Establishment and identification of a Debao Pony ear marginal tissue fibroblast cell line. Asian-Australasian Journal of Animal Sciences 17(10): 1338~1343
    Zuccotti M, Merico V, Redi CA, Bellazzi R, Adjaye J, Garagna S. 2009b. Role of Oct-4 during acquisition of developmental competence in mouse oocyte. Reprod Biomed Online, 19 (Suppl 3): 57~62
    Zuccotti M, Merico V, Sacchi L, Bellone M, Brink TC, Bellazzi R, Stefanelli M, Redi CA, Garagna S, Adjaye J. 2008. Maternal Oct-4 is a potential key regulator of the developmental competence of mouse oocytes. BMC Dev Biol, 8: 97~110
    Zuccotti M, Merico V, Sacchi L, Bellone M, Brink TC, Stefanelli M, Redi CA, Bellazzi R, Adjaye J, Garagna S. 2009a. Oct-4 regulates the expression of Stella and Foxj2 at the Nanog locus: implications for the developmental competence of mouse oocytes. Hum Reprod, 24(9): 2225~2237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700