用户名: 密码: 验证码:
臭氧/光催化高效生物灭活及在船舶压载水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶压载水是现代远洋船舶航海安全和高效营运的保证,但是随之带来的外来有害生物入侵性传播已成为海洋面临的四大威胁之一,成为亟待解决的世界性的环境问题。现有的压载水处理技术都存在着一定的缺点,还没有一种单一方法能满足国际海事组织关于压载水处理的要求。UV/Ag-TiO_2和O_3是两种高效的水体消毒技术,二者联用可生成更多的氧化性自由基,提高处理效果。本文采用UV/Ag-TiO_2/O_3来对水体进行快速灭菌、杀藻,并对其灭活机理进行了探讨,为寻求一种有效的船舶压载水处理工艺提供理论依据。
     为研究复合工艺的可行性,首先考察了臭氧、紫外及紫外/臭氧各自灭菌性能。结果表明,紫外辐射和臭氧本身都具有较强的杀菌性能,二者的联合使用显著增强了杀菌效果,并在反应的初始阶段表现出了一定的协同作用。臭氧和紫外联用时,臭氧分解加速,生成的?OH相应增加,灭菌后细菌的光复活得到显著抑制。
     采用在纯钛表面阳极氧化法制备高效、耐冲击TiO_2催化剂,对制备条件进行了考察,并通过光化学沉积法对制备的TiO_2催化剂进行了载银改性,研究了其在UV-C辐射下的光催化灭菌性能和灭菌机理。结果表明,制备出的多孔TiO_2薄膜催化剂由锐钛矿型和金红石型TiO_2组成。随电压升高,金红石型的含量逐渐增多,微孔孔径增大,电流密度的适当增大,以及适当提高电解液浓度有助于提高UV/TiO_2灭菌性能。通过表面光沉积银修饰,可进一步提高薄膜光催化活性,银纳米簇在催化剂表面均匀细密分布。在1.0 mol/L硫酸溶液中,140 V,150 mA/cm2条件下制备的TiO_2薄膜,经3 g/L硝酸银溶液中载银修饰后光催化灭菌效果最佳。UV/Ag-TiO_2灭菌较单独紫外灭菌对细菌杀灭更彻底,细菌光复活减少。
     通过对过滤系统,臭氧投加方式,光源及光催化反应器的设计和选取,建立了以微孔过滤为前处理的UV/Ag-TiO_2/O_3复合船舶压载水处理系统和装置,并应用该系统对海水中大肠杆菌、粪肠球菌和溶藻弧菌等三种细菌以及杜氏盐藻、前沟藻属甲藻和三角褐指藻等三种海洋微藻进行灭活研究,测定杀灭效果,分析了相关影响因素的作用,并对反应过程中总残余氧化物(TRO)的生成,衰减及其持续灭活作用进行了测定,从而考察UV/Ag-TiO_2/O_3复合技术在处理压载水中的有效性和可行性。
     结果表明,UV/Ag-TiO_2和O_3均具有较强的杀菌性能,但UV/Ag-TiO_2对微藻灭活效果较差。UV/Ag-TiO_2/O_3复合体系较UV/Ag-TiO_2和O_3单独杀菌、哈尔滨工业大学工学博士学位论文
     灭藻效果均有较大提高,杀菌时在较短水力停留时间时更明显。紫外光强6.5 mW/cm2,臭氧投加量9.84 mg/L时,水力停留时间3.0 s时即可达到对水体的灭菌要求,对杜氏盐藻,前沟藻属甲藻和三角褐指藻的灭藻率分别可达0.92,0.60和0.57 log。UV/Ag-TiO_2/O_3复合体系中?OH可能对系统杀灭微生物起到了一定的辅助作用。臭氧投加量和紫外辐射强度对复合灭菌、杀藻有重要影响,随着臭氧投加量的增加,复合灭菌、杀藻效果显著提高。紫外辐射强度的增加以及在较高的pH值和较低的水温更有利于复合灭菌,海水中NH3浓度对灭菌效果影响不大。UV/Ag-TiO_2/O_3复合处理对海水的pH值基本没有影响,出水中TRO浓度随臭氧投加量的提高而增加,且在初始阶段衰减很快,而后变缓。较高初始浓度和较低的水温使TRO衰减更慢。20℃时,当初始TRO浓度大于2.89 mg/L时,出水中的残余活菌可在0.5 h内被全部杀灭。
     为对UV/Ag-TiO_2/O_3工艺的可行性和实用性进行更深入的分析,同时为处理不同水体时工艺参数的选择寻求依据,对UV/O_3和UV/Ag-TiO_2灭菌过程中细菌的死亡机理进行了探讨,并通过建立静态循环实验,减缓反应速率,研究了UV/Ag-TiO_2/O_3杀灭海水中细菌和微藻的机理,从微观的角度考察不同反应体系杀灭微生物的过程,确定各要素的作用。
     结果表明,单独紫外辐射对细菌细胞结构的破坏较轻,在细菌被杀灭时,细菌细胞表面未出现在明显损伤。UV/Ag-TiO_2较UV对细菌细胞结构的破坏有所加剧,可逐步破坏大肠杆菌细胞表层结构,使胞内物质发生外泄,但相对较缓慢。臭氧可对微生物细胞结构产生明显的破坏,而UV/O_3/Ag-TiO_2作用下的破坏程度更高,细胞膜脂质过氧化产物MDA含量迅速增多,K+和蛋白质大量泄漏,并降解微藻的叶绿素a。由此,在UV/O_3/Ag-TiO_2复合体系中,紫外辐射主要通过对微生物的DNA破坏来杀灭微生物,而臭氧则可对微生物的细胞结构产生不可逆的破坏。当紫外辐射下臭氧和Ag-TiO_2的联合应用,可对微生物进行双重破坏和杀灭,同时反应体系中?OH等活性基团及臭氧和海水反应后生成的氧化性物质均可对微生物的死亡起到一定的辅助作用。
     本文所建立的UV/Ag-TiO_2/O_3反应系统是一种新型的高级氧化船舶压载水处理体系。能在很短的水力停留时间内有效杀灭水体中的细菌、微藻等微生物,同时处理后出水在压载水舱中具有一定的持续灭活能力。设备体积小,安装容易,操作简单,可以解决船舶压载水处理的瓶颈问题,具有较大的理论意义和广阔的应用前景。
Ballast water is water carried by ships to ensure the stability and maneuverability during transit. However, ships transporting ballast water between geographically isolated ports contribute to the spread of many aquatic species beyond their natural range limits, and it has been regarded as one of the four major risk factors that threaten global marine environmental safety. To prevent the introduction of potentially invasive species, ballast water management and treatment are essential.
