用户名: 密码: 验证码:
动压作用下乳化炸药减敏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微差爆破作业过程中,乳化炸药常常会发生压力减敏现象,表现为爆轰性能下降,半爆或拒爆现象,尤其是在炮孔间距较小、水下爆破和矿井有淋水工作面时,这种现象就更加显著。乳化炸药发生减敏会使后续爆破和施工更加困难,使工期延误,影响施工进度,尤其是发生拒爆时,在盲炮的处理上技术比较复杂,危险性大,容易造成人身伤亡事故。因此,研究乳化炸药的减敏机理,减少和避免减敏现象的发生,对于保证正常爆破工程作业,促进乳化炸药的推广和应用具有重要的意义。
     本文利用水下爆炸测试系统,设计了乳化炸药在动态压力作用下的受压减敏方法,测试了敏化剂的含量和种类、乳化剂含量和种类对乳化炸药减敏程度的影响,利用水溶法测量了乳化炸药在动压作用后析晶量的变化,利用电导法测量了乳化炸药受压前后电导率的变化,用显微镜对乳化炸药在受压前后微观结构的变化进行了观测,并用激光粒度分析仪分析敏化剂玻璃微球在受压前后粒径的大小。研究结果表明,敏化剂的种类和含量对乳化炸药的减敏程度有重要的影响,玻璃微球敏化的乳化炸药的抗动压性能要优于膨胀珍珠岩敏化的乳化炸药,在保证乳化炸药正常爆轰的情况下,适当降低乳化炸药中敏化剂的含量,可以使乳化炸药的析晶量减少,抗动压性能增加,适当提高乳化剂的含量可以提高乳化炸药的抗动压性能,不同乳化剂乳化的乳化炸药,其抗动压性能不同等。
     本文在实验的基础上对乳化炸药在动压作用下的减敏机理进行了分析和探讨,认为乳化炸药在动压作用后,敏化气泡载体的破坏和微观结构的变化是造成乳化炸药减敏的主要原因,有效气泡数量的减少及气泡破裂后对乳化炸药界面膜的破坏使乳化炸药爆炸性能降低,微观结构破坏主要表现在乳胶颗粒发生聚集,破乳和析晶,乳胶颗粒的粒径变大,从而使乳化炸药爆轰性能下降,发生减敏现象。
Pressure desensitization of emulsion explosives often occur during the millisecond blasting, which behaves as detonation performance decreasing, half explosion or misfire, especially, the phenomenon is more significant with the blast hole span small relatively, underwater blasting and the water trickling working face of mine shaft. It will make subsequent blasting and construction more difficult, make construction period delay, and effect the progress after the desensitization occurs of emulsion explosive, especially, when the misfire occurs, the dealing means is relatively complex in the misfired charge treatment and casualty accidents easily happen. So it is very important to research on the desensitization mechanism of emulsion explosive in order to decrease or avoid the desensitization, ensure normal blasting operation and promote the popularization and application of emulsion explosive.
     Using underwater explosion test system in this paper, the experimental method was designed to research on the desensitization of emulsion explosive under dynamic pressure. The content and type about sensitization agent and emulsifier were measured; the effects on the desensitization degree of emulsion explosive were discussed. The crystallization quantity of emulsion explosive was measured by water dissolution under dynamic fore-and-aft. And the variation of electrical conductivity was also measured by conductivity method. Microstructure was observed by microscope after emulsion explosive was pressed or not, and the particle size of GMB (glass micro-balloon) was tested by laser particle analyzer. The results of research show that the type and content of sensitization agent have an important effect on desensitization degree of emulsion explosive, the performance of dynamic pressure resistance of GMB is better than that of expanded perlite. So if the sensitization agent content decreases appropriately in the case of ensuring emulsion explosive detonation normally. It can make crystallization quantity of emulsion explosive decrease and make the performance of dynamic pressure resistance increase. The performance of dynamic pressure resistance can be improved if the emulsifier content increases and the performance of pressure resistance will be difference if the type of emulsifier is difference, etc.
     The desensitization mechanism of emulsion explosive was analyzed and discussed under dynamic pressure based on the experiment in this paper. It is believed that the main reasons on desensitization of emulsion explosive are the destruction of sensitization bubble carriers and variation of microstructure under dynamic pressure. It makes detonation performance decrease that effective bubbles decrease and destruction of interfacial film which caused by bubble carrier breakdown. Destructions of microstructure show that colloidal particles occurs aggregation, demulsification, crystallization, and colloidal particle sizes increase, it makes detonation performance of emulsion explosive decrease, and occur desensitization.
引文
[1]汪旭光.乳化炸药[M].北京:冶金工业出版社,2008,4.
    [2]陈积松.我国乳化炸药的新进展[J].金属矿山.1996,(1):5-7.
    [3]宋敬埔,吴红梅.我国乳化炸药的研究近况及发展建议[J].爆破器材.2003,32(4):5-10.
    [4]杨光熙.常用工业炸药在水下工程爆破中的应用[J].爆破器材应用学术交流会.1986,6:1-1.
    [5]杨继光.露天深孔爆破中乳化炸药拒爆的分析[J].爆破器材应用学术交流会.1986,6:1-4.
    [6]解立峰.乳化炸药受压钝化问题的探讨[J].爆破器材,1991,(2):6-9.
    [7]章国升,解立峰,耿宏银.乳化炸药受压钝化问题的初步实验研究[J].炸药与爆破,1989,(2):19-22.
    [8]S.Nie.贯荔译.乳化炸药的压力减敏作用[J].爆破器材.1994,23(2):35-37.
    [9]Mullay, J. John, Sohara, et al. High emulsifier content explosives. U. S. Patent number:4933028. 1990.6.12.
    [10]Mullay, J. John, Farkas, et al张少波译.一种抗受压钝化乳化炸药[J].爆破器材.1993,22(3):35-37.
    [11]M.S. Wieland许用炸药对于动压钝化的相对感度[J].爆破器材,1987,(1):33-36.
    [12]王尹军.乳化炸药压力减敏的实验研究与机理分析[D],北京科技大学,2006.
    [13]F. Sumiya, K. Tokita, M. Nakano, et al. Experimental study on the channel effect in emulsion explosives. Journal of Materials Processing Technology.1999, (85):25-29.
    [14]F. Sumiya, Y. Hirosaki, Y. Kato, et al. Photographic study of channel effect in emulsion explosives using high-speed framing camera. Ultrahigh and high-speed photography and image-based motion measurement. San Diego, California.1997:6-26.
    [15]F. Sumiya, Y. Hirosaki, Y. Kato, et al. Detonation velocity of precompressed emulsion explosives. Proceedings of the twenty-eighth annual conference on explosives and blasting technique. Las Vegas, Nevada, U.S.A.2002,(Ⅱ):253-263.
    [16]V. K. Mohan, J.E. Field, G.M. Swallowe. High-speed photographic studies of impact on thin layers of emulsion explosive. Propellants, Explosives, Pyrotechnics.1984,9(3):77-81.
    [17]颜事龙,陈东梁,王尹军.动态压力对乳化炸药分散相粒径变化和减敏效应的影响[J].煤炭学报,2004,29(6):676-679.
    [18]陈东梁,颜事龙,刘义等,动压作用下乳化炸药微结构变化的实验[J].煤炭学报,2006,31(3):287-291.
    [19]Liu Q, tidman P, Tunaley D, et al. Observation of the shock resistance of emulsion explosives in rock blasting [C].Proceedings of the 11th Symposium on Explosion and Blasting Research. Lasvegas: International Society of Explosives Engineers,1997,161-172.
    [20]T. Matsuzawa, M. Murakami. Detonability of emulsion explosives under dynamic pressure. Journal of the industrial explosives society (Japan).1982,43(5):317-322.
    [21]陈士海.爆破时炸药钝化效应的探讨[J].炸药与爆破.1992,(3):35-37.
    [22]M.S. Wieland煤矿炸药的钝化与失效[J].炸药与爆破.1988,(1):1-13.
    [23]M.S.威兰德.许用炸药受动压钝化的相对感度.炸药与爆破.1990,(1):35-39.
    [24]松本荣,田中雅夫[日].韩学波译.关于含水炸药在加压下的爆轰及复原性研究.爆破器材[J].1987,(1):36-39.
    [25]Q. Liu. The concept of explosives malfunctioning in rock blasting. Proceedings of the tenth symposium on explosives and blasting research.1994:51-62.
    [26]杨民钢.静压力对乳化炸药性能影响的试验研究[J].爆破器材.1994,(2):1-4.
    [27]刘学强.乳化炸药静压下的爆轰和复原性研究[C].全国工程爆破第五届学术会议论文选.中国地质大学出版社.1993:319-321.
    [28]米悉尔,德米西,比古尔,由压缩引起的降解作用[J].段鲁西译.炸药与爆破,1998(1):14-17.
    [29]S. Matsumoto, M. Tanaka. Detonation properties of slurry explosives under enhanced ambient pressure [J]. Journal of the industrial explosives society (Japan).1982,43(5):329-334.
    [30]R. J.Mainiero, M. S.Wieland. The relationship between hole spacing and misfires of permissible explosives[C]. Proceedings of the second mini-symposium on explosives and blasting research.Atlanta, Georgia, USA,1986:16-27.
    [31]M.S. Wieland炸药受压钝化的性能恢复试验[J].炸药与爆破.1992,(1):8-13.
    [32]T. Matsuzawa, M. Murakami, Y. Ikeda. Dymamic shock tests for dynamite slurry and emulsion explosive[C]. Proceedings of the ninth conference on explosives and blasting technique.1983: 370-386.
    [33]S. Yan, Y. Wang, Y. Liu. Research on the relationship between water-based explosive desensitization and delay time under dynamic[C].The seventh international symposium on rock fragmentation by blasting.2002:88-92.
    [34]王尹军,汪旭光,于亚伦等.两种含水炸药动压作用下减敏作用的实验研究[J].工程爆破, 2003,9(4):67-71.
    [35]S.Nie.乳化炸药的压力减敏作用.第四届国际岩石爆破破碎学术会议论文集[C].
    [36][日]青木章哲,田中满,安部隆幸等.含水炸药力学性质的研究[J].炸药与爆破.1988,(1):18-41.
    [37]Lawrence, D. Lawrence, Sudweeks, et al张海新译.抗冲击低密度乳化炸药[J].爆破器材.1993,(5):35-38.
    [38]Sudweeks, B. Walter, Stock, et al. Slurry explosive with high strength hollow spheres. U.S. Patent number:4474628.1984.10.2.
    [39]Lawrence, D. Lawrence, Sudweeks, et al. Shock-resistant, low density emulsion explosive. U. S. Patent number:5017251.1991.5.21.
    [40]Mullay, J. John, Farkas, et al. Precompression resistant emulsion explosive. U. S. Patent number: 5507889.1996,4.16.
    [41]Mullay, J. John, Sohara, et al. High emulsifier content explosives. U. S. Patent number:4933028. 1990,6.12.
    [42]刘义.乳化炸药减敏机理的研究[D](硕士论文).安徽理工大学.2003.
    [43]颜事龙,张少波,刘义.煤矿许用乳化炸药动态压力下减敏的研究[J].安徽理工大学学报(自然科学版).2003,(3):27-31.
    [44]王尹军,汪旭光,颜事龙.乳化剂含量与乳化炸药压力减敏关系[J].化工学报,2005,56(9):1809-1815.
    [45]刘锋,颜事龙,吴红波.冲击作用下乳化基质微观结构的变化[J].火工品,2008,25-28.
    [46]陈东梁,孙金华,颜事龙.动压下组分结构变化与乳化炸药减敏关系研究[J].含能材料,2006,14(4):302-305.
    [47]H. Zhang, F. Wang, S. Zhang. Microscopical and dynamic observation of impact on emulsion explosives [J]. Theory and Practice of Energetic.1996:410-415.
    [48]张寒虹,王峰,张少波.冲击载荷作用下乳化炸药微结构变化的显微观察[J].煤矿爆破.1995,(4):5-7.
    [49]M.S. Wieland. The relative sensitivity of permissible explosives to dynamic pressure desensitization[C]. Proc.21st Intl. Conf. Safety in Mines Research Inst. Sydney, Australia, Oct. 21-25,1985:168-179.
    [50]M.S. Wieland, The dynamic desensitization of coal mine explosives[C]. The 13th symposium on explosives and pyrotechnics, Franklin Research Center, Philadelphia, PA, Dec.2-4,1986:101-110.
    [51]S. Nie. Pressure desensitization of a gassed emulsion explosive in comparison with micro-balloon sensitized emulsion explosives. Proceedings of the thirteenth annual symposium on explosives and blasting research[C]. Lasvegas, Nevada, U.S.A. Publ. by:International Society of Explosives Engineers.1997:161-172.
    [52]王尹军,汪旭光,于亚伦,等.一种含水炸药动压下减敏作用的实验方法[J].工程爆破.2003,9(3):66-68.
    [53]颜事龙,陈东梁.不同敏化气泡载体乳化的乳化炸药减敏压力研究[J].兵工学报,2006,27(5):887-890.
    [54]陈东梁,颜事龙,薛里.动态压力作用下乳化炸药减敏的实验研究[J].安徽理工大学学报(自然科学版).2004,24(增刊):88-92.
    [55]吴红波,颜事龙,刘锋.敏化剂类型对乳化炸药减敏程度的影响[J].中国矿业,2007,16(7):94-97.
    [56]颜事龙,吴红波,刘锋.动压作用下乳化剂类型对乳化炸药减敏程度的影响[C].2010年火炸药技术学术研讨会论文集.2010,266-268.
    [57]吴红波,颜事龙,刘锋.动压作用下敏化剂的含量对乳化炸药减敏程度的影响[C].2010年火炸药技术学术研讨会论文集.2010,252-254.
    [58]吴红波,王尹军,颜事龙.乳化剂种类与乳化炸药压力减敏关系研究[J].火工品,2007,(8): 6-10.
    [59]吴红波,颜事龙,郭子如,刘锋.动压作用下乳化炸药减敏因素的实验探讨[J].火工品,2008,(4):16-19.
    [60]吴红波,颜事龙,刘锋.乳化基质抗动压性能的实验研究[J].火炸药学报,2008,3l(5):9-11.
    [61]WU Hongbo, YAN Shilong, LIU Feng. Influence of Fragmentation Degree of Glass Micro-balloons under Dynamic Pressure on Desensitization Degree of Emulsion Explosives[C]. Proceedings of the 2007 International Autumn Seminar on Propellants, Explosives and Pyrotechnics 2007,Xi'an:179-182.
    [62]WU Hongbo, YAN Shilong, LIU Feng. the Influence of Emulsifier on Desensitization Degree of Emulsion Explosives [C]. Proceedings of the 2009 International Autumn Seminar on Propellants, Explosives and Pyrotechnics 2009,kunming:179-182.
    [63]吴红波,颜事龙,刘锋.动压作用下敏化剂对乳化炸药破乳程度的影响[J].含能材料,2008,16(3):247-250.
    [64]YAN Shilong,WU Hongbo, LIU Feng. Influence of Sensitizing Method on Crystallization of Emulsion Explosive under Dynamic Pressure [C]. Proceedings of the 2009 International Autumn Seminar on Propellants, Explosives and Pyrotechnics 2009,kunming:179-182.
    [65]张阿慢,汪玉,闻雪友等.水下爆炸气泡特性研究总述[J]船舶力学,2009,13(5):828-840.
    [66]Geers T L. Doubly asymptotic approximations for transient motions of submerged structures [J].Journal of Comput. Phys.,2004,194:451-480.
    [67]DeRuntz J A. The underwater shock analysis code and its application[C]//proceedings of the 60th Shock and Vibration Symposium I,1989:89-107.
