用户名: 密码: 验证码:
复合材料桁架弯曲特性与非线性约束优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型航天器对支撑结构部件提出了超轻质、大跨度、可伸缩需求。本文以开发大型超轻质支撑结构为目的,提出了一类新的全复合材料桁架结构——三角形截面复合材料整体桁架结构。该复合材料桁架结构单元不含接头,具有均一中空尺寸,不同截面尺寸的桁架可以套装在一起实现伸缩。本文围绕该复合材料桁架结构单元的轻量化,开展了结构构型设计、整体制备技术与弯曲性能表征研究;根据该复合材料桁架结构的弯曲特性,系统地开展了非线性结构响应约束下的多参数优化设计方法研究。主要研究工作包括:
     开展了三角形截面复合材料整体桁架结构单元的基本构型设计研究。利用计算机模拟获得纤维缠绕工艺可实现的四种缠绕线型,采用有限元分析方法从中优选出具有最佳结构质量效率及结构刚度/质量比的Ⅱ型桁架构型。将该构型三角形截面复合材料整体桁架与复合材料等代桁架的弯曲性能进行比较。结果表明,在悬臂梁弯曲载荷状况及相同几何尺寸约束条件下,该三角形截面桁架弯曲刚度和弯曲刚度/质量比分别为等代桁架的189%和345%。
     开展了桁架结构整体制备工艺方法研究。采用连续纤维缠绕工艺制备该构型复合材料整体桁架。设计并制造了由旋转轴和可拆卸式支撑板为主要构件的缠绕芯模。采用纤维束绑束方法提高桁架肋条的纤维体积分数,从而提高其承载能力,达到更高的载荷/质量比。确定了以环氧树脂CYD-128和固化剂对二氨基二苯基甲烷DDM或二乙烯三胺DETA的基体材料体系。对该工艺制得的复合材料整体桁架进行了工艺质量表征。结果表明,该工艺制得的复合材料桁架肋条直径离散系数为6.94%,玻璃纤维/环氧和碳纤维/环氧桁架肋条的纤维体积含量分别为63.44%和55.39%,拉伸模量分别为45.83 GPa和113.42 GPa,拉伸强度分别为747.58 MPa和1049.49 MPa,工艺质量及力学性能均达到同类复合材料制品的较高水平。
     开展了整体桁架结构的弯曲性能表征研究。设计了三点弯曲实验方案并对桁架的弯曲性能进行实验表征。结果表明,桁架在三点弯曲载荷下表现出明显的非线性屈服行为特征。桁架中截面载荷-位移曲线的屈服点可用于表征桁架的结构刚度和屈服载荷。建立了该桁架结构三点弯曲载荷下的非线性有限元分析模型,将计算模拟结果与实验结果进行了比较验证。结果表明,有限元分析结果与实验结果间的最大误差不超过10%,该有限元模型能较准确地预测复合材料整体桁架结构在弯曲载荷下的屈服载荷及相应位移。
     利用该有限元分析模型系统开展了桁架几何参数与屈服载荷、结构刚度、刚度/质量比和载荷/质量比之间关系的研究。结果表明,桁架截面外接圆直径是决定桁架结构刚度的关键几何参数;间隔数是桁架屈服载荷的决定性几何参数;螺旋向肋条直径是桁架总质量及承载效率的决定性几何参数,并且螺旋向肋条直径的变化将引起载荷-位移曲线屈服点后桁架刚度的变化。
     开展了复合材料整体桁架的失效模式研究。在屈服载荷下,复合材料桁架肋条的轴向拉应力、压应力及截面剪应力均远小于其强度值,因此不会发生强度控制的破坏失效。肋条剪应力及弯矩均较小,主要受力状态为拉、压应力,因此该构型复合材料整体桁架结构可以近似认为是拉伸主导型结构。桁架最终的失效模式为结构刚度控制的局部屈曲以及最终的整体失稳。
     开展了非线性结构响应约束下的多参数优化设计研究。以结构质量为优化目标,将桁架三点弯曲载荷下的非线性结构响应量——载荷-位移曲线屈服点对应的载荷和位移作为约束条件,同时对桁架的四个主要几何参数进行优化。采用响应面法构造了两个非线性结构响应量(屈服载荷及对应位移)与四个设计变量间的二次响应面模型。将该响应面模型作为约束函数引入优化程序,经优化求解获得总质量最小的最优化设计结果,并对优化设计结果进行了有限元分析验证和进一步的实验验证。研究结果表明,用该方法获得的响应面模型函数预测的结构响应值与有限元分析结果间的误差不超过15%。根据优化设计结果制得的复合材料桁架在三点弯曲载荷下的屈服载荷及相应位移均满足设计要求,与优化结果的误差不超过7%。该优化方法能对四个设计参数同时进行优化,优化设计结果更趋合理。
     开展了含制造缺陷及尺寸误差桁架承载能力评估的研究。考察了桁架不同位置肋条的断裂失效对桁架承载能力的影响。结果表明,纵向肋条断裂失效将导致桁架屈服载荷及整体结构刚度的显著降低。螺旋向肋条断裂失效对桁架结构刚度无明显影响,但会导致桁架承载能力(屈服载荷)降低。其中,桁架中截面附近承受较大载荷的螺旋向肋条失效后,桁架承载能力将降低至完好桁架的85%以下。采用几何点偏移的方法研究不同位置和方向的制造尺寸误差对桁架弯曲性能的影响,确定了桁架不同位置几何点沿不同方向的尺寸误差容限。结果表明,10 mm以下的几何尺寸误差对桁架结构刚度无明显影响,但对桁架承载能力有显著影响。其中,当桁架中截面附近几何点的尺寸误差大于1 mm时,桁架承载能力将降低至完好桁架的85%以下,即桁架中截面附近几何点的尺寸误差容限为1 mm。
Ultra-lightweight, long span and deployable supporting structural components are demanded by new spacecraft. In this paper, a new composite truss structure with triangular cross section is developed for large-scale aerospace applications. This composite truss structure is integrally manufactured by filament winding and no joints are included. Inner space with uniform triangular cross section is big enough to allow several trusses with different cross section dimensions being assembled and the deployable mechanism can be achieved in this way. Studies on configuration design, integrally manufacture, flexural performance and design optimization of this composite truss structural element are conducted in this paper. The main work includes:
     Truss structure with triangular cross section is chosen as the fundamental configuration. Four detail configurations which are achievable by filament winding process are obtained by CAD (Computer Assisted Design). Mass efficiency and stiffness to mass ratio of the four configurations are compared by finite element analysis and the final truss configuration (typeⅡ) is obtained. Flexural performance of the composite truss with triangular cross section is compared with composite IsoTruss? structures. The results show that, under the same geometry dimensions constraints and cantilever bending condition, the flexural stiffness and flexural stiffness to mass ratio of the composite truss structure with triangular cross section are 189% and 345% of the IsoTruss? structure respectively.
     Continuous filament winding process is employed to integrally manufacture the composite truss. The mandrel consists of core pipe and dismountable supporting panel. Composite ribs are consolidated by high strength glass fiber yarn typing which lead to higher fiber volume content, load to mass ratio and better loading capacity. Epoxy resin CYD-128 and curing agent 4, 4’-diaminodiphenylmethane (DDM) or Diethylenetriamine (DETA) are used as resin matrix. Diameter, density, fiber volume content of the composite ribs were measured and the tension properties of the ribs were tested to evaluate the manufacture quality.The results show that, the variation coefficient of truss rib diameter is 6.94%. Average fiber volume content of glass fiber/epoxy and carbon fiber/epoxy helical rib is 63.44% and 55.39% respectively. Tension modulus of of glass fiber/epoxy and carbon fiber/epoxy helical rib is 45.83 GPa and 113.42 GPa. Tension strength of of glass fiber/epoxy and carbon fiber/epoxy helical rib is 747.58 MPa and 1049.49 MPa respectively. Compared to the composite structure fabricated by other process, composite truss manufactured by this way has good manufacture quality and mechanical properties.
     Flexural performance of this composite truss structures is experimentally investigated under three point bending. Local buckling and global buckling of the truss specimen can be observed during the test. A yield point is included in the load-displacement curves of middle cross section of the composite truss. Yield load and structural stiffness of the composite truss can be derived from the yield point data. Nonlinear finite element analysis is also performed to investigate the bending behavior of the composite truss. The results show that the difference between experimental results and numerical results is no more than 10%. The finite element model can be employed to predict the yield load and displacement of this composite truss structure with acceptable accuracy under three point bending.
     Sensitivity analysis is conducted to determine the effects of the four geometric parameters on the flexural performance of this truss structure. The results that, the outer diameter and bay number of this composite truss structure are critical geometric parameters underpinning the structural stiffness and yield load respectively. Total mass and load efficiency of the composite truss is sensitive to the variation of helical rib diameter. Among the four parameters, helical rib diameter is the only one that can change the structural stiffness of the composite truss after the yield point of load-displacement curves.
     Stress of the composite ribs show that, axial tensile stress, axial compressive stress and shear stress are far less to the strength. Strength-controlled failure will not happen. As the shear stress and bending moment of all the truss ribs are very low and the main stresses on the ribs are axial tensile or compressive stress, this composite truss structure can be approximately considered as stretching-dominated structure. The failure mode of the composite truss structure is local rib buckling and global buckling controlled by structural stiffness.
     Multi-parameters optimization of the composite truss structure is performed under the nonlinear structural responses. Total weight of the composite truss is taken as optimization object. Nonlinear structural responses, yield load and displacement, are taken as constraints. Four geometric parameters are taken as design variables to be optimized. Response surface methodology is employed to construct the constraint functions between the two nonlinear structural responses (yield load and displacement) and four design parameters. Matlab Optimization ToolboxTM is used to perform the optimization. Optimal results has been validated by both finite element analysis and experiment. The results show that, error of the yield load and displacement predicted by response surface model function is no more than 15%. Flexural performance of the composite truss specimen fabricated based on the optimal design meet the design requirements. The difference of yield load and displacement between experimental result and optimal design is no more than 7%. As four parameters can be taken as design variables simultaneously, the optimal result obtained by this method is more reasonable.
     Effects of local rib damage on the flexural performance of composite truss are further investigated by individually removing the rib. The results show that structural stiffness and yield load of the composite truss will be distinctly decrease by longitudinal rib damage. Damage of helical rib with high stress near the middle cross section will lead to the decrease of yield load and the residual yield load will be less than 85% of the intact truss. Effects of geometric dimension deviation on flexural performance of the composite truss are investigated by geometric keypoint offset and the dimensional deviation tolerance for each geometric keypoint is obtained. The results show that dimensional deviation less than 10 mm almost has no effects on the structural stiffness of the composite truss. When the dimensional deviation of the geometric keypoint near the middle cross section is more than 1 mm, the residual yield load of the composite truss will be less than 85% of the intact truss. Dimensional deviation tolerance of these geometric keypoints is 1 mm.
引文
[1] McCune D T. Manufacturing Quality of Carbon/Epoxy IsoTruss? Reinforced Concrete Structures[D]. Provo, US: Brigham Young University, 2005: 2~3.
    [2]夏英伟,沃西源.先进复合材料桁架接头的研制与试验[J].航天返回与遥感, 2004, 25(3): 49~54.
    [3]杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1) :1~12.
    [4] Windischbauer F. Design Considerations Leading to the Zeppelin NT Concept[C]. Monterey, CA: Aircraft Design, Systems and Operations Meeting, 1993: 1~4.
    [5] Brandt T. Zeppelin NT– the Utility Airship, Zeppelin NT as a Platform for Remote Sensing for Environmental and Industrial Application[C]. Belfast, North Ireland: 7th AIAA Aviation Technology, Integration and Operation Conference (ATIO), 2007: 1~4.
    [6] Schütze R. Lightweight Carbon Fibre Rods and Truss Structures[J]. Materials and Design, 1997, 18(4): 231~238.
    [7] Kuhn T, Berger U, Lang M, et al. Advanced Tailplane Designs and Repair Mechanisms for the Semirigid Airship Zeppelin NT[C]. Arlington, US: AIAA 5th Aviation, Technology, Integration, and Operations Conference (ATIO), 2005: 1~12.
    [8]王明建,黄新生.平流层飞艇平台的发展及关键技术分析[J].自动测量与控制, 2007, 26(8): 58~60.
    [9]王艳奎.临近空间飞行器应用前景及发展概况分析[J].中国航天, 2009, (10): 39~44.
    [10] Jamison L, Sommer G S, Porche I R. High-Altitude Airship for the Future Force Army[R]. Santa Monica, CA: RAND Corporation, 2005: 8~13.
    [11]陈绍杰.无人机上复合材料的应用与研究[J].飞机设计, 2003, (3): 26~30.
    [12]胡泽.无人机结构用复合材料及其制造技术综述[J].航空制造技术, 2007, (6): 66~70.
    [13] Kosmatka J B, Oliver J. Development of an In-Flight Structural Health Monitoring System for Composite Unmanned Aircraft[C]. Newport, Rhode Island: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006: 1~11.
    [14]吕厚谊.无人机发展与无人机技术[J].世界科技研究与发展, 1998, (6): 113~116.
    [15] Goraj Z, Frydrychiewicz A, Winiecki J. Design Concept of a High-Altitude Long-Endurance Unmanned Aerial Vehicle[J]. Aircraft Design, 1999, (2): 19~14.
    [16]邱玉鑫,程娅红,胥家常.浅析高空长航时无人机的气动研究问题[J].流体力学实验与测量, 2004, 18(3): 1~5.
    [17]张于燕.国外长航时无人机综述[J].无线电通信技术, 2001, (2): 61~64.
    [18] Martínez-Val R, Hernández C. Preliminary Design of a Low Speed, Long Endurance Remote Piloted Vehicles (RPV) for Civil Applications[J]. Aircraft Design, 1999, (2): 167~182.
    [19]季斌南.长航时无人机的特点、作用及发展动向[J].国际航空, 1997, (2): 28~30.
    [20] http://www.solarimpulse.com, 2010-10-9/2010-12-23.
    [21]周雁.国际永久性空间站结构分析[J].国际太空, 2002, 3: 27~28.
    [22]袁建平,罗建军.空间站的发展及我国发展空间站的意义[J].世界科技研究与发展, 1998, 20(6): 99~101.
    [23]田莉,宋智.国外载人航天发展综述[J].国际太空, 2000, 3: 10~12.
    [24]帅氦.国外空间站发展简况[J].中国航天, 2003, 10: 79~80.
    [25]金烽.国际空间站的桁架结构和材料[J].宇航材料工艺, 1991, 21(4): 7~11.
    [26] Strganac T W, Letton A, Rock N I, et al. Space Environment effects on damping of polymer matrix carbon composites[J]. Journal of Spacecraft and Rockets, 2000, 37(4): 519~525.
    [27] Thompson D F, Babel H W. Materials Application on the Space Station Key Issues and the Approach to Their Solution[J]. SAMPE Quarterly, 1989, 21(1): 27~33.
    [28] Wjenhold P D, Persons D F. The Development of High-Temperature Composite Solar Array Substrate Panels for MESSENGER[J]. SAMPE Journal, 2003, 39(6): 6~17.
    [29]湛永钟,张国定.低地球轨道环境对材料的影响[J].宇航材料工艺, 2003, (1): 1~5.
    [30]盛磊.载人航天器太阳翼复合材料及其轨道环境适应性[J].载人航天, 2005, (4): 18~20.
    [31]胡波,薛金星,闫大庆.空间站结构材料及设计研究[J].纤维复合材料, 2004, (2): 60~64.
    [32]杨红娜,黄航,沃西源,等.桁架结构卫星接头的研究进展[J].航天返回与遥感, 2003, 24(2): 58~60.
    [33]鞠苏,曾竟成,江大志,等.复合材料桁架接头研究进展[J].材料导报, 2006, 20(12): 28~31.
    [34] Uozumi T, Kito A. Carbon Fibre-Reinforced Plastic Truss Structures for Satellite Using Braiding/Resin Transfer Moulding Process[J]. Proceedings of International Mechanical Engineering, Part L: Journal of Materials: Design and Application, 2007, 221: 93~101.
    [35]杨红娜.铺层-模压法碳/环氧桁架接头的成型工艺研究[J].航天返回与遥感, 2003, 24(4): 44~48.
    [36]钱钧,肖军,李勇.构架式卫星接头自动铺丝的建模研究[J].纤维复合材料, 2002, (2): 3~5.
    [37]钱钧,肖军,赵东标,等.复合材料构架式卫星接头自动铺丝成型仿真研究[J].宇航学报, 2004, 25(6): 694~696.
    [38]杨彩云,杨红娜. 3D机织复合材料卫星桁架接头的抗弯刚度研究[J].材料科学与工艺, 2008, 16(6): 810~813.
    [39]刘谦.三维编织复合材料卫星桁架接头的研制和性能分析[D].天津:天津工业大学, 2001.
    [40]郑百林,张士元,贺鹏飞,等.卫星桁架复合材料多通接头性能的测试与分析[J].复合材料学报, 2005, 22(6): 172~177.
    [41]邵劲松,刘伟庆,蒋桐.民用工业中复合材料桁架的应用和发展[J].玻璃钢/复合材料, 2006, (5): 35~39.
    [42]陈绍杰.浅谈复合材料的整体成型技术[J].高科技纤维与应用, 2005, 30(1): 6~9.
    [43] Blake R R. Compression and Flexural of Graphite/Epoxy IsoTrussTM Reinforced Concrete[D]. Provo, US: Brigham Young University, 1998.
    [44] Evans A G. Lightweight Materials and Structures[J]. MRS Bulletin, 2001, 26: 790~797.
    [45] Evans A G, Hutchinson J W, Fleck N A, et al. The Topology Design of Multifunctional Cellular Metals[J]. Progress in Materials Science, 2001, 46: 309~327.
    [46] Deshpande V S, Ashby M F, Fleck N A. Foam Topology Bending versus Stretching Dominated Architectures[J]. Acta Materilia, 2001, 49: 1035~1040.
    [47]肖加余,江大志,曾竟成.超轻质点阵复合材料结构研究进展[C].张家界:中国航天第十三专业信息网2008年技术交流会论文集, 2008: 7~12.
    [48]范华林,杨卫.轻质高强点阵材料及其力学性能研究进展[J].力学进展, 2007, 37(1): 99~112.
    [49] Fan H L, Yang W, Wang B, et al. Design and Manufacturing of a Composite Lattice Structure Reinforced by Continuous Carbon Fibers[J]. Tsinghua Science and Technology, 2006, 11(5): 515~522.
    [50]范华林,杨卫,方岱宁,等.新型碳纤维点阵复合材料技术研究[J].航空材料学报, 2007, 27(1): 46~50.
    [51] Deshpande V S, Fleck N A, Ashby M F. Effective Properties of the Octet-Truss Lattice Material[J]. Journal of the Mechanics and Physics of Solids, 2001, 49:1747~1769.
    [52] Wadley H N G. Cellular Metals Manufacturing[J]. Advanced Engineering Materials, 2002, (10): 726~733.
    [53] Hutchinson R G, Fleck N A. The Structural Performance of the Periodic Truss[J]. Journal of the Mechanics and Physics of Solids, 2006, 54: 756~782.
    [54] Wallach J C, Gibson L J. Mechanical Behavior of a Three-Dimensional Truss Material[J]. International Journal of Solids and Structures, 2001, 38: 7181~7196.
    [55] Wadley H N, Fleck N A, Evans A G. Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures[J]. Composite Science and Technology, 2003, 63: 2331~2343.
    [56] Sugimura Y. Mechanical Response of Single-Layer Tetrahedral Trusses under Shear Loading[J]. Mechanics of Materials, 2004, 36: 715~721.
    [57] Brittain S T, Sugimura Y, Schueller O J A, et al. Fabrication and Mechanical Performance of a Mesoscale Space-Filling Truss System[J]. Journal of Microelectromechanical System, 2001, 10(1): 113~120.
    [58] Noor A K. Continuum Modeling of Repetitive Lattice Structures[J]. Applied Mechanical Reviews, 1988, 41: 285~296.
    [59] Abrate S. Continuum Modeling of Latticed Structures[J]. Shock and Vibration Digest, 1985, 17(1): 15~21.
    [60] Abrate S. Continuum Modeling of Latticed Structures[J]. Shock and Vibration Digest, 1988, 20(10): 3~8.
    [61] Abrate S. Continuum Modeling of Latticed Structures: Part III[J]. Shock and Vibration Digest, 1991, 23(3): 16~21.
    [62] Fan H L, Yang W. An Equivalent Continuum Method of Lattice Structures[J]. Acta Mechanica Solida Sinica, 2006, 19(2): 103~113.
    [63] Fan H L, Jin F N, Fang D N. Nonlinear Mechanical Properties of Lattice Truss Materials[J]. Materials and Design, 2009, 30: 511~517.
    [64] Wang A J, McDowell D L. In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs[J]. ASME Journal of Engineering Materials and Technology, 2004, 126: 137~156.
    [65] Hohe J, Beschorner C, Becker W. Effective Elastic Properties of Hexagonal Quadrilateral Grid Structures[J]. Composite Structures, 1999, 46: 73~89.
    [66] Bouwhuis B A, Tang S K, Hibbard G D. Process-Microstructure-Property Relationship in AA3003 Expanded Metal Periodic Truss Cores[J]. Composite: Part A, 2008, 39: 1556~1564.
    [67] Yan J, Cheng G D, Liu S T, et al. Comparison of Prediction on Effective Elastic Property and Shape Optimization of Truss Material with Periodic Microstructure[J]. International Journal of Mechanical Sciences, 2006, 48: 400~413.
    [68] Liu L, Yan J, Cheng G D. Optimum Structure with Homogeneous Optimum Truss-Like Material[J]. Computers and Structures, 2008, 86: 1417~1425.
    [69] Kooistra G W, Deshpande V S, Wadley H N G. Compressive Behavior of Age Hardenable Tetrahedral Lattice Truss Structures made from Aluminium[J]. Acta Materialia, 2004, 52: 4229~4237.
    [70] Deshpande V S, Fleck N A. Collapse of Truss Core Sandwich Beams in 3-Point Bending[J]. International Journal of Solids and Structures, 2001, 38: 6275~6305.
    [71] Zhou J, Shrotiriya P, Soboyejo W O. On the Deformation of Aluminum Lattice Block Structures from Struts to Structures[J]. Mechanics of Materials, 2004, 26: 723~737.
    [72] Wang J, Evans A G, Dharmasena K, et al. On the Performance of Truss Panels with Kagome Cores[J]. International Journal of Solids and Structures, 2003, 40(25): 6989~6998.
    [73] Fan H L, Fang D N, Jing F N. Yield Surfaces and Micro-Failure Mechanism of Block Lattice Truss Materials[J]. Materials and Design, 2008, 29: 2038~2042.
    [74] Mohr D. Mechanism-Based Multi-Surface Plasticity Model for Ideal Truss Lattice Materials[J]. International Journal of Solids and Structures, 2005, 42(11~12): 3235~3260.
    [75] Wallach J C, Gibson L J. Defect Sensitivity of a 3D Truss Material[J]. Scripta Materialia, 2001, 45: 639~644.
    [76] Queheillalt D T, Wadley H N G. Cellular Metal Lattice with Hollow Truss[J]. Acta Materialia, 2005, 53: 303~313.
    [77] Lim J H, Kang K J. Mechanical Behavior of Sandwich Panels with Tetrahedral and Kagome Truss Cores Fabricated from Wires[J]. International Journal of Solids and Structures, 2006, 43: 5228~5246.
    [78] Liu T, Deng Z C, Lu T J. Design Optimization of Truss-Cored Sandwiches with Homogenization[J]. International Journal of Solids and Structures, 2006, 43: 7891~7918.
    [79] Moongkhamklang P, Elzey D M, Wadley H N G. Titanium Matrix Composite Lattice Structures[J]. Composite: Part A, 2008, 39: 176~187.
    [80] Lee B K, Kang K J. A Parametric Study on Compressive Characteristics of Wire-Woven Bulk Kagome Truss Cores[J]. Composite Structures, 2010, 92: 445~453.
    [81] Wicks N, Hutchinson J W. Optimal Truss Plates[J]. International Journal of Solids and Structures, 2001, 38(30~31): 5165~5183.
    [82] Wicks N, Hutchinson J W. Performance of Sandwich Plates with Truss Cores[J]. Mechanics of Materials, 2004, 36(8): 739~751.
    [83] Chiras S, Mumm D R, Evans A G, et al. The Structural Performance of Near-Optimized Truss Core Panels[J]. International Journal of Solids andStructures, 2002, 39(15): 4093~4115.
    [84] Liu J S, Lu T J. Multi-Objective and Multi-Loading Optimization of Ultralightweight Truss Materials[J]. International Journal of Solids and Structures, 2004, 41: 619~635.
    [85] Fan H L, Meng F H, Yang W. Mechanical Behaviors and Bending Effects of Carbon Fiber Reinforced Lattice Materials[J]. Architectural Applied Mechanics, 2006, 75: 635~647.
    [86] Reddy A D. Behavior of Continuous Filament Advanced Composite Isogrid Structure[D]. Altanta, US: Georgia Institute of Technology, 1980: 1~2.
    [87]余同希.关于“多胞材料”和“点阵材料”的一点意见[J].力学与实践, 2005, 27(3): 90.
    [88] Fan H L, Jin F N, Fang D N. Uniaxial Local Buckling Strength of Periodic Lattice Composites[J]. Materials and Design, 2009, 30: 4136~4145.
    [89]范华林,孟凡颢,杨卫.碳纤维格栅结构力学性能研究[J].工程力学, 2007, 24(5): 42~46.
    [90] Hou A, Gramoll K. Compressive Strength of Composite Lattice Structures[J]. Journal of Reinforced Plastics and Composites, 1998, 17(5): 462~483.
    [91] Vasiliev V V, Barynin V A, Rasin A F. Anisogrid Lattice Structures-Survey of Development and Application[J]. Composite Structrues, 2001, 54: 361~370.
    [92] Kidane S. Buckling Analysis of Grid Stiffened Composite Structures[D]. Louisiana, US: Louisiana State University, 2002.
    [93] Fan H L, Meng F H, Yang W. Sandwich Panels with Kagome Lattice Cores Reinforced by Carbon Fibers[J]. Composite Structures, 2007, 81: 533~539.
    [94] Tsai S W, Liu K S, Manne P M. Manufacture and Design of Composite Grids[J]. Materials de Construction, 1997, 47(247/248): 59~71.
    [95] Kim T D. Fabrication and Testing of Composite Isogrid Stiffened Cylinder[J]. Composite Structures, 1999, 45: 1~6.
    [96] Kim T D. Fabrication and Testing of Thin Composite Isogrid Stiffened Panel[J]. Composite Structures, 2000, 49: 21~25.
    [97] Huybrechts S M, Meink T E, Wegner P M, et al. Manufacturing Theory for Advanced Grid Stiffened Structures[J]. Composite: Part A, 2002, 33: 155~161.
    [98] Vailiev V V, Razin A F. Anisogrid Composite Lattice Structures for Spacecraft and Aircraft Applications[J]. Composite Structrues, 2006, 76: 182~189.
    [99] Han D Y, Tsai S W. Interlocked Composite Grids Design and Manufacturing[J]. Journal of Composite Materials, 2003, 37(4): 287~316.
    [100] Hicks M T. Design of a Carbon Fiber Composite Grid Structure for the GLAST Spacecraft Using a Novel Manufacturing Technique[D]. Stanford, US: Stanford University, 2001.
    [101] Chen H J, Tsai S W. Analysis and Optimum Design of Composite Grid Structures[J]. Journal of Composite Materials, 1996, 30(4): 503~534.
    [102] Colwell T B. The Manufacturing and Application of Composite Grid structure[D]. Stanford, US: Stanford University, 1996.
    [103] Wodesenbet E, Kidane S, Pang S S. Optimization for Buckling Loads of Grid Stiffened Composite Panels[J]. Composite Structures, 2003, 60: 159~169.
    [104] Jadhav P, Mantena P R. Parametric Optimization of Grid-Stiffened Composite Panels for Maximizing their Performance under Transverse Loading[J]. Composite Structures, 2007, 77: 353~363.
    [105] Akl W, El-Sabbagh A, Baz A. Optimizaiton of the Static and Dynamic Characteristic of Plates with Isogrid Stiffeners[J]. Finite Elements in Analysis and Design, 2008, 44: 513~523.
    [106] Chen Y, Gibson R F. Analytical and Experimental Studies of Composite Isogrid Structures with Integral Passive Damping[J]. Mechanics of Advanced Materials and Structures, 2003, 10: 127~143.
    [107] Maricherla D. Advanced Grid Stiffened Composite Structures[D]. Louisiana, US: Louisiana State University, 2005.
    [108] Sekine H, Atobe S. Identificaiton of Locations and Force Histories of Multiple Point Impacts on Composite Isogrid-Stiffened Panels[J]. Composite Structures, 2009, 89: 1~7.
    [109] Slinchenko D, Verijenko V E. Structural Analysis of Composite Lattice Shells of Revolution on the Basis of Smearting Stiffness[J]. Composite Structures, 2001, 54: 341~348.
    [110]周涛.二维网格复合材料点阵结构及其刚度与强度分析[D].长沙:国防科学技术大学, 2007.
    [111]张昌天.二维点阵复合材料结构的制备与性能[D].长沙:国防科学技术大学, 2008.
    [112] Zhang B M, Zhang J F, Wu Z J, et al. A Load Reconstruction Model for Advanced Grid-Stiffened Composite Plates[J]. Composite Structures, 2008, 82: 600~608.
    [113]章继峰,张博明,杜善义.平板型复合材料格栅结构的增强改进与参数设计[J].复合材料学报, 2006, 23(3): 153~157.
    [114] Zhang Z F, Chen H R, Ye L. Progressive Failure Analysis for Advanced Grid Stiffened Composite Plates/Shells[J]. Composite Structures, 2008, 86: 45~54.
    [115]张志峰,陈浩然,白瑞祥.含初始缺陷复合材料格栅加筋圆柱壳的鲁棒优化设计[J].固体力学学报, 2006, 27(1): 58~64.
    [116]白瑞祥,王蔓,陈浩然.含损伤复合材料AGS板的屈曲特性[J].复合材料学报, 2005, 22(4): 136~141.
    [117]白瑞祥,李泽成,陈浩然.基于累积失效法的含损伤格栅加筋板非线性屈曲状态分析[J].力学季刊, 2006, 27(2): 240~246.
    [118] Darooka D K, Jensen D W. Advanced Space Structure Concepts and Their Development[R]. American Institute of Aeronautics and Astronautics, AIAA-2001-1257, 2001: 1~10.
    [119] IsoTruss Structure, Inc. Technical Overview of IsoTrussTM Technology[R]. Technical Report from IsoTruss Structure Company, 2002: 10~11.
    [120] http://www.isotruss.org/index.htm, 2004-10-28/2010-12-23.
    [121] Carroll T S. Predicted Residual Strength of Damaged IsoTruss? Structures[D]. Provo, US: Brigham Young University, 2006.
    [122] Keene M A. IsoTruss Structures[R]. Utah, US: Centers of Excellence, Annual Report, 2002: 15~18.
    [123] Maneepan K. Genetic Algorithm Based Optimisation of FRP Composite Plates in Ship Structures[D]. Southampton, UK: University of Southampton, 2007: 23~27.
    [124] Almeida F S, Awruch A M. Design Optimization of Composite Laminated Structures using Genetic Algo rithm and Finite Element Analysis[J]. Composite Structures, 2009, 88: 443~454.
    [125] Paluch B, Grédiac M, Faye A. Combing a Finite Element Programme and a Genetic Algorithm to Optimize Composite Structures with Variable Thickness[J]. Composite Structures, 2008, 83: 284~294.
    [126] Jaunky N, Knight N F, Ambur D R. Optimal Design of General Stiffened Composite Circular Cylinders for Global Buckling with Strength Constraints[J]. Composite Structures, 1998, 41: 243~252.
    [127] Ambur D R, Jaunky N. Optimal Design of Grid-Stiffened Panels and Shells with Variable Curvature[J]. Composite Structures, 2001, 52: 173~180.
    [128] António C C. Optimisation of Geometrically Non-linear Composite Structures Based on Load-Displacement Control[J]. Composite Structures, 1999, 46: 345~356.
    [129] António C C. A Hierarchical Genetic Algorithm for Reliability Based Design of Geometrically Non-linear Composite Structures[J]. Composite Structures, 2001, 54: 37~47.
    [130] Walker M, Smith R E. A Technique for the Multiobjective Optimisation of Laminated Composite Structures Using Genetic Algorithms and Finite Element Analysis[J]. Composite Structures, 2003, 62: 123~128.
    [131] Seresta O, Gürdal Z, Adams D B, et al. Optimal Design of Composite Wing Structures with Blended Laminates[M]. Composite: Part B, 2007, 38: 469~480.
    [132] Khuri A I, Cornell J A. Response Surfaces: Design and Analyses[M]. New York,US: Marcel Dekker, Inc., 1996.
    [133] Carley K M, Kamneva N Y, Reminga J. Response Surface Methodology[R]. Pittsburgh, US: Carnegie Mellon University, 2004.
    [134] Jones D R. A Taxonomy of Global Optimization Methods Based on Response Surfaces[J]. Journal of Global Optimization, 2001, 21: 345~383.
    [135] Abouhamze M, Shakeri M. Multi-Objective Stacking Sequence Optimization of Laminated Cylindrical Panels Using a Genetic Algorithm and Neural Networks[J]. Composite Structures, 2007, 81: 253~263.
    [136] Amago T. Sizing Optimization Using Response Surface Method in FOA[R]. R&D Review of Toyota CRDL, 2002, 37(1): 1~7.
    [137] Abu-Odeh A Y, Jones H L. Optimum Design of Composite Plates Using Response Surface Method[J]. Composite Structures, 1998, 43: 233~242.
    [138] Lee Y J, Lin C C. Regression of the Response Surface of Laminated Composite Structures[J]. Composite Structures, 2003,62: 91~105.
    [139] Todoroki A, Ishikawa T. Design of Experiments for Stacking Sequence Optimizations with Genetic Algorithm Using Response Surface Approximation[J]. Composite Structures, 2004, 64: 349~357.
    [140] Blom A W, Strickler P B, Gürdal Z. Optimization of a Composite Cylinder under Bending by Tailoring Stiffness Properties in Circumferential Direciton[J]. Composites: Part B, 2010, 41: 157~165.
    [141] Lanzi L, Giavotto V. Post-Buckling Optimization of Composite Stiffened Panels: Computations and Experiments[J]. Composite Structures, 2006, 73: 208~220.
    [142] Rikards R, Abramovich H, Kalnins K, et al. Surrogate Modeling in Design Optimization of Stiffened Composite Shells[J]. Composite Structures, 2006, 73: 244~251.
    [143] LénéF, Duvaut G, Olivier-MailhéM, Chaabane S B, et al. An Advanced Methodology for Optimum Design of a Composite Stiffened Cylinder[J]. Composite Structures, 2009, 91: 392~397.
    [144] Hurez A, Akkus N, Verchery G, et al. Design and Analysis of Composite Structures with interlaced fibers[J]. Composites, 2001, 32A(10): 1455~1463.
    [145] Black S. A Grid-Stiffened Alternative to Core Laminates[J]. High Performance Composites, 2002, 3: 48~51.
    [146] Rackliffe M E. Development of Ultra-Lightweight IsotrussTM Grid Structures[D]. Provo, US: Brigham Young University, 2002.
    [147] Hansen S M. Influence of Consolidation and Interweaving on Compression Behavior of IsotrussTM[D]. Provo, US: Brigham Young University, 2004.
    [148] Weaver T J. Mechanical Characterization of a Graphite/Epoxy IsoTrussTM Subject to Simple and Biaxial Loads[D]. Provo, US: Brigham Young University, 1999.
    [149] McCune A M. Tension and Compression of Carbon/Epoxy IsoTrussTM Grid Structure[D]. Provo, US: Brigham Young University, 2001.
    [150] Keller B S. Tension, Torsion, and Flexure of an IsoTrussTM with and Integral Cylindrical End[D]. Provo, US: Brigham Young University, 2002.
    [151]孙伟.预应力钢桁架结构的设计与极限承载力分析[J].河北工程大学学报(自然科学版), 2009, 26(1): 46~50.
    [152] Pfeil M S, Teixeira A M A J, Battista R C. Experimental Tests on GFRP Truss Modules for Dismountable Bridges[J]. Composite Structures, 2009, (89): 70~76.
    [153] Earl J S. Concrete Columns Reinforced with Advanced Composite Grid Structure[D]. Provo, US: Brigham Young University, 1998.
    [154] Jones L S. Flexural Behavior of Spirally-Consolidated Double IsoTrussTM Reinforced Concrete Beams[D]. Provo, US: Brigham Young University, 2000.
    [155] Hancock M D. Compression of Concrete Columns Externally Reinforced with Composite Grids[D]. Provo, US: Brigham Young University, 2001.
    [156] Jarvis D. Development of a Rectangular IsoTrussTM for Reinforced Concrete Beams[D]. Provo, US: Brigham Young University, 2001.
    [157] Ferrell M J. Flexural Behavior of Carbon/Epoxy IsoTruss?-Reinforced Concrete Beam-Columns[D]. Provo, US: Brigham Young University, 2005.
    [158] Richardson S. In-Situ Testing of a Carbon/Epoxy IsoTruss Reinforced Concrete Foundation Pile[D]. Provo, US: Brigham Young University, 2006.
    [159] Weaver T J, Jensen D W. Mechanical Characterization of a Graphite/Epoxy Isotruss[J]. Journal of Aerospace Engineering, 2000, 13(1): 23~35.
    [160] Winkel L. Parametric Investigation of IsoTrussTM Geometry Using Linear Finite Element Analysis[D]. Provo, US: Brigham Young University, 2001.
    [161] Rackliffe M E, Jensen D W, Lucas W K. Local and Global Buckling of Ultra-Lightweight IsoTruss? Structures[J]. Composite Science and Technology, 2006, 66: 283~288.
    [162] Scoresby B F. Low-Velocity Longitudinal and Radial Impact of IsoTrussTM Grid Structures[D]. Provo, US: Brigham Young University, 2003.
    [163] Kesler S L. Consolidation and Interweaving of Composite Members by a Continuous Manufacturing Process[D]. Provo, US: Brigham Young University, 2006.
    [164] Kollar L P, Springer G S. Mechanics of Composite Structrues[M]. New York: Cambridge University Press, 2003.
    [165]丁惠梁,沈真,樊发芬,等译.空间结构用复合材料设计手册(欧洲航天局)[M].北京:怀柔黄坎印刷厂, 1992: 34~49.
    [166]单辉祖.材料力学(I)[M].北京:高等教育出版社, 2004: 303.
    [167] GB/T1463-2005,纤维增强塑料密度和相对密度试验方法[S].
    [168] GB/T9914.2-2001,增强制品试验方法第2部分:玻璃纤维可燃物含量的测定[S].
    [169] GB/T3366-1996,碳纤维增强塑料纤维体积含量试验方法[S].
    [170]陈祥宝.聚合物基复合材料手册[M].北京:化学工业出版社, 2004: 121~428.
    [171]李顺林,王兴业.复合材料结构设计基础[M].武汉:武汉理工大学出版社, 2003: 8~13.
    [172] ANSYS Help Documentation/Nonlinear Structural Analysis/Tips and Guidelines for Nonlinear Analysis[Z]. US: ANSYS Inc., 2007.
    [173] Karakuzu R, Taylak N, ??ten B M, et al. Effects of Geometric Parameters on Failure Behavior in Laminated Composite Plates with Parallel Pin-Loaded Holes[J]. Composite Structures, 2008, 85: 1~9.
    [174] António C C, Hoffbauer L N. From Local to Global Importance Measures of Uncertainty Propagation in Composite Structures[J]. Composite Structures, 2008, 85: 213~225.
    [175] António C C, Hoffbauer L N. An Approach for Reliability-Based Robust Design Optimisation of Angle-Ply Composites[J]. Composite Structures, 2009, 90: 53~59.
    [176] Chen N Z, Sun H H, Soares C G. Reliability Analysis of a Ship Hull in Composite Material[J]. Composite Structures, 2003, 62: 59~66.
    [177] Youssif Y G. Non-linear Design and Control Optimization of Composite Laminated Doubly Curved Shell[J]. Composite Structures, 2009, 88: 468~480.
    [178] Box G E P, Wilson K B. On the Experimental Attainment of Optimum Conditions (with Discussion)[J]. Journal of the Royal Statistical Society, 1951, B13(1): 1~45.
    [179] Myers R H, Montgomery D C. Response Surface Methodology[M]. US: John Wiley & Sons, Inc., 1995.
    [180] Harrison P N, LeRiche R, Haftka R T. Design of Stiffened Composite Panels by Genetic Algorithms and Response Surface Approximations[C]. New Orleans, LA: 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1995: 58~68.
    [181] Matlab Help Documentation/Statistics Toolbox/Regression Analysis[Z]. US: The MathWorks, Inc., 2007.
    [182] Park J S, Jung S N, Lee M K, et al. Design Optimization Framework for Tiltrotor Composite Wings Considering Whirl Stability[J]. Composite: Part B, 2010, 41: 257~267.
    [183] El-Sheikh A. Effect of Member Length Imperfections on Triple-Layer Space Trusses[J]. Engineering Structures, 1997, 19(7): 540~550.
    [184] Huybrechts S, Tsai S W. Analysis and Behavior of Grid Structures[J]. Composites Science and Technology, 1996, 56: 1001~1015.
    [185] Liu K S, Tsai S W. A progressive quadratic failure criterion for a laminate[J]. Composites Science and Technology, 1998, 58: 1023~1032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700