     There are several established and under developing technologies available to be used for ballast water treatment. Unfortunately there is not a single method can reach the standard quality due to its own disadvantages. A combination of several methods result in high treatment efficiency compared with individual treatment, and has become the main direction of research to solve the problem of ballast water. The objective of this study was to evaluate the effectiveness of UV/Ag-TiO_2/O_3 treatment in preventing introduction of invasive species during the ballasting/deballasting process. The combination of photocatalyst with ozone system was established. The inactivation efficiency of UV/Ag-TiO_2/O_3 on bacteria and microalgae were studied, and their death mechanisms were investigated.
     To evaluate the feasibility of the UV/Ag-TiO_2/O_3 process, the bactericidal activities of ozone, UV irradiation and UV/O_3 process were researched firstly. Results indicated that both ozone and UV irradiation were effective for bacteria inactivation, and a significant enhancement for E. coli inactivation efficiency was obtained in the combined UV/O_3 process as compared with each individual unit process, especially in the initial phase of the reaction. In the ozonation under UV irradiation, the ozone was accelerated decomposed, and a larger number of hydrogen peroxide and hydroxyl radicals were produced, thereby accelerated the bactericidal reaction, repressing the bacteria photoreactivation after treatment.
     Secondly, an efficient and impact resistance photocatalytic nano-porous titanium dioxide film was prepared by anodic oxidation method in sulfuric acid solution, and was loaded sliver by photodeposition method. The effect of anodizing parameters (anodizing voltage, current density and electrolyte concentration) on the photocatalytic bactericidal activity of TiO_2 films was investigated. It showed that the titanium oxide film was mainly composed of anatase and rutile TiO_2. With the increasing of anodizing voltage, the content of rutile TiO_2 increased, and the average diameters of nano-holes enlarged. Propore increase of current density and suitable Ag loading could enhance the photocatalytic activity of TiO_2 film. When prepared at 140 V, 150 mA/cm2 in 1 mol/L sulfuric acid solution, and loaded silver in 3 g/L silver nitrate solution, the Ag-TiO_2 film had the best photocatalytic bactericidal activity. Compared with UV-C irradiation alone, the inactivation of E. coli by the UV/Ag-TiO_2 process was enhanced and the photoreactivation of the bacteria was much repressed.
     Then, different filtration and ozone dosing modes, light sources, and the photocatalytic reactors were analyzed, and the combination of photocatalyst with ozone system and equipment, which were used for ballast water treatment, were established. The effectiveness of filtration-UV/Ag-TiO_2/O_3 treatment in preventing introduction of bacteria (Escherichia coli, Enterococcus faecalis and vibrio alginolyticus) and microalga (Dunaliella salina, Amphidinium sp. and Phacodactylum tricornutum) in artificial seawater during the ballasting/deballasting process were evaluated.The effects of UV light intensity, ozone dose and raw water quality, were examined in this system, and the formation and decay of the initial total residual oxidant (TRO) was investigated.