    [68]Hsiao C.T, Chahine G L. Numerical study of cafitation inception due to vortex/vortex interaction in a ducted propulsor [J].Journal of Ship Research,2008,52-114-123.
    [69]Cleveland R O, Sapozhnikov O.A. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy[J].Acoustical Science,2002,118:2667-2676.
    [70]Taleyarkhan R P, W est C D, Cho J S, Lahey R, Block R C. Evidence for nuclear emissions during a coustic cavitation[J]. Science,2002,295:1968-1873.
    [71]Benjamin T B, Ellis A T. Cavitation. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries[J].Philosophical Transactions of the Royal Society of Londen,1966,260:221-240.
    [72]Gbison D C. Cavitation adjacent to plane boundaries[C]//Proc 3rd Conf Hydraulic Fluids Mech. Syndey, P R, Austr Inst Eng.,1968:210-214.
    [73]Tomita Shima A, Takahashi K, the collapse of a gas bubble attached to a solid wall by a shock wave and the induced impact pressure[J].J Fluids Engngt,1983,105:341-349.
    [74]Shima A, Tomita Y, Gibson D C Blake J R. the growth and collapse of cavitation bubbles near composite surfaces [J], J Fluid Mech.,1989,203:199-214.
    [75]Klaseboer E, Hung K C,Wang C, Wang C W,Khoo B C, Boyce P, Debono S, Charlier H. Experimental and numerical investigation of the dynacics of an underwater explosion bubble near a resilient/rigid structure[J]J Fuid Mech.,2005,537:387-413.
    [76]Mitch ell T M, Hammitt F G. Asymmetric cavitation bubble collapse[J].J Fluids Engng, Trans ASME,1973,195:29-37.
    [77]Vogel A, Lauterborn W. Time-resolved particle image velocity used in the investigation of cavitation bubble dynamics[J].Applied Optics,1988,27(9):1869-1876.
    [78]Shima A, takayama K, Tomita Y.Mechanism of the bubble collapse near a solid wall and the induced impact pressure generation[J].Rep Inst. High Speed Mech.,1984,48:77-97.
    [79]Lauterborn W. Bolle H. Experimental investigations of cavitation-bubble in the neighbourhood of a solid boundary[J].J Fluid Mech.,1975,72:391-399.
    [80]Ishida, H,Nuntadusit C, Kimoto H. Cavitation bubble behavior near solid boundaries[J].Cav,2001,5(3):1-8.
    [81]Tipton R E, Steinberg D J, Tomita Y. Bubble explosion and collapse near a rigid wall[J].JSME Intl J Series Ⅱ.1992,35:67-75.
    [82]Boyce P,Debono S. Report of underwater explosion tests[R].Centre Technique Des Systeme Navals, France,2003
    [83]Tomita Y Shinta A. Interactive problems in bubble dynamics[J]Current Topics Acoust.,1994,Res.1:231-246.
    [84]牟金磊,朱锡,李海涛等.炸药水下爆炸能量输出特性试验研究[J].高压物理学报.2010,24(2):88-92.
    [85]颜事龙,张金城.工业炸药水下爆炸能量估算[J].爆破器材,1993,(2):1-4。
    [86]朱锡,牟金磊,洪江波,等.水下爆炸气泡脉动特性的实验研究[J]哈尔滨工程大学学报,2007,28(4):365-368.
    [87]饶国宁,陈网桦,胡毅亭等.不同炸药水下能量输出特性研究[J].,爆破器材,2007,36(1):9-11.
    [88]俞统香,王晓峰,王建灵.炸药的水下爆炸冲击波性能[J].含能材料,2003,11(4):182-186.
    [89]周霖,徐少辉,徐更光。炸药水下爆炸能量输出特性研究[J]。兵工学报,2006,27(2):235-238,
    [90]苏华,陈网桦,吴涛等.炸药水下爆炸冲击波参数的修正[J].火炸药学报,2004,27(2):235-238.
    [91]赵琳,李兵,闫吉杰,等炸药能量测试的水下爆炸方法[J].声学技术,2003,22(2):72-76.
    [92]王建灵,赵东奎等.水下爆炸能量测试中炸药入水深度的确定[J].火炸药学报.2002,(2):30-32.
    [93]H. Hideki, N. Shiro, I. Shigeru. Underwater explosion of emulsion explosive. American Society of Mechanical Engineering[C], Pressure Vessels and Piping Division (Publication). Sponsored by: ASME.1999:219-223.
    [94]P.Cole著.罗耀杰,等译.水下爆炸[M].北京:国防工业出版社.1965:137-161
    [95]Hrioaki Yamamoto, Hiromitsu Taniguchi, Hiromitsu Oshirna. Features of Pressure Wave in Water to accompany the underwater explosion [M].2002.
    [96]P. V. Satyavratan, R. Vedam陈正衡,等译.水下测试的若干问题[M].工业炸药测试新技术.1982:78-87.
    [97]P. Wollert-Johansen陈正衡,等译.奖状炸药的水下测试[J].工业炸药测试新技术.1982:61-70.
    [98]W. Christmann, P. Lingens陈正衡,等译.关于水下炸药能量测量标准化的讨论.工业炸药测试新技术[M].北京:煤炭工业出版社,1982:71-77.
    [99]G. Bjarnholt关于水下爆炸试验测量方法标准和数据计算标准的建议.陈正衡,等译.工业炸药测试新技术[M].北京:煤炭工业出版社,1982:88-103.
    [100]吕春绪.工业炸药理论[M].北京,兵器工业出版社,2003.
    [10l]张立.爆破器材性能育爆炸效应测试[M].合肥:中国科学技术出版社,2006.
    [102]郑孟菊,俞统昌,张银亮.炸药的性能及测试技术[J].北京:兵器工业出版社,1990.
    [103]孙金华,汪大力,徐皖育等.雷管水中爆炸输出的起爆能力判据[J].兵工学报,1996,17(1):16-20.
    [104]汪大立,张涛,张立,等.球形装药水下爆炸初始冲击波能量计算[J].淮南矿业学院学报.1995,15(3):47-51.
    [105]孙金华,汪大立,颜事龙,等.水下爆炸测试技术在爆破性能测试技术中的应用[J].淮南矿业学院学报.1994,14(2):50-54.
    [106]张立,陆守香,汪大立.有限水域中煤矿工业炸药爆炸能量的测试研究[J].煤炭学报,2001,26(3):272-278.
    [107]胡坤伦,李光,尤奎等.影响乳化炸药稳定性物理性能试验研究[J].15-17.
    [108]张立,孙锋,国志达.在有限水域炸药爆炸能量测试计算公式及VB程序[J].爆破器材,2000,29(1):5-8.
    [109]张立,章桥龙,郭进等.装药水下爆炸的气泡脉动参数研究[J].煤矿爆破,2005,2:5-8.
    [110]张立,张有勇,汪定国.水下爆炸实验水池的振动与减震措施[J].煤矿爆破,2002,3:13-16.
    [111]张立.水下爆炸用ICP压力传感器的动态标定[J].煤矿爆破,1999,3:7-10.
    [112]周传德.传感器与测试技术[M].重庆,重庆大学出版社.2009.
    [113]张立,汪大力.水下爆炸能测量消除边界效应的研究[J].爆破器材,1995,24(2):1-5.
    [114]张宝枰,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,1997.
    [115]A.Y. Isakov, V.I. Deminov. Physical model of processes preceding ignition of water-fuel emulsion droplets [J]. Combustion, Explosion, and Shock Waves.1986,22(6):654-658.
    [116]L.D. Lawrence, R.S. Dav, C. Gordon. Improved blast results with variable density, gassed emulsions[C]. Proceedings of the conference on explosives and blasting technique. Sponsored and Publ. by:Soc. of Explosives engineers.1990:257-267.
    [117]K. Takahashi, K. Murata, Y. Kato, et al. Non-ideal detonation of emulsion explosives [J]. Journal of Materials Processing Technology.1999,(85):52-55.
    [118]K. Takahashi, M. Fujita, M. Kojima, et al. On detonation properties of the emulsion ex-plosives [J]. Journal of the Japan Explosives Society.1997,58(5):196-201.
    [119]宋锦泉,汪旭光.膨胀珍珠岩敏化的乳化炸药爆速试验研究[J].爆破器材,2001,30(5):1-5.
    [120]宋锦泉,汪旭光,于亚伦等.玻璃微球敏化乳化炸药爆速特性[J].北京科技大学学报,2000,22(6):497-500.
    [121]梁文平.乳状液科学与技术基础[M].北京:科学出版社,2001.
    [122][关]P.贝歇尔.乳状液理论与实践.科学出版社.1978,179-189.
    [123]张少波.提高乳化炸药耐药性的探讨[J].煤炭爆破,1994,(2):25-27.
    [124]汪大立,徐国财.丁二酰亚胺乳化机理的探讨[J].爆破器材.1994,23(5):1-4.
    [125]周贵忠,潘朝蓬,于纲.聚酰胺胺(PAMAM)树形分子用作乳化炸药的稳定剂[J].火炸
    药学报.2001,(4):20-22.
    [126]尚昌华.乳化炸药稳定性探讨[J].爆破器材.1994,(4):15-19.
    [127]汀旭光,中英锋.乳化炸药结构与稳定性关系的研究[J].中国工程科学,2002,(2):24-29.
    [99][128]周贵忠.聚酰胺胺(PAMAM)树形分子的合成与研究[D].北京:北京理工大学,2000
    [129]Y. Hirosaki, T. Sawads, Y. Kato, at el. Detonation behaveior of emulsion explosives (Ⅱ):Optical ovservation of detonation front in emulsion explosives. Jounal of the Japan Explosive Society.2001,62(1):23-32.
    [130]陈志刚,杨荣杰.用高分子添加剂提高乳化炸药的贮存稳定性[J].北京理工大学学报.1999,(5): 651-655.
    [131]Y. Hirosaki, T. Sawads, Y. Kato, at el. Detonation behaveior of emulsion explosives (Ⅲ):On the critical charge diameter of the emulsion explosives sensitized with relatively large voids:Journal of the Japan Explosives Society.2001,62(1):32-38.
    [132]Y. Hirosaki, T. Sawads, Y. Kato, at el. Detonation behaveior of emulsion explosives (IV):The effects of void seze and quantity on the detonation pressure. Journal of the Japan Explosives Society. 2001,62(2):64-72.
    [133]Y. Hirosaki, T. Sawads, Y. Kato, at el. Detonation behavior of emulsion explosives containing large voids. Proceedings of the twenty-sixth annual conference of explosives and blasting technique. Anaheim California, U.S.A.2000,243-252.
    [134]H. Katsuhide, F. Yoshiaki, M. Nobuo, et al. Effect of particle size of miroballons on detonation velicity and sensitivity of emulsion explosives. Proceedings of the Symposium on Explosives and Pyrotechnics. Sponsored by Franklin Research Cent, Applied Physics Lab, Philadelphia, PA, U.S.A..1984,3-11.
    [135]吕春绪.乳化剂理论及其选择研究[J].爆破器材.1995,24(1):1-6.
    [136]王海波,李艳梅,刘德山.分散体系形成中表面活性剂使用量的判据[J].高等学校化学学报.2004,25(1):140-143.
    [137]王海波,刘德山,李艳梅.表面活性剂对分散体系粘度影响的特殊性[J].高等学校化学学报,2005,26(4):737-741.
    [138]陈全伦,何汉宏.细小乳状液的研制[J].印染助剂.2003,20(2):15-17.
    [139]滕威.抗冲击钝化乳化炸药的研究[J].煤矿爆破.2005,(1):5-8.
    [140]吴龙祥,金耀清.用乳化剂span-80与8045制备的乳化炸药稳定性浅析[J].爆破器材,1992,(2): 8-12.
    [141]陆明.工业炸药配方设计[M].北京:北京理工大学出版社,2002.
    [142]颜事龙,徐国财.丁二酰亚胺在乳化体系中的乳化机理[J].中国矿业大学学报,1999,28(4): 357-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700