用户名: 密码: 验证码:
NO的常温催化氧化及碱液吸收脱除NO_x过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NOx)对生态环境和人类健康造成极大的危害,脱除NOx成为当前环境领域的重要研究课题之一。与燃煤电厂排放的含NOx烟气不同,化工、制药等工厂排放的工业废气中虽然NOx总量较少,但浓度较高,对排放周边局部区域环境污染严重,对这类NOx废气的治理更是刻不容缓。这类废气通常具有如下基本特征:(1)氧气含量高,可达到-20%,几乎与空气相同;(2)水汽含量高,可达到饱和湿含量;(3)NOx氧化度(N02与NOx浓度之比)低,部分企业排放废气中NOx氧化度低于10%;(4)常温常压排放;(5)精细化工厂、制药厂废气呈间歇性排放。由于其与燃煤烟气排放特征巨大的差异,常用的高温条件下以氨(NH3)为还原剂的选择性催化还原NOx脱除技术(NH3-SCR)不适合,而常温常压操作、对NOx浓度波动不敏感并且可回收(亚)硝酸盐的碱液吸收法更适合工业NOx废气的处理。基于此,论文提出采用NO气相催化氧化-碱液吸收法脱除工业废气中NOx的工艺,以此过程为对象进行了以下几方面研究,并获得了相关进展:
     1、碱液(包括NaOH溶液、还原性和氧化性NaOH溶液)吸收NOx过程研究
     (1)在碱液中添加还原剂(尿素、亚硫酸铵、亚硫酸钠、硫化钠或硫代硫酸钠等)或者氧化剂(双氧水或次氯酸钠等)均能提高吸收液对NOx的脱除率,但NaOH和添加剂(还原剂和氧化剂)浓度对NOx脱除率的影响不显著;随着进口NOx浓度提高,NOx脱除率随之增加;气体停留时间增加,NOx脱除率亦增加,并主要表现为NO2脱除率的增加;
     (2)NOx氧化度对NOx脱除率的影响最为显著。在NaOH溶液或添加尿素的NaOH溶液为吸收剂的体系中,进口NOx氧化度为50~70%时NOx脱除率最高,存在最优氧化度;而对于添加氧化剂和还原剂(除尿素外)的NaOH溶液中,进口NOx氧化度越高,NOx脱除率越高。因此,提高工业废气NOx氧化度是保证高效脱除NOx的关键;
     (3)碱液吸收NOx系统中,各NOx脱除途径的相对速率如下:通过NO2与亚硫酸铵作用脱除NO2>通过NO+N02→N203与NaOH作用脱除NOx>通过NO2与NaOH或H202作用脱除N02。
     2、椰壳基活性炭(AC)及改性活性炭(MAC)、微孔分子筛(高硅H-和Na-ZSM-5分子筛、全硅β分子筛)上NO的常温氧化过程研究
     (1)随着反应温度升高,干气条件下NO转化率降低,表现出类似气相均相反应的负活化能效应;在湿气条件下改性活性炭(MAC)和高硅ZSM-5分子筛上NO转化率先增后降,存在最佳反应温度,对于MAC为50~70℃,对高硅ZSM-5分子筛则为20℃,而全硅β分子筛上在10~90℃范围内,NO转化率呈单调下降的趋势;
     (2)随着进口NO、02浓度以及空时的增加,NO转化率增加;
     (3)水汽的存在对催化剂表面NO的氧化存在抑制作用;由于AC及MAC自身含有宽泛的孔径分布(特别是中孔孔道的存在),导致其对NO氧化的催化活性受水汽影响严重;而对于分子筛而言,提高Si/A1比可减少其对水汽的吸附从而降低水汽的影响,因此,湿气条件下微孔分子筛Si/Al比越高,NO转化率越高;
     (4)干、湿气条件下催化剂稳定性实验结果表明,高硅ZSM-5、全硅β分子筛对NO的常温氧化催化活性没有下降,说明高硅ZSM-5、全硅β分子筛具有良好的稳定性,有望在工业上应用;
     (5)微孔孔道是保证活性炭、分子筛等材料具有NO氧化催化活性的前提,微孔比表面积和微孔孔容越大,其对NO氧化催化活性越高;
     (6)通过TPD/TPSR.原位DRIFTS技术对高硅Na-ZSM-5和全硅β分子筛上NO氧化机理研究表明,分子筛表面的羟基(-OH)和阳离子(如Na+)是NO氧化催化活性位;02在微孔分子筛表面不吸附,而NO在其表面存在强的化学吸附,NO2只存在弱吸附;在NO氧化反应气氛下,NO在Na+上的吸附态以N03(即:OONO)为主,而在羟基(-OH)上的吸附态可能以(NO)2(即:ONNO)为主,由此推测高硅Na-ZSM-5分子筛上存在如下的NO氧化反应机理:NO+σ??NO·σNO·σ+O2N03·6 NO3·σ+NO·σ.?N2O4+2σ?2NO2+2σ
     而在全硅β分子筛上NO的氧化反应机理为:NO+σ?NO·σNO·σ+NO·σ?(NO·σ)2 (NO·σ)2+O2?2NO2+2σ?N2O4+2σ
     以上研究表明,采用高硅ZSM-5分子筛或全硅β分子筛催化剂可实现在水汽环境中NO的高效气相氧化,提高NOx氧化度;而通过添加氧化剂或还原剂的NaOH溶液可强化碱液对NOx的化学吸收;两项技术的有机组合可有效提高碱液吸收法对NOx的脱除效率,说明本论文提出的气相催化氧化-碱液吸收法工艺和相关技术具有可行性。
The abatement of the nitric oxides (NOx) is becoming one of important challenges since NOx are the source of severe eco-environmental problems and harmful to human health. Differing from the NOx flue gas from the power station by burning fossil fuels such as coal, oil and natural gas, the NOx industrial waste gas exhausts with low quantity but high local NOx concentration leading to severe pollution to local environment, so is urgent to be treated now. Generally, the NOx industrial exhausted gas is discharged under the following conditions of:(1) high oxygen content (-20%(V)); (2) high vapor content which can reach the saturated one in the gas; (3) low NOx oxidation degree (defined as the ratio of the concentration of NO2 and that of NOx in the gas), even lower than 10%; (4) ambient temperature and normal pressure; (5) dramatical fluctuation of NOx concentration due to the batch or non-continuous operation mode of the previous production units. According to these features, the NH3-SCR (Selective Catalytic Reduction) method is not suitable to the removal of NOx from the industrial process since SCR process needs high temperature and excellent control of the addition of NH3 content, while alkaline solution absorption process operating at normal temperature and normal pressure may be more suitable because the absorption process is insensitive to the fluctuation of NOx content and even can recover nitrite and nitrate salts. However, the low NO solubility in aqueous solution could lead to low NOx removal efficiency for this wet scrubbing process. So the process of NO gas phase catalytic oxidation and alkaline solution absorption was proposed, and then investigated in detail in this paper. Some conclusions have been drawn as following:
     1. Study on the absorption process of NOx by the alkaline solution including NaOH solution without and with the addition of the reductants or the oxidants
     (1) The addition of the reductants (including urea, ammonium sulfite, sodium sulfite, sodium sulfide or sodium hyposulfite, etc.) or the oxidants (including hydrogen peroxide or sodium hypochlorite, etc.) promote the absorption of NOx, but the NOx removal efficiency is insensitive to the concentration of NaOH and the additives (including the reductants and the oxidants). With the increase of the inlet NOx concentration, the removal efficiency of NOx will increase. The increase of the gas phase resident time will make for the removal efficiency of NOx especially that of NO2.
     (2) Among the operation conditions, the inlet NOx oxidation degree is the most significant one which effects the NOx removal, and exists the optimal value of 50~70%when using the NaOH solution or the urea-NaOH solution as the absorption solvents, but the higher inlet NOx oxidation degree will lead to the higher NOx removal efficiency when using the oxidant-NaOH solutions or the reductant-NaOH solutions (except urea additive). So, the key of the high NOx removal efficiency will result from the increase of the inlet NOx oxidation degree.
     (3) The relative rate of NOx removal by the alkaline solution absorption process can be sorted as followed:the rate of NO2 removal through the reaction of NO2 and (NH4)2SO3> the rate of NOx removal through the reaction of NaOH and N2O3 equilibrated with NO and NO2> the rate of NO2 removal through the reaction of NO2 and NaOH or H2O2.
     2. The study on the NO oxidation at ambient temperature by oxygen in the NOx waste gas on the catalysts including the coconut-based activated carbon (AC) and the modified activated carbon (MAC), the micro porous-based molecular sieve (high silica H-and Na-ZSM-5, pure silicaβ-ype molecular sieve)
     (1) With the increase of the reaction temperature, the NO conversion in the NO catalytic oxidation decreases under the dry NOx waste gas, but exists maximum value under the humid NOx waste gas at the temperature of 50~70℃over MAC and 20°C over ZSM-5 molecular sieve, while decreases monotonously over pure silicaβ-type molecular sieve during the range of the reaction temperature from 10°C to 90°C.
     (2) The increase of the inlet concentrations of NO and O2 and the space time benefits the NO conversion.
     (3) The vapor inhibits the oxidation of NO on all the investigated catalysts, but the extent of inhibitory effect depends on the nature of the catalysts. The effect of vapor on the NO oxidation on the AC (MAC) may be the most serious one due to its wide pore size distribution, especially the exist of the mesopore. Nevertheless, there is another situation to the molecular sieve, that is, the high hydrophobic surface can be obtained on the molecular sieve with high Si/Al ratio, which leads to less adsorption to vapor. So, the higher NO conversion under the wet NOx gas will be obtained on the molecular sieve with the higher Si/Al ratio.
     (4) The catalytic activity of the high silica ZSM-5 molecular sieve and the pure silicaβ-type molecular sieve demonstrates high stability both in the dry NOx gas and in the saturated wet NOx gas during the long periodic stability test, which means their potential industrial application in the NOx removal process.
     (5) The micro porous channels guarantee the catalytic activity of ACs and the molecular sieves to NO oxidation at ambient temperature, and the high catalytic activity can be obtained over the catalysts with high micro porous specific superficial area and volume.
     (6) The characterizations of TPD/TPSR and in-situ DRIFTS of the adsorbed NOx species on the high silica Na-ZSM-5 and the pure silicaβ-type molecular sieve reveal the reaction mechanisms of NO catalytic oxidation at ambient temperature. The molecular sieves exhibit the high catalytic activity through the active adsorption sites of the hydroxyl group (-OH) and cation (such as Na+). There is no adsorbing oxygen and only weakly-adsorbing NO2 can be detected on the surface of the molecular sieve, while NO can adsorb strongly on it. The adsorbing species of NO depends on the types of the active sites, e.g., the adsorbing NO3 (i.e., OONO) specie mainly exists in cation such as Na+, while the adsorbing (NO)2 (i.e., ONNO) specie may be in the hydroxyl group (-OH). Based on these, the catalytic reaction mechanism of NO oxidation at ambient temperature on the high silica Na-ZSM-5 molecular sieve can be speculated as following:
     NO+σ?NO·σ
     NO·σ+O2?NO3·σ
     NO3·σ+NO·σ?N2O4+2σ?2NO2+2σWhile the reaction mechanism on the pure silicaβ-type molecular sieve may be shown as:
     NO+σ?NO·σ
     NO·σ?(NO·σ)2
     (NO·σ)2+O2?2NO2+2σ?N2O4+2σ
     All above investigations show that the NOx oxidation degree can efficiently be increased through the NO oxidation by O2 at the ambient temperature under the wet NOx waste gas using the high silica ZSM-5 or the pure silicaβ-type molecular sieve as the catalysts, and the chemical absorption of NOx can be enhanced by the addition of the reductant or the oxidant into the alkaline solution as the absorption solvent. Furthermore, the combination of the above two technologies synergically will lead to high NOx removal efficiency of the wet scrubbing process for NOx abatement, and the feasibility of the process of NO gas phase catalytic oxidation and alkaline solution absorption for the NOx removal from the industrial exhausted gas is then proved.
引文
[1]杨飏编著.氮氧化物减排技术与烟气脱硝工程[M].北京:冶金工业出版社,2007.
    [2]童志权,莫建红.催化氧化法去除烟气中NOx研究进展[J].化工环保,2007,27(3):193-198.
    [3]孙德荣,吴星五.我国氮氧化物烟气治理技术现状及发展趋势[J].云南环境科学,2003,22(3):47-50.
    [4]易红宏,宁平,陈亚雄.氮氧化物废气的治理技术[J].环境科学动态,1998,4:17-20.
    [5]Streets D G, Waldhoff S T. Present and future emissions of air pollutants in China:SO2, NOx and CO [J]. Atmos Environ,2000,34(3):363-374.
    [6]Richter A, Burrows J P, Nub H,et al. Increase in tropospheric nitrogen dioxide over China observed from space [J]. Nature,2005,437(7055):129-132.
    [7]田贺忠,郝吉明,陆永琪等.中国氮氧化物排放清单及分布特征[J].中国环境科学,2001,21(6):493-497.
    [8]Tian H Z, Hao J M, Nie Y F. Nitrogen oxides emission and control from coal-fired power plants in China. Abstracts of Papers of the American Chemical Society,229:104-FUEL, San Diego National Meeting, March (2005).
    [9]Taylor K C. Nitric oxide catalysis in automotive exhaust systems [J]. Catal Rev-Sci Eng,1993,35(4): 457-481.
    [10]唐晓龙,郝吉明,徐文国等.新型MnOx催化剂用于低温选择性催化还原NOx[J].催化学报,2006,27(10):843-848.
    [11]Kijlstra W S, Brands D S, Smit H I, et al. Mechanism of the selective catalytic reduction of NO with NH3 over MnO^/Al2O3 [J]. Journal of Catalysis,1997,171(6):219-230.
    [12]Tae S P, Soon K J, Sung H H, et al. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature [J]. Industrial and Engineering Chemistry Research,2001,40(4): 4491-4495.
    [13]Qi G S, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst [J]. Journal of Catalysis,2003,217(2):434-441.
    [14]Qi G S, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Applied Catalysis B:Environmental,2004, 51(2):93-106.
    [15]黄张根,朱珍平,刘振宇,等.活性焦性质对V2O5/AC催化剂还原NOx的影响[J].煤炭转化,2001,24(3):74-78.
    [16]Huang Z G, Zhu Z P, Liu Z Y. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures [J]. Applied Catalysis B:Environmental,2002,39 (4):361-368.
    [17]Zhu Z P, Liu Z Y. Adsorption and reduction of NO over activated coke at low temperature [J]. Fuel,2000, 79(6):651-658.
    [18]唐晓龙,郝吉明.活性炭改性整体催化剂上低温选择性还原NOx中国环境科学[J].2007,27(6):845-850.
    [19]Masakazu I.Oxidation of NO to NO2 on a Pt-MFI zeolite and subsequent reduction of NOx by C2H4 on an In-MFI zeolite:a novel de-NOx strategy in excess oxygen [J]. Chem. Commun,1997, (1):37-38.
    [20]Vicente S E. Low temperature selective catalytic reduction of NOx by ammonia over H-ZSM-5:an IR study [J]. Applied Catalysis B:Environmental,2005,58(1-2):19-23.
    [21]Goo J H. Effects of NO2 and SO2on selective catalytic reduction of nitrogen oxides by ammonia [J]. Chemosphere,2007,67(4):718-723.
    [22]Fritz A. The current state of research on autotive lean NOx catalysis [J]. Appl.Catal. B.1997,13(1):1-25.
    [23]Prase R P. Some aspects about the nature of surface species on Pt-based and MFI-based catalysts for the selective catalytic reduction of NO by propene under lean-burn condition [J]. Appl Catal B,2002,38(3): 227-241.
    [24]Patwardhan J A, Pradhan M P, Joshi J B. Simulation of NOx gas absorption under adiabatic condition and comparison with plant data [J]. Chem Engin Sci,2002,57(22-23):4831-4844.
    [25]Pradhan M P, Joshi J B. Absorption of NOx Gases in Aqueous NaOH Solutions:Selectivity and Optimization [J]. AIChE Journal,1999,45(l):38-50.
    [26]任晓莉,张雪梅,张卫江等.碱液吸收法治理含NOx工艺尾气实验研究[J].化学工程,2006,34(9):63-66.
    [27]任晓莉,张雪梅,张卫江等.碱液脱除工艺尾气中NOx的研究[J].天津大学学报,2006,39(5):697-600.
    [28]天津化工研究院等编.无机盐工业手册(第二版)[M],上册,北京:化学工业出版社,1996.
    [29]Pradhan M P, Joshi J B. Absorption of NOx gases in plate column:Selective manufacture of sodium nitrite [J]. Chem Engin Sci,2000,55(7):1269-1282.
    [30]童志权主编.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [31]张丽,张敬志.硝酸尾气中氮氧化物含量的分析研究[J].河北化工,2007,30(5):64-65.
    [32]王瑾,周玉林.硝酸尾气中NOx测定方法的探讨[J].中氮肥,2006,(4):61-63.
    [33]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2005.
    [34]任晓莉.常压湿法治理化学工业中氮氧化物废气的研究[D].天津大学博士学位论文,2006.
    [35]黄艺.尿素湿法联合脱硫脱硝技术研究[D].浙江大学硕士学位论文,2006.
    [36]王树江,杨骥.尿素水溶液还原法去除氮氧化物精制二氧化碳[J].高等学校化学学报,2004,25(9):1730-1732.
    [37]雷鸣,岑超平,胡将军.尿素/KMnO4湿法烟气脱硫脱氮的试验研究[J].环境科学研究,2006,19(1):43-45.
    [38]Mok Y S. Absorption-reduction technique assisted by ozone injection and sodium sulfide for NOx removal from exhaust gas [J]. Chem Engin Journal,2006,118(1-2):63-67.
    [39]Mok Y S, Lee H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique [J]. Fuel Processing Technology,2006,87(7):591-597.
    [40]陈福利.氮氧化物废气处理液[P].中国:CN_1287874A,2001-03-21.
    [41]顾永祥,沈少华,谭天恩.还原性碱液吸收氮氧化物传质-反应过程研究[J].高校化学工程学报,1989,3(3):47-56.
    [42]顾永祥,黄文谦,谭天恩.旋流板塔治理电镀过程氮氧化物废气的工艺研究[J].环境污染与防治,1991,13(1):9-12.
    [43]鲁文质,赵秀阁,王辉等.NO的催化氧化[J].催化学报,2000,21(5):423-427.
    [44]李平,赵越,卢冠忠等.SO2对NO催化氧化过程的影响(Ⅱ)-载体γ-Al2O3与SO2的相互作用[J].高等学校化学学报,2001,22(12):2072-2076.
    [45]Jang B W L, Spivey J J, Kung M C, et al. Low-temperature NOx removal for flue gas cleanup [J]. Energy Fuels,1997,11(2):299-306.
    [46]罗立新,刘敏,李绍箕.NO催化氧化的初步研究[J].环境工程,1997,15(4):30-33.
    [47]鲁文质,饶薇薇,肖文德等.铜钒复合氧化物的NO催化氧化活性和抗硫性[J].宁夏大学学报(自然科学版),2001,22(2):172-174.
    [48]Schmitz P J, Kudla A R, Drews A E, et al. NO oxidation over supported Pt:Impact of precursor, support, loading and processing conditions evaluated via high throughput experimentation [J]. Appl Cata B,2006, 67(3-4):246-256.
    [49]Dawody J, Skoglundh M, Fridell E. The effect of metal oxide additives (WO3, MoO3) V2O5, Ga2O3) on the oxidation of NO and SO2 over Pt/Al2O3 and Pt/BaO/Al2O3 catalysts [J]. Mol Catal A:Chem,2004, 209(1-2):215-225.
    [50]Despres J, Koebel M, Krocher O, et al. Adsorption and desorption of NO and NO2 on Cu-ZSM-5 [J]. Microporous and Mesoporous Materials,2003,58(2):175-183.
    [51]Odenbrand C U I, Andersson L A H, Brandin J G M,et al. Dealuminated mordenites as catalyst in the oxidation and decomposition of nitric oxide and in the decomposition of nitrogen dioxide: Characterization and activities [J]. Catal Today,1989,4(2):155-172.
    [52]de Paiva J L, Kachan G C. Absorption of nitrogen oxides in aqueous solutions in a structured packing pilot column [J].Chemical Engineering and Processing,2004,43(7):941-948.
    [53]Thomas D, Vanderschuren J. Effect of temperature on NOx absorption into nitric acid solutions containing hydrogen peroxide [J]. Ind Eng Chem Res,1998,37(11):4418-4423.
    [54]Lefers J B, de Boks F C, van de C M, et al, The oxidation and absorption of nitrogen oxides in nitric acid in relation to the tail gas problem of nitric acid plants [J]. Chem Engin Sci,1980,35(1-2):145-153.
    [55]Termoto M, Ikeda M, Teranishi H. Absorption rates of NO in mixed aqueous solution of NaClO2 and NaOH [J]. Kagaku Kngaku Ronbunshu,1976,2:637-640.
    [56]Sada E, Kumazawa H, Kudo T, et al. Absorption rates of NO in aqueous solution of NaC102 and NaOH [J]. Chem Eng Sci,1978,33(3):315-318.
    [57]Sada E, Kumazawa H,Yamanake H, et al. Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide [J]. J Chem Engin Jap,1978,11(1): 276-282.
    [58]Sada E, Kumazawa H, Kudo I, et al. Absorption of lean NO in aqueous solutions of NaC102 and NaOH [J]. Industrial and Engineering Chemistry Process Design and Development Science,1979,18(1): 275-278.
    [59]Brogren C, Karlsson H T, Bjerle I. Absorption of NO in an aqueous solution of NaC102 [J]. Chem Eng Technol,1998,21(1):61-70.
    [60]Hsu H, Lee C, Chou K. Absorption of NO by NaC102 solution:Performance characteristics [J]. Chem Eng Commun,1998,170(1):67-81.
    [61]Chien T, Chu H. Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaC102 solution [J]. J Hazard Mater B,2000,80(1-3):43-57.
    [62]Chu H, Chien T, Twu B. The absorption kinetics of NO in NaCIO2/NaOH solutions [J]. J Hazard Mater B,2001,84(2-3):241-252.
    [63]Sada E, Kumazawa H, Takada Y. Chemical reaction accompanying absorption of nitric oxide into aqueous mixed solutions of iron(II)-EDTA and sodium sulfite [J]. Ind Eng Chem Fundam,1984,23(1): 60-64.
    [64]Sada E, Kumazawa H, Hikosaka H. A Kinetic study of absorption of nitrogen oxide (NO) into aqueous solutions of sodium sulfite with added iron (II)-EDTA chelate [J]. Ind Eng Chem Fundam,1986,25(3): 386-390.
    [65]Little J D, Chang S G. Reaction of ferrous chelate nitrosyl complexes with sulfite and bisulfite ions [J]. Ind Eng Chem Fundam,1990,29(1):10-14.
    [66]Gambardella F, Ganzeveld I J, Winkelman J G M, et al. Kinetics of the reaction of Fe11 (EDTA) with oxygen in aqueous solutions [J]. Ind Eng Chem Res,2005,44(22):8190-8198.
    [67]van der Maas P, van de Sandt T, Klapwijk B, et al. Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions [J]. Biotechnol Prog,2003,19(4):1323-1328.
    [68]马乐凡,童志权,张俊丰.液相络合-铁粉还原-酸吸收回收法脱除烟气中NOx的机理研究[J].环境科学学报,2005,25(5):637-642.
    [69]马乐凡,童志权,尹奇德等.液相络合-铁屑还原-酸吸收回收法脱除烟气中的NOx[J].环境化学,2006,25(6):761-764.
    [70]Long X L, Xin Z L, Chen M B, et al. Nitric oxide absorption into cobalt ethylenediamine solution [J]. Separation and Purification Technology,2007,55(2):226-231.
    [71]Long X L, Xin Z L, Chen M B, et al. Kinetics for the simultaneous removal of NO and SO2 with cobalt ethylenediamine solution [J]. Separation and Purification Technology,2008,58(3):328-334.
    [72]龙湘犁,肖文德,袁渭康.NO与Co(NH3)62+气液反应动力学[J].化工学报,2003,54(9):1264-1268.
    [73]龙湘犁,肖文德,袁渭康.钴氨溶液脱除NO研究[J].中国环境科学,2002,22(6):511-514.
    [74]龙湘犁,辛志玲,王洪兴等.六氨合钻溶液治理NO废气污染研究[J].环境科学,2005,26(1): 20-23.
    [75]Jing G H, Li W, Shi Y. Removal of nitiric oxide by Fe11(EDTA) absorption combined with microbial reduction [A]. Proceedings of the first international conference on environmental science and technology (Volume 1) [C]. New Orleans, USA:American Science Press,2005,554-560.
    [76]Li W, Wu C Z, Shi Y. Metal chelate absorption coupled with microbial reduction for the removeal of NO* from flue gas [J]. J Chem Technol Biotechnol,2006,81(3):306-311.
    [77]荆国华,李伟,施耀.烟气脱氮体系中络合吸收剂的氧化还原过程[J].中国环境科学,2007,27(1):132-136.
    [78]Senjo T, kobayashi M. Process for removing nitrogen oxides from Gas. U.S. patent 3957949(1976).
    [79]Skelley A P, Koltick J M, Jr Suchak N J, Jr Rohrer W M. Process for Removing NOx and SOX from Exhaust Gas, US 6162409(2000).
    [80]Mok Y S. Oxidation of NO to NO2 using the ozonization method for the improvement of selective catalytic reduction. J Chem Eng Japan,2004,37(11):1337-1344.
    [81]Deshwal B R. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor [J]. J Hazard Mat,2007,150(3):649-655.
    [82]罗立新.富氧条件下NO氧化的初步研究[J].电力环境保护,1996,12(3):6-10.
    [83]Xue E, Seshan K, Ross J. Roles of supports Pt loading and Pt dispersion in the oxidation of NO to NO2 and of SO2 to SO3 [J]. Appl Catal B,1996,11(1):65-79.
    [84]Schmitz P J, Kudla R J, Drews A E, et al. NO oxidation over supported Pt:Impact of precursor, support, loading and processing conditions evaluated via high throughput experimentation. Apply Catalyst B,2006, 67(3-4):246-256.
    [85]王辉.NO选择催化氧化的催化剂和反应机理研究(D).上海:华东理工大学,1999.
    [86]莫建红,童志权,张俊丰Mn/Co-Ba-Al-O催化氧化NO性能研究[J].环境科学学报,2007,27(11):1793-1798.
    [87]黄明,蒋红彬Cu2Mn/Si02催化氧化NO性能研究[J].环境工程报,2008,2(4):532-536.
    [88]Guo Z C, Xie Y S, Hong I, et al. Catalytic oxidation of NO to NO2 on activated carbon [J]. Energy Conversion and Management,2001,42(15-17):2005-2018.
    [89]Adapa S, Gaur V, Verma N. Catalytic oxidation of NO by activated carbon fiber (ACF) [J]. Chem Eng J, 2006,116(1):25-37.
    [90]Mochida I, Kawabuchi Y, Kawano S, et al. High catalytic activity of pitch-based activated carbon fibers of moderate surface area for oxidation of NO to NO2 at room temperature [J]. Fuel,1997,76(6):543-548.
    [91]Seyed A, Dastgheib, Karanfil T. Adsorption of oxygen by heat-treated granular and fibrous activated carbons [J]. Journal of Colloid and Interface Science,2004,274(1):1-8.
    [92]Christian L M, Kelly R B, James E, et al. Surface chemistry pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia [J]. Carbon,2001,39(12):1809-1820.
    [93]Boehm H P. Surface oxides on carbon and their analysis:A critical assessment [J]. Carbon,2002,40(2): 45-149.
    [94]Boehm H P, Diehl E, Heck W, et al. Surface oxides of carbon [J]. Angew Chem Int Ed,1964,3(10): 669-677.
    [95]Boehm H P, Some aspects of the surface chemistey of carbon blacks and other carbon [J]. Carbon,1994, 32(5):759-769.
    [96]林陪琰Cu,Pd-ZSM-5上NO分解和CO氧化的催化作用[J].分子催化,1996,10(4):245-250.
    [97]Krishna K, Makkee M. Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NOX [J]. Catalysis Today,2006,114(1):23-30.
    [98]Qi G S, Joseph E Gatt, Ralph T. Yang, et al. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl3 [J]. Journal of Catalysis,2004,226(1): 120-128.
    [99]彭天杰,余文涛,袁清林等.工业污染治理技术手册[M].成都:四川科学技术出版社,1985.417-419.
    [100]陈忠伟,余爱萍,饶薇薇.SO2对Y型分子筛选择性催化氧化NO的影响[J].河南化工,2002,(3):13-15.
    [101]Brandin J G M. Catalytic Oxidation of NO to NO2 over a H-Mordenite Catalyst [J]. Acta Chemica Scandinavica,1990,44(8):784-788.
    [102]Odenbrand C, Andersson L, Brandin J. Dealuminated mordenites as catalysts in the Oxidation and decomposition of nitric oxide and in the decomposition of nitrogen dioxide:Characterization and activities [J]. Catal Today,1989,4(2):155-172.
    [103]Yogo K, Umeno M, Watanabe H, et al. Selective reduction of nitric oxide by methane of H-form zeolite catalysts in oxygen-rich atmosphere [J], Catalysis Letters,1993,19(2-3):131-135.
    [104]Cant N W, Liu O Y. The mechanism of the selective reduction of nitrogen oxides by hydrocarbons on zeolite catalysis [J]. Catalysis Today,2000,63(2-4):133-146.
    [105]Istvan H, Alan B. Active sites of H-ZSM5 catalysts for the oxidation of nitric oxide by oxygen [J]. Catalysis Letters,1995,34(1-2):151-161.
    [106]Despres J, Elsener M, Koebel M, et al. Catalytic oxidation of nitrogen monoxide over Pt/SiO2 [J]. Applied Catalysis B:Environmental,2004,50:73-82.
    [107]朱世勇主编.环境与工业气体净化技术[M].北京:化学工业出版社,2001.
    [108]Branch Environmental Corp. NO* removal. Retrieved on 2007.
    [109]王辉,赵秀阁.NO在负载型金属氧化物催化剂上的氧化反应机理[J].华东理工大学学报,2001,27(1):6-10.
    [110]赵迎宪,危凤.NO在Pt/y-Al2O3上催化氧化反应机理和动力学[J].化工学报,2008,59(5):1156-1164.
    [111]Mochida I, Shiraham N. NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over apitch based ACF of very large surface area [J]. Fuel,2000, (79):1713-1723.
    [112]童志权,莫建红.催化氧化法去除烟气中NOx研究进展[J].化工环保,2007,27(3):193-198.
    [113]韩德刚,高盘良编著.北京大学物理化学丛书——化学动力学基础[M].北京:北京大学出版社,2001.
    [114]Tsukahara H, Ishida T, Mayumi M. Gas-Phase Oxidation of Nitric Oxide:Chemical Kinetics and Rate Constant [J]. NITRIC OXIDE:Biology and Chemistry,1999,3(3):191-198.
    [115]Iwamoto M, Yoda Y, Egashira M, et al. Study of metal catalysts by temperature programmed desorption: Chemisorption of oxygen on nickel oxide [J].J Phys Chem,1976,50(18):1989-1990
    [116]Bond G. Heterogeneous catalysis:principles and applications [M]. Oxford:Clarendon Press,1987.
    [117]Wolfgang K. Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapour [J]. Fuel,2007, (86):203-209.
    [118]张鹏宇,杨巧云,许绿丝等.活性炭纤维低温吸附氧化NO的试验研究[J].电力环境保护,2004,20(2):25-28.
    [119]Van Der Waal J C, Rigutto M S, Van Bekkum H. Synthesis of all-silica zeolite-beta [J]. Journal of the Chemical Society-Chemical Communications,1994, (10):1241-1242.
    [120]Camblor M A, Corma A, Valencia S. Spontaneous nucleation and growth of pure silica zeolite-P free of connectivity defects [J]. Chem Commun,1996,33(9):365-2366.
    [121]Kubo S, Kosuge K. Salt-Induced Formation of Uniform Fiberlike SBA-15 Mesoporous Silica Particles and Application to Toluene Adsorption [J]. Langmuir,2007,23(23):11761-11768.
    [122]张波,慎炼,周春晖等.全硅MCM-41中孔分子筛的合成[J].高校化学工程学报,2001,15(1):29-34.
    [123]刘雷,张高勇,董晋湘.模板剂对全硅MCM-41介孔分子筛结构的影响[J].物理化学学报,2004,20(1):65-69.
    [124]范延臻,王宝贞,王琳等.改性活性炭的表面特性及其对金属离子的吸附性能[J].环境化学,2001,20(5):437-443.
    [125]叶平伟,栾志强,张忠良等.微波加热对活性炭表面性质的影响[J].炭素技术,2004,23(2):5-9.
    [126]苗志超.吸收法净化氮氧化物废气的研究[D].天津大学硕士学位论文,2006.
    [127]Thomas D, Vanderschuren J. Nitrogen Oxides Scrubbing with Alkaline Solutions [J]. Chem. Eng. Technol,2000,23(5):449-455.
    [128]Thomas D, Vanderschuren J. The absorption-oxidation of NOx with hydrogen peroxide for the treatment of tail gases [J]. Chem Eng Sci,1996,51(1):2649-2654.
    [129]Mochida I, Kisamori S, Hironaka M, et al. Oxidation of NO into NO2 over Active Carbon Fibers [J]. Energy & Fuels,1994,8(6):1341-1344.
    [130]黄燕.疏水性沸石分子筛的特性及表面改性研究[J].精细化工中间体,2002,32(6):36-37.
    [131]徐如人,庞文琴等著.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [132]Perdana I. A comparison of NOx adsorption on Na, H and Ba-ZSM-5 films [J]. Applied Catalysis B: Environmental,2007,72:82-91.
    [133]陈作义,杨晓西.ZSM-5分子筛对氮氧化物的吸附特性研究[J].山西化工,2004,24(3):15-17.
    [134]邢娜,王新平,于青等.分子筛对NO和NO2的吸附性能[J].催化学报,2007,28(3):205-209.
    [135]张文祥,贾明君,吴通好.金属离子交换分子筛的NO吸附性能[J].高等学校化学报,1997,18(12):1999-2003.
    [136]Shi C, Mo J C. On the correlation between micro structural changes of Ag-H-ZSM-5 catalysts and their catalytic performances in the selective catalytic reduction of NOx by methane [J]. Journal of Molecular Catalysis A:Chemical,2005,235:35-43.
    [137]Vaudry F, Renzo F D, Espiau P, et al.Aluminumrich zeolite beta [J]. Zeolite,1997,19(4):253-258.
    [138]Treacy M M J, Newsam J M. Structure of zeolite beta [J]. Nature,1988,332:249-251.
    [139]李全芝.分子筛催化新进展[J].石油化工,1996,25(4):299-305.
    [140]Tabata T, Ohtsuka H, Sabatino L M F, et al. Selective catalytic reduction of NOx by propane on Co-loaded zeolites [J]. Microporous and Mesoporous Materials,1998,21(4):517-524.
    [141]Wang Y L, Lei Z G, Chen B H, et al. Adsorption of NO and N2O on Fe-BEA and H-BEA zeolites [J]. Applied Surface Science,2010,256(12):4042-4047.
    [142]Ohtsuka H, Tabata T, Okada O, et al. A study on selective reduction of NOx by propane on Co-beta [J]. Catalysis Letters,1997,44(3):265-270.
    [143]Yuan Z Y, Zhou W Z. A novel morphology of mesoporous molecular sieve MCM-41 [J]. Chemical Physics Letters,2001,333(6):427-431.
    [144]王德举,刘仲能,李学礼,等.介孔沸石材料[J].化学进展,2008,20(5):637-643.
    [145]Wang X Q, Wang M, Jin H X. Preparation of carbon nanotubes at the surface of Fe/SBA-15 mesoporous molecular sieve [J]. Applied Surface Science,2005,243(1):151-157.
    [146]Taguchi A, Schuth F. Ordered mesoporous materials in catalysis [J]. Microporous and Mesoporous Materials,2005,77(1):1-45.
    [147]徐坚,杨立明,王玉军,等.介孔分子筛SBA-15的表面改性对脂肪酶固定化的强化作用[J].化工学报,2006,57(10):2407-2410.
    [148]栾敏杰.新型分子筛催化剂对氮氧化物的分解与还原[M].哈尔滨:黑龙江大学出版社:2006.
    [149]Liu C C, Teng H S. Cu/MCM-41 for selective catalytic NO reduction with NH3-comparison of different Cu-loading methods [J]. Applied Catalysis B:Environmental,2005,58(1):69-77
    [150]Iojoiu E E, Onu P, Apostolescu N, et al. Selective catalytic reduction of the nitrogen oxides on Cu-MCM-41 and Fe-MCM-41-type catalyst [J]. Revista De Chimie,2001,52(9):507-511.
    [151]宋茂莹,王喜庆,龙英才.完美骨架全硅β沸石性质研究Ⅰ.合成全硅β沸石与脱铝β沸石的性质比较[J].化学学报,2002,60(2):446-450.
    [152]喻铃,何红运,何驰剑等.无铝V-β分子筛的合成、表征及催化性能研究[J].高等学校化学学报,2006,27(3):538-542.
    [153]何红运,庞文琴,刘午阳等.合成条件对无铝Fe-β沸石分子筛晶化的影响[J].高等学校化学学报,2002,23(3):353-357.
    [154]何红运,万牡华,庞文琴.用无机硅钛原料合成无铝Ti-β分子筛的研究[J].无机化学学报,2004, 20(1):84-88
    [155]何红运,庞文琴.Co-β沸石的合成与结构表征[J].应用化学,2002,19(6):588-589.
    [156]Perdana I, Creaser D, Ohrman O, et al. NOx adsorption over a wide temperature range on Na-ZSM-5 films[J]. Journal of Catalysis,2005,234(1):219-229.
    [157]Goo J H, Irfan M F, Kim S D,et al. Effects of NO2 and SO2 on selective catalytic reduction of nitrogen oxides by ammonia [J]. Chemosphere,2007,67 (4):718-723.
    [158]Koebel M, Madia G, Elsener M. Selective catalytic reduction of NO and NO2 at low temperatures [J]. Catalysis Today,2002,73 (3-4):239-247.
    [159]Thomas D, Vanderschuren J. Analysis and prediction of the liquid phase composition for the absorption of nitrogen oxides into aqueous solutions [J]. Separation and Purification Technology,1999,18 (1):37-45.
    [160]de Paiva J L, Kachan G C. Absorption of nitrogen oxides in aqueous solutions in a structured packing pilot column [J]. Chemical Engineering and Processing,2004,43(7):941-948.
    [161]GU Yong-qiang(顾永祥),TAN Tian-en(谭天恩)Mass transfer and reaction process in nitrogen oxides absorption by NaOH aqueous solution(氢氧化钠水溶液吸收氧化氮传质-反应过程研究)[J]. J Chem Eng of Chinese Univ((高校化学工程学报),1990,4(2):157-166.
    [162]Despres J, Koebel M, KroDcher O, et al. Adsorption and desorption of NO and NO2 on Cu-ZSM-5 [J]. Microporous and Mesoporous Materials 2003,58(2):175-183.
    [163]Gomez-Garcia M A, Pitchon V, Kiennemann A. Pollution by nitrogen oxides:an approach to NOx abatement by using sorbing catalytic materials [J]. Environment International,2005,31(3):445-467.
    [164]Shin S, Jang J, Yoon S-H, et al. A study of the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR [J]. Carbon,1997,35(12):1739-1743.
    [165]Zhu J L, Wang Y H, Zhang J C, et al. Experimental investigation of adsorption of NO and SO2 on modified activated carbon sorbent from flue gases [J]. Energy Convers Manage,2005,46(13-14): 2173-2184.
    [166]Nikolov P, Khristova M, Mehandjiev D. Low-temperature NO removal over copper-containing activated carbon [J]. Colloids Surf A:Physicochem. Eng. Aspects,2007,295(1-3):239-245.
    [167]WANG Xue-zhong(王学中), YANG Xiang-guang(杨向光),WU Yue(吴越)et al. Removal of nitrogen monoxide on metal ion-exchanged zeolites by adsorption(离子交换分子筛对NO吸附的研究)[J].Environ Chem(环境化学),1996,15(4):289-295.
    [168]Perdana I, Crease D, Bendiyasa I M, et al. Modelling NOx adsorption in a thin NaZSM-5 film supported on a cordierite monolith [J]. Chem Eng Sci,2007,62(15):3882-3893.
    [169]Devadas M, Krocher O, Elsener M, et al. Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM-5 [J]. Applied Catalysis B:Environment,2006,67(3-4):187-196.
    [170]Kantcheva M, Vakkasoglu A S. Cobalt supported on zirconia and Sulfated zirconia I. FT-IR spectroscopic characterization of the NOx species formed upon NO adsorption and NO/O2 coadsorption [J]. J Catal,2004,223(2):352-363.
    [171]Lobree L J, Hwang I C, Reimer J A, et al. Investigations of the State of Fe in H-ZSM-5 [J]. Catal,1999, 186(2):242-248.
    [172]Hadjiivanov K, KnEzinger H, Tsynt sarski B, et al. Effect of water on the reduction of NOx with propane on Fe-ZSM-5. An FTIR mechanistic study [J]. Catal Lett,1999,62(1):35-41.
    [173]Milushev A, Hadjiivanov K. FTIR study of CO and NOx adsorption and co-adsorption on Cu/silicalite-1 [J]. Chem Phys Chem Phys,2001,3(23):5337-5341.
    [174]Brosius R, Bazin P, Thibault-Starzyk F, et al. FTIR study of reaction pathways of selective catalytic reduction of NOx with decane in the presence of water on iron-exchanged MFI-type zeolite [J]. Journal of Catalysis,2005,234(1):191-198.
    [175]Szanyia J, Kwaka J H, Burtonb S, et al. Characterization of NOx species in dehydrated and hydrated Na-and Ba-Y, FAU zeolites formed in NO2 adsorption [J]. Journal of Electron Spectroscopy and Related Phenomena,2006,150(2-3):164-170.
    [176]柯锐,李俊华,郝吉明,等.低温等离子体协同Ag/Al2O3选择性催化丙烯还原氮氧化物反应的原位红外光谱研究[J].催化学报,2005,26(11):951-955.
    [177]Hadjiivanov K, Klissurski D, Ramis G, et al. Fourier transform IR study of NOx adsorption on a CuZSM-5 DeNOx catalyst [J]. Appl Catal B,1996,7(3-4):251-258.
    [178]Pirngruber G D. The surface chemistry of N2O decomposition on iron containing zeolites (Ⅰ) [J]. J Catal, 2003,219(2):456-462.
    [179]Hwang I C, Xin M, Woo S I. UHV-TPD study of NO adsorption/reaction over Cu/ZSM-5 [J]. Applied Surface Science,1997,121(122):310-313.
    [180]Sedlmair C, Gil B, Seshan K, et al. An in situ IR study of the NOX adsorption/reduction mechanism on modified Y zeolites [J]. Physical chemistry chemical physics,2003,5(9):1897-1905.
    [181]余运波,贺泓.Ag/Ai2O3选择性催化丙烯还原氮氧化物表面反应机理的原位红外光谱研究[J].催化学报,2003,24(5):385-390.
    [182]郑楠.Ag-ZSM-5催化剂光催化分解NO反应的研究[D].大连理工大学,2008.
    [183]Bentrup U, Bruckner A, Richter M, et al. NOx adsorption on MnO2/NaY composite:an in situ FTIR and EPR study [J]. Applied Catalysis B:Environmental,2001,32(4):229-241.
    [184]Dzwigaj S, Massiani P, Davidson A, et al. Role of silanol groups in the incorporation of V in beta zeolite [J]. Journal of Molecular Catalysis A:Chemical,2000,155(1):169-182.
    [185]Stanislaw Dzwigaj, Masaya Matsuoka, Masakazu Anpo, et al. Effect of the addition of propane and distortion of tetrahedral vanadium(V) species in VSiβ zeolites on the photodecomposition of NO [J]. Research on chemical intermediates,2003,29(7):665-680.
    [186]Dzwigaj S, Malki E M E, Peltre M J, et al. Effect of calcination/rehydration treatments on the environment of V in β zeolite [J]. Topics in catalysis,2000,11(1):379-390.
    [187]Liang B Y, Andrews L. Infrared Spectra of cis-and trans-Peroxynitrite Anion, OONO-, in Solid Argon [J]. Journal of the American chemical society,2001,123(40):9848-9854.
    [188]Konstantin H, Boyko T, Tanya N. Stability and reactivity of the nitrogen-oxo species formed after NO adsorption and NO+O2 coadsorption on Co-ZSM-5:An FTIR spectroscopic study [J]. Phys. Chem,1999, 1(18):4521-4528.
    [189]Jeguirim M, Tschamber V, Brilhac J F. Oxidation mechanism of carbon black by NO2:Effect of water vapour [J]. Fuel,2005,84(14):1949-1956
    [190]Ivanova E, Hadjiivanov K, Dzwigaj S, et al. FT-IR study of CO and NO adsorption on a VSiBEA zeolite [J]. Microporous and Mesoporous Materials,2006,89(1):69-77.
    [191]Beutel T, Adelman B J, Sachtler W M H. FTIR study of the nitrogen isotopic exchange between adsorbed (NO2)-N-15 complexes and (NO)-N-14 over Cu/ZSM-5 and Co/ZSM-5 [J]. Applied Catalysis B: Environmental,1996,9(1):1-10.
    [192]Aylor A W, Lobree L J, Reimer J A, et al. An infrared study of NO reduction by CH4 over Co-ZSM-5 [J]. Studies in Surface Science and Catalysis,1996,101(4):661-670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700