     The results indicated that both UV/Ag-TiO_2 irradiation and ozonation were effective for bacteria inactivation. However, UV/Ag-TiO_2 irradiation was not effective for microalga inactivation and chlorophyll a degradation. Compared with individual unit processes with ozone or UV/Ag-TiO_2, the inactivation of bacteria and microalga by the combined UV/Ag-TiO_2/O_3 process were enhanced, especially in the initial phase of the reaction. With an initial ozone dose of 9.84 mg/L, a UV fluence rate of 6.5 mW/cm2, the required bacteria inactivation ratio would be obtained within a hydraulic residence time (HRT) of 3.0 s. When the HRT increased to 3.0 s, the detected inactivation efficiency of Dunaliella salina, Amphidinium sp. and Phacodactylum tricornutum were 0.92, 0.60 and 0.57 log, respectively. The ?OH that produced in the UV/Ag-TiO_2/O_3 system contributed partly to the disinfection of microorganisms. The ozone dose and UV light intensity had a significant influence on the disinfection efficiency. With the UV intensity and ozone dose increasing, the disinfection efficiency was improved. When the ammonia concentration ranged from 0.1 to 1.0 mg/L, the E. coli inactivation efficiency changed little. When the pH value ranged from 8.0 to 8.6, the disinfection efficiency increased with the pH value, while the temperature increased from 5℃to 20℃, the efficiency of disinfection decreased. Compared with the raw water (pH 8.0), the pH value of the effluent that after treatment by UV/Ag-TiO_2/O_3 process changed little. The initial total residual oxidant (TRO) concentration was positively correlated with ozone dose, and resulted in faster decay rate for lower initial concentration. All TRO concentrations reduced rapidly at first and attenuate slowly as the duration increased. When the initial TRO concentration increased above 2.89 mg/L by adjusting the ozone dose, complete inactivation of E. coli was achieved within 0.5 h.
     In order to further investigate the feasibility and practicality of the UV/Ag- TiO_2/O_3 process for ballast water treatment, the death mechanism of bacteria and microalga during UV/O_3, UV/Ag-TiO_2 and UV/Ag-TiO_2/O_3 disinfection were studied. The results implied that UV irradiation was not effective for the destruction of bacteria cell structure. Exposed to the UV/Ag-TiO_2 irradiation, the E. coli cell wall and cell membrane were gradually decomposed, and resulted in the leakage of intracellular potassium ion (K+) and protein, however comparable slowly. Contrastly, the ozonation could make the microorganism’s cell structure destructed seriously, and the combination of photocatalyst with ozone enhanced this effect, the formation of malondialdehyde (MDA) and leakage of intracellular potassium ion (K+) and protein was notable, and the chlorophyll a concentration decreased immediately. Therefore, in the UV/Ag-TiO_2/O_3 system, the UV-C disinfection mainly via destroy the cell DNA, and the decomposition of cell structure, which is irreparable, is one of the important causes for microorganism death during ozonation. Moreover, the combination of ozonation and photocatalysis with Ag-TiO_2 thin film under UV-C irradiation may not only destroy the cell structure, but also induce the cell DNA damage, and resulted in the enhancement of disinfection efficiency.
     The combination of photocatalyst with ozone system that established in this paper is a new advanced oxidation process system for ballast water treatment. It has high efficiency for removal the target organisms, and the effluent has continuous and extended sterility effect. The size of the equipment is small, and easy to operate. Thus, it can be used to solve the bottleneck problem of the ballast water treatment, and has the theoretical significance as well as the bright application prospect.
引文
[1]李品芳,陈鹭玲,林荣澄,等.防止船舶压载水污染厦门海域的应对措施[J].大连海事大学学报, 2004, 30(3): 103-105.
    [2] Oyvind E, Hanna L B, Sigrid B, et al. Challenges in Global Ballast Water Management[J]. Marine Pollution Bulletin, 2004, 48: 615-623.
    [3]张荣忠.船舶压载水的管理[J].水运管理, 2004,26(8): 36-37.
    [4] Lewis P N, Hewitt L C, Riddle M, et al. Marine Introductions in the Southern Ocean: an Unrecognised Hazard to Biodiversity[J]. Marine Pollution Bulletin, 2003, 46: 213-223.
    [5] Niimi J A. Role of Container Vessels in the Introduction of Exotic Species[J]. Marine Pollution Bulletin, 2004, 49: 778-782.
    [6]张硕慧.船舶压载水转移外来物种机制的探讨[J].中国航海, 2002, 1: 43-47.
    [7]姜义霖,刘洪文.国际航行船舶压载水对全球生态、经济以及人类健康的影响(连载二) [J].口岸卫生控制, 2005, 11(3): 54-58.
    [8] Hallegraeff G M. A Review of Harmful Algal Blooms and Their Apparent Global Increase[J]. Phyeologia, 1993, 32(2): 79-99.
    [9] Pimentel D, Lach L, Zuniga R,et al. Environmental and Economic Eosts of Nonindigenous Speeies in the United States[J]. Bioscience, 2000, 50: 53-65
    [10]李迪阳,姜仕倩,王俊英.船舶压载水中有害生物的管理与控制[J].海岸工程, 2001, 20(3): 35-37.
    [11]邱渝峰.微波-硫酸自由基技术处理压载水的研究[D].大连海事大学硕士学位论文. 2008.
    [12] Yang Z,Perakis A N. Multiattribute Decision Analysis of Mandatory Ballast Water Treatment Measures in the US Great Lakes[J]. Transportation Research Part D,2004(9): 81-86.
    [13] Champ A M. