用户名: 密码: 验证码:
微涡旋接触絮凝澄清器工艺过程优化分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水源污染和饮用水水质标准的提高是推动给水处理技术发展的最重要的驱动力。寻求新的饮用水安全保障技术以改进或替代水厂的处理工艺已是给水处理领域研究的重要内容。事实上,以澄清过滤为主的水常规处理工艺虽然主要功能是除浊,但是也有相当的除污染能力,因为水中有一部分非溶解性的有机污染物可以伴随浊度物质的去除而去除,一些溶解性的有机污染物也可能附着于浊度物质上而被去除。而且以混凝沉淀起主要作用,强化混凝是增强水处理系统去除有机物能力的关键。澄清工艺可以高效去除水中大分子的、憎水性的、腐殖质类的和吸收紫外线的有机物。因此,充分发挥常规工艺的除污染能力,减轻或省略专门的除污染工艺,无疑是经济、简便的除污染方法。近年来发达国家对饮用水的各项指标提出了日益严格的要求,并把强化水处理的絮凝过程和技术作为重要与紧迫的研究课题。
     课题从理论和试验两个方面对微涡旋接触絮凝澄清器的工艺过程进行了研究探索,通过分析混合、絮凝、沉淀过程的絮体与微涡旋的关系,絮凝过程中涡旋微尺度的变化情况以及澄清器的水力特点等,提出了全流程微涡旋水力澄清器的构想,通过理论分析和试验研究优化了工艺参数,使澄清器出水浊度≤1NTU。
     絮凝效果主要取决于涡旋尺度与涡旋强度,涡旋尺度越小,涡旋强度越大。通过对涡旋强度和涡旋微尺度理论计算公式的分析,得出了有效能量耗散ε与总能耗E的关系,从而可以利用公式λ=(v3/ε)1/4计算出絮凝反应过程中的涡旋微尺度λ值。澄清器(模型2)在翼片隔板絮凝区有效能耗ε=1.16W/m3,涡旋微尺度λ0=0.171×10-3m;澄清器(模型2)在接触絮凝悬浮反应区有效能耗ε=0.13 W/m3,涡旋微尺度λ0=0.296×10-3m。在絮凝过程中,采取了适当的分级以适应絮体不断长大,输入能量率相应减小以适应较大絮体继续结大的客观要求。
     试验表明微涡旋接触絮凝澄清器(模型2)在接触絮凝悬浮反应区内的雷诺数Re为1.4,说明在接触絮凝悬浮反应区中的絮凝状态属于微涡旋絮凝。
     微涡旋接触絮凝澄清器(模型2)在翼片隔板絮凝区内,絮体连续受到485s-1与95S-1速度梯度的作用,絮体会产生强烈的挤压变形,使絮体的孔隙率和体积减小,密度增大,有利于沉淀分离。当絮体进入接触絮凝悬浮反应区后,絮体颗粒之间存在碰撞吸附、接触絮凝、过滤等多过程协同作用。
     通过对小间距斜板的能耗及间距优化的理论分析,得出了小间距斜板水流流动中能耗最低时的斜板间距优化计算公式为δ=(?),该式表明影响小间距斜板能耗的主要因素有水的动力粘度、板间流速、板长、板两端压差等。微涡旋接触絮凝澄清器(模型2)小间距斜板沉淀区的表面负荷为16.67m3/(m2.h)(4.6mm/s)时,优化后的斜板间距应为21mm。
     试验表明,在原水水质条件和投药量大致相当的条件下,PAFC的除污染效果优于PAC;PAFC+HPAM或PAC+HPAM联合投加的除污染效果优于PAFC或PAC单独投加;联合投加时PAFC+HPAM除污染效果优于PAC+HPAM;且PAFC+HPAM所形成的悬浮层厚度小
     微涡旋接触絮凝澄清器(模型2)稳定运行后,在接触絮凝悬浮反应区5min沉降比约为10%-14%,悬浮固体浓度约为(20-25)g/L。
     当进水流量为200 L/h时,微涡旋接触絮凝澄清器(模型2)稳定运行后,混合区速度梯度为1289.5 S、翼片隔板絮凝区速度梯度为91 s-1、接触絮凝悬浮反应区速度梯度为30 S;混合时间为0.11 min,絮凝时间为12.10 min,小间距斜板沉淀时间为3.14 min,澄清时间为3.01 min,总停留时间为18.36 min;接触絮凝悬浮反应区上升流速为1.4 mm/s,小间距斜板间上升流速为5.3 mm/s,澄清区上升流速为4.6 mm/s;澄清器沉后余浊≤1NTU。
Water source pollution and improving drinking water quality standards is to promote the development of water treatment technology to the most important driving force. Seek new technologies to improve safety and security of drinking water or alternative water treatment process is important to study the contents of the field of water treatment. In fact, in order to clarify the main water filtration Although the main function of conventional treatment process is in addition to turbidity, but there are a considerable addition to fouling, because some non-water soluble organic pollutants can be accompanied by the removal of turbidity and removal of material some dissolved organic pollutants may also be attached to the turbidity of the material was removed. And to play a major role in coagulation, enhanced coagulation is to enhance the capacity of water treatment system to remove organic matter crucial. To clarify the process can efficiently remove the water molecules, the hydrophobic nature, humus and organic UV-absorbing. Therefore, full capacity of conventional technology in addition to pollution, reduce or omit a special addition to pollution process is undoubtedly economic and simple method for removal of pollution. In recent years, the indicators of drinking water in developed countries increasingly stringent requirements proposed, and to strengthen the process and flocculation water treatment technology as an important and urgent research topic.
     Subject from both theoretical and experimental exposure of micro-vortex device flocculation process was studied to explore, through the analysis of mixing, flocculation, sedimentation process, micro vortex floc and the relationship between floc strength and density in to clarify the characteristics of the hydraulic device, made the whole process of micro-vortex concept of water clarifier, through theoretical analysis and experimental parameters were optimized so that the clarifier effluent turbidity≤1NTU.
     Scroll through the vortex strength and micro-scale analysis of theoretical formula, Effective energy dissipation obtainedεand the relationship between the total energy E, Equationλ= (v3/ε) 1/4 can be used to calculate the vortex in the process of flocculation microλvalue.
     Experiments show that exposure to micro-eddy flocculation flocculation clarifier suspended reaction zone in contact with the Reynolds number was 1.4, indicating that the reaction zone in contact flocculation of suspended are micro-eddy flocculation state.
     Flocculation depends on the vortex size and vortex strength. The smaller scale vortex, vortex strength is, in the wing area and effective energy partition flocculationε= 1.16 W/m3, vortex microscaleλ0= 0.171×10-3 m, reaction zone in the contact flocculation of suspended effective energyε= 0.13 W/m3,λ0= 0.296×10-3 m micro vortex. In the flocculation process, to take the appropriate grade to meet the flocs grow older, the corresponding reduced rate of input energy to adapt to the larger flocs to the objective requirements of a large knot.
     Eddy contact flocculation clarifier (Model 2) divisions in the wing area flocculation, floc by the 485s-1 with consecutive 95s-1 velocity gradient effect, produce a strong flocculation extrusion experience, so that the pore floc rate and the volume decreases, density increases, is conducive to precipitation. When the suspended floc flocculation reaction zone into contact with after the collision between the floc particles adsorption, contact flocculation, filtration and other process synergies.
     Through the ramp for small pitch and spacing of the energy consumption of the theory of optimization analysis, the small distance between ramps lowest water flow in the energy optimization of the oblique plate spacing is calculated asδ0=(?), the type that affect the energy consumption of a small pitch ramp The main factors of the dynamic viscosity of water, flow between the plates, plate length, plate pressure at both ends and so on. Eddy contact flocculation clarifier (model 2) spaced inclined plate sedimentation load surface area 16.67m3/(m2·h) (4.6 mm/s), the optimized ramp spacing should be 21mm.
     Tests showed that the raw water quality conditions and the dosage of roughly the same conditions, PAFC addition to the effect of pollution is better than PAC, PAFC+HPAM or PAC+HPAM United dosing or addition to the effect of pollution than PAFC PAC used alone, joint investment In addition to overtime PAFC+HPAM pollution better than PAC+HPAM, and PAFC+HPAM suspension formed by the small thickness.
     Eddy contact flocculation clarifier (model 2) stable operation, the reaction zone in the contact flocculation of suspended 5min settlement ratio of about 10%-14%, suspended solids concentration of about (20-25) g/L.
     When the inlet flow rate of 200 L/h, the micro-vortex contact flocculation clarifier (model 2) stable operation, the mixing zone velocity gradient 1289.5s-1, flocculation baffle wing area for the 91s-1velocity gradient, the contact flocculation velocity gradient of the reaction zone suspended 30s-1; mixing time is 0.llmin, flocculation time was 12.10min, spaced inclined plate settling time of 3.14 min, to clarify the time 3.01min, the total residence time of 18.36 min; contacts flocculation of suspended increased the flow rate of the reaction zone 1.4 mm/s, the small spacing between the increase in flow rate ramp 5.3 mm/s, to clarify the district increased the flow rate of 4.6 mm/s, the clarifier effluent turbidity≤1NTU.
引文
[1]黄秉直,曹达文等.饮用水膜深度处理技术[M].北京:化学工业出版社.2006
    [2]曲久辉,等.水厂高效絮凝技术集成系统研究方向[J].中国给水排水,1999,15(4)
    [3]王连生.环境化学进展,化学工业出版社.1995
    [4]国家环境保护部.2009年中国环境状况公报[R].2010-06
    [5]田怀军,,舒为群,张学奎等.长江、嘉陵江(重庆段)源水有机污染物的研究.长江流域资源与环境,2003,12(2):118-123
    [6]黄瑾辉,刘萍,曾光明等.饮用水中微量有机污染物质的GC/MS分析.湖南大学学报(自然科学版),2004,31(5):36-40
    [7]任晋,蒋可.阿特拉津及其降解产物对张家口地区饮用水资源的影响.科学通报,2002,47(10):758-762
    [8]蒋绍阶,王峰.重庆三峡库区饮用水安全存在的问题与对策研究.四川环境,2004,23(6):110-113
    [9]庄颖,江城梅,赵红.淮河N段水有机物潜在危害评估.蚌埠医学院学报,2001,26(2):171-172
    [10]韩梅,郑丙辉,李子成等.主要城市饮用水水源地水质状况评价与对策建议.环境科学研究,2000,13(5):31-34
    [11]吴启洲.饮用水中有机污染物的危害及对策.水处理技术,1997,4(9):67-69
    [12]周怀东,彭文启,杜霞等.中国地表水水质评价.中国水利水电科学研究院学报,2004,2(4):255-264
    [13]肖羽堂,张晶晶,吴鸣等.我国水资源污染与饮用水安全性研究.长江流域资源与环境,2001,10(1):51-59
    [14]王志强,陈昱,林育纯等.福建省11个县饮用水水质与胃癌死亡率的关系.中国公共卫生学报.1997,16(2):79-80
    [15]金鹏康,王晓昌.天然有机物的混凝特性研究.西安建筑科技大学学报.2000,32(2):155-159
    [16]连民,刘颖,俞顺章等.氮、磷、铁、锌对铜绿微囊藻生长及产毒的影响.上海环境科学,2001,20(4):166-170
    [17]彭海清等.给水处理中藻类的去除.中国给水排水,2002,18(2):29-31
    [18]Rehan Sadiq,Manuel J.Rodriguez. Disinfection by-products(DBPs) in drinking water and predictive models for their occurrence:a review. Science of the Total Environment.2004,321:21-46
    [19]地表水环境质量标准(GB3838-2002),中华人民共和国国家环境保护总局和国家质量监督检验检疫总局,2002.4
    [20]城市供水行业2000年技术进步发展规划,中华人民共和国建设部,1993
    [21]生活饮用水水质卫生规范,中华人民共和国卫生部,2001.6
    [22]城市供水水质标准(CJ/T206-2005),中华人民共和国城镇建设行业标准,中华人民共和国建设部,2005.2
    [23]王占生,对建设部《城市供水水质标准》的认识与体会,给水排水,2005,31(6):1-3
    [24]World Health Organization.Guidelines for Drinking-water Quality, third edition. Vol.1,2004, Geneva
    [25]EU's Drinking Water Standards.Council Directive 98/83/EC on the quality of water intended for human consumption. (Adopted by the Council on 3 November 1998)
    [26]USEPA.2006 Edition of the Drinking Water Standards and Health Advisories, Summer 2006
    [27]P. C. Singer. Humic substances as precursors for potentially barmful disinfection by-products.Water Science and Technology.1999,40(9):25-30
    [28]韩志国等.淡水水体中的蓝藻毒素研究进展.暨南大学学报.2001.22(3):129-133
    [29]陆娴婷,张建英,朱荫媚.饮用水的异嗅异味研究进展.环境污染与防治.2003.25(1):32-34
    [30]Robert Considine.Renaud Denovel. The influence of surface chemistry on activated carbon adsorption of 2-methylisoborneol from aqueoussolution.Colloids and Surfaces.2001.179:271-280
    [31]J P F P Palmentier.Vince Y Taguchi. The determination of geosmin and 2-mehtylisoborneol in water using isotope dilution high resolution mass spectrometry.Water research.1998.32(2):287-294
    [32]Steven WLloyd. Rapid analysis of geosmin and 2-methylisoborneol in water using solid phase micro extraction procedures. Water research.1998,32(7):2140-2146
    [33]Zhang Xiaojian, Chen Chao,Zhu Lingxia,Wang Yun,Liu Jing. Sequential chlorination disinfection to control microorganism and disinfection by-products simultaneously.1 st IWA-ASPIRE Conference & Exhibition. Singapore.2005:
    [34]Van der Kooij.Biological stability:a multidimensional quality aspect of treatedwater.Water. Air and Soil Pollution.2000.123:25-34
    [35]Percival S L. Knapp J S. Edyvean R. Wales D S. Biofilm development on stainless steel in mains water. Water Research.1998.32(1):243-253
    [36]M.Edwards. Controlling corrosion in drinking water distribution systems:a grand challenge for the 21st century. Water Science and Technology.2003.49(2):1-7
    [37]魏宏斌.氧化法去除水中有机物的研究与应用现状[J].中国给水排水,1996,22(5):19-22
    [38]张淑琪,王占生等.臭氧氧化自来水生物稳定性研究.环境科学,1998,19(5):34-36
    [39]张金松等.饮用水与臭氧化技术的应用进展.给水排水,2002,28(4):7-9
    [40]马军,李圭白,李晓东.高锰酸盐除微污染效能-GC/MS分析[J].中国给水排水,1999,15(5):13-16
    [41]马军,刘伟,刘惠.高铁酸盐复合药剂除污染效能研究[J].给水排水,1998,24(2):21-25
    [42]陈忠林,范杰,马军等.高锰酸钾和粉末活性炭联用去除和控制受污染饮用水源中的致突变物质[J].1998,中国给水排水,14(4):1-5
    [43]姜成春,马军,李圭白.高锰酸钾强化粉末活性炭吸附效能研究[J].哈尔滨建筑大学学报,2000,33(6):40-44
    [44]葛旭,陆坤明.组合工艺流程处理微污染源水研究[J].中国给水排水,2000,16(9):1-4
    [45]钟淳昌,戚盛豪.给水处理技术的现状与发展[J].香港水工业会议论文集,1999
    [46]崔福义,石明岩,赵天慧.给水处理系统高效经济运行研究之一[J].哈尔滨建筑大学学报, 1999,32(6):5-8
    [47]Zhang Hongwe, Tan Xin, CHEN Cunfang. Research on Optimal Operation of Water-Production System [J]. Trans actions of Tianjin University,1999,5 (2):215-218
    [48]田一梅,张宏伟,齐庚中等.水处理系统运行状态数学模拟的研究.中国给水排水,1998,14(4):10-13
    [49]王大志,柳秉洁.混凝剂最优投加量数学模型[J].中国给水排水,1988,4(4):16-20
    [50]白桦,李圭白.基于神经网络的混凝投药系统预测模型[J].中国给水排水,2002,18(6):46-47
    [51]Mohamed E.H. Integrated wastewater treatment Plant performance evaluation using artiflcial neural netwoks[J].Wat.Sci.Tech,1999,40(7):55-65
    [52]M.Krofta.An attempt to understand dissolved air flotation using multivariate data analysis[J]. Wat.Sci.Tech,1995,31:191-201
    [53]汪光熹,肖绍雍,宋仁元.城市供水行业2000年技术进步发展规划[M].北京:中国建筑工业出版社,1993
    [54]许国仁,李圭白等.高锰酸钾复合药剂对微污染水中浊度色度强化去除效能的生产性试验研究.给水排水.1999,25(6):7-10
    [55]陈卫,李圭白,邹浩春等.高锰酸钾复合药剂去除太湖水中色度的试验研究.哈尔滨建筑大学学报,2001,34(6):67-69
    [56]Schneider O.D., Nickols D and Lehan E.R. Dissolved air flotation and pllyaluminum chloride-an effective, economical combination [J]. Proceedings of Water Research for the New Decade, Snnual Conference American Water Works Association,1991,(23-27):367-383
    [57]金伟,李怀正,范瑾初.粉末活性炭吸附技术应用的关键问题[J].给水排水,2001,27(10):11-12
    [58]马军,李圭白,王福珍.用粉末活性炭去除水中酚类污染物[J].中国给水排水,1994,10(2):22-25
    [59]黄廷林,熊向陨.微污染源水中DBPs先质的去除方法[J].中国给水排水,1999,15(11):27-28
    [60]袁志斌,王占生.给水厂净水工艺的发展及其比较.净水技术.2002,21(2):5-7
    [61]游晓红,陈晓琼.混凝技术及其发展.工业水处理.2002,22(11):7-9
    [62]王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社,1999
    [63]Joseph G. Jacangelo. Jack Demarco. Douglas M. Owen. et al. Selected processes for removing NOM: An overview.J. AWWA.1995,87(1):64-77
    [64]Christian Volk. Kimberly Bell. Eva Ibrahim. et al. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Research.2000,34(12):3247-3257
    [65]黄晓东,孙伟,庄汉平等.强化混凝处理微污染源水.中国给水排水,2002,18(2):45-47
    [66]Robert C. Cbeng. Stuart W. Krasner. James F. Creen. et al. Enhanced coagulation:A preliminary evaluation. J. AWWA.1995,87(2):91-103
    [67]Gil Crozes, Patrick White, Matthew Marshall. Enhanced coagulation:Its effect on NOM removal and chemical costs. J. AWWA.1995,87(1):78-89
    [68]陈忠林,牛晚扬,马军等.高锰酸盐复合药剂强化混凝处理高有机物含量的地表水.工业水处 理.2001.21(5):15-17
    [69]石颖,马军等.湖泊、水库水的强化混凝除澡的试验研究.环境科学学报,2001.21(2):251-253
    [70]徐景翼.当前供水及水处理面临的问题和对策的探讨[J].2000年中国水协科技委含藻水处理研讨会.2000
    [71]Kranis Panagiotis, schoenen Dirk and Seitz H.M. Distribution and removal of giardia and Cryptosporidium in water supplies in Germany Water Science and Technology,1998,37 (2):9-18
    [72]Sun Liang, Richards, Yates, Dean V Davis, Salvador J Pastor, Leslie S Palencia, Jeanne-Maire Bruno. Treatability of MTBE-contaminated Groundwater By Ozone And Peroxone. Journal AWWA.2001,6: 110-120
    [73]Juan L. Acero, Stefan B. Haderlein, Torsten C. Schmidt, Marc J.-F. Suter, Urs Von Gunten. MTBE Oxidation By Convential Ozonation And The Combination Ozone/Hydrogen Peroxide:Efficiency Of The Processes And Bromate Formation. Environment Science & Technology.2001,35:4252-4259
    [74]Ventresque C.,Bablon G., Jadas-Hecart A. Ozone:A Means of Sitmulating Biological Activated Carbon Reactors. Ozone Science & Engineering.1990,13:91-107
    [75]李圭白,张杰.水质工程学[M].北京:中国建筑工业出版社.2005
    [76]哈尔滨多相水处理技术有限公司,Kinetic Inertia Effect In Co-agulation Process [J]哈尔滨:水处理工艺研究及技术应用论文集,1999
    [77]高士国.水力絮凝器的理论与实践.北京建筑工程学院学报.2001,17(校友专辑):66-73
    [78]孙友勋.异波折板絮凝池单元水头损失的计算公式[J].中国给水排水,1999,15(10)。
    [79]叶峰,张林生.水处理絮凝反应动力学优化模型[J].《净水技术》2002,21(4):20-23
    [80]谭章荣.异波折板絮凝池絮凝控制指标研究[J].中国给水排水,2000,16,(6)
    [81]武道吉,李圭白.水处理工艺的优化设计和运行[J].中国给水排水,2002,18(1)
    [82]谭凤训.混合动力学机理及控制指标研究[J].中国给水排水,2000,16(1)
    [83](美)旋流反应澄清池[J].晓溪译.给水排水,1984(4):30-31.
    [84]钟淳昌.净水厂设计[M].北京:中国建筑工业出版社,1986年第一版:145-201.
    [85]李镜明,姚志强.低浊度絮凝新工艺的初步研究[J].给水排水,1989(6):2-6.
    [86]王刚,邱文慧.新型澄清池工艺与常规水处理工艺技术经济比较[J].甘肃科技,2004,20(7):84-86.
    [87]洪觉民.欧洲水厂观感[J].给水排水,1998,24(3):10-13.
    [88]Pujol R, Hamon M, Kandel X, et al. Biofilters:flexible, reliable biological reactors [J]. Wat SciTech, 1994,29 (10-11):33-38.
    [89]栾新晓.西宁市低温低浊水增效澄清池处理动态试验研究[D].西安建筑科技大学硕士学位论文,2006.5.
    [90]安东,张东,叶辉等.高效澄清工艺处理黄浦江水源水运行效果[J].给水排水,2010,36(3):26-28
    [91]安东,乐林生.太湖流域安全饮用水保障技术示范工程—上海市杨树浦水厂新建常规处理部分 [J].给水排水,2006.32(7):26-29
    [92]崔志刚,孙铁,李艳华.涡旋混凝技术在吴家堡水厂扩建中的应用[J].给水排水,2009.35(9):26-28
    [93]徐立群,王芳,何钟怡.反应池中的颗粒惯性作用影响分析[J].中国给水排水,2002.18(3):44-47
    [94]童祯恭,胡锋平,方永忠.涡流絮凝澄清技术在嘉兴某净水厂中的应用[J].给水排水,2009.35(10):15-17
    [95]童祯恭,方永忠.微涡流混凝技术在西桥水厂的应用[J].给水排水,2004.30(6):19-21
    [96]张鹏天,胡锋平,张琪等.涡流反应器及其在即墨市南水厂的应用[J].华东交通大学学报,2006.23(5):9-11
    [97]芮旻,姚洁,许嘉炯等.新型中置式高密度沉淀池优化投药试验研究[J].给水排水,2007.33(12):13-19
    [98]李天琪.Actiflo微砂加重絮凝高效沉淀工艺设计介绍[J].给水排水,2009.35(4):11-13
    [99]杨小林,杨开中,王华等.基于FLUENT的折板絮凝池三维涡旋水流数值模拟[J].给水排水,2009.35(8):21-23
    [100]杨开中,张建强,杨小林等.折板转角对混凝沉淀效果影响的研究[J].给水排水,2008.34(11):27-29
    [101]张金松.城镇净水设施改造浅议[J].给水排水.2010.36(6)
    [102]朱党生等.中国城市饮用水安全保障方略[M].北京:科学出版社.2008
    [103]石明岩,崔福义,张海龙.给水处理常规工艺除污染特性及混凝剂的优化.哈尔滨工业大学学报.2002,34(6);762-766
    [104]GARY L A. Molecular size distribution of dissolved organic matter[J]. J AWWA,1992,84(3): 67-75
    [105]武道吉,马军,谭凤训.水动力学条件对絮体形成的影响[J].工业用水与废水,2007,38(1):4-8.
    [106]A T Hjeimfet, L F Mockros. Motion of discrete particales in a turbulent fluid[J].Appl Sci Res, 1996,16:149-161.
    [107]徐继润,罗茜.水力旋流器内固液两相间的相对运动(Ⅰ)—颗粒运动方程及其求解[J].中国有色金属学报,1998,8(3):487-490.
    [108]佟庆理.两相流动理论基础[M].北京:冶金工业出版社,1982.
    [109]M Y Han, D F Lawler. The (relative) insignificance of in flocculation[J].J Am Water Works Assoc.1992,84(3):79-91
    [110]Y Matsui, N Tambo. Online floc size evaluation by photometric dispersion analyzer[J]. Water Supply. 1991,8:71-78
    [111]Tambo N,Watanabe Y. Physical characteristice of floc(I)[J].Water Research,1979,13:409
    [112]Lanvankar A L, Gemmell R S.A size-density relationship for flocs. Jour[J].AWWA,60 (9)
    [113]Francois R. J.Structure on hydroxide flocs[J].Water Research,1985,19
    [114]黄廷林.结团造粒流化床中造粒动力条件研究[J].给水排水,1998,24(5):25-29
    [115]建设部.城市供水行业2010年技术进步发展规划.2000
    [116]FischerH.B. Mixing in land and coastal waters[M]. NewYork:Academic Press,1979
    [117]时钧,汪家鼎,等.化学工程手册(上卷)[M].北京:化学工业出版社,1996
    [118]赵文谦.环境水力学[M].成都:成都科技大学出版社,1986
    [119]潘祖仁,翁志学,等.悬浮聚合[M]北京:化学工业出版社,1997
    [120]武道吉,等.湍流混合动力学机理研究[J].水科学进展.2003,14(6):706-709
    [121]王绍文.惯性效应在絮凝中的动力学作用[J].中国给水排水,1998,14(2)
    [122]武道吉,李圭白等.高浊度水混凝动力学机理与工艺设计[J].水处理技术.2003,29(1)
    [123]陈茅章.粘性流体动力学理论及紊流工程计算[M].北京:北京航空学院出版社,1986,221.
    [124]林建忠,等.流体力学[M].北京:清华大学出版社,2005,334-350
    [125]王绍文,姜安玺,等.混凝动力学的涡旋理论探讨(上)[J].中国给水排水,1991,7(1):4,
    [126]栾兆坤.混凝基础理论研究进展与发展趋势.环境科学学报,2001,21增刊
    [127]严煦世,范瑾初.给水工程(第四版).北京:中国建筑工业出版社,1999
    [128]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2001.
    [129]川田裕朗等著.罗秦等译.流量测量手册[M].北京:计量出版社,1982.
    [130]万绳煌.提高“水力循环澄清器加斜管(板)”净水能力的设想[J].给水排水.1990年02期
    [131]刘荣光,彭云霓.在沉淀构筑物中增设斜板斜管的浅见[J].给水排水,1989年05期
    [132]胡万里.混凝.混凝剂.混凝设备[M].北京:化学工业出版社,2001
    [133]#12
    [134]#12
     #12
    [135]杨文进等译.絮凝的基础理论及接触絮凝[J].1984(6)
    [136]张永吉译.泥渣过滤澄清器的技术革新[J].给水排水.1981年06期
    [137]许保玖编.给水处理理论[M].北京:中国建筑工业出版社,2000年10月第一版:133-260.
    [138]同济大学教研室.悬浮型斜管澄清池的机理研究[J].给水排水,1980(6):6-9.
    [139]余永烈,董康儒.对混凝过程的几点认识[J].工业用水与废水,2003,34(5):54-56.
    [140]周善生编.水力学[M].北京:人民教育出版社,1981,129-131.
    [141]石宝友,汤鸿霄.聚合铝与有机高分子复合絮凝剂的絮凝性能及其吸附特性[J].环境科学,2000,21(1):18-22.
    [142]栾兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划.工业水处理.2000,20(11)
    [143]田宝珍,张云.铝铁共聚复合絮凝剂的研制及应用[J].工业水处理,1998,18(1):17-19.
    [144]赵春禄,刘振儒等.铝、铁共聚作用的化学特征及晶貌研究[J].环境科学学报,1997,17(2):154.
    [145]高和气.巢湖微污染水质状况及处理技术[J].安徽职业技术学院学报,2004,3(3):25-28.
    [146]上海市政工程设计院主编.给水排水设计手册(第3册)[M].北京:中国建筑工业出版社,2000年,第二版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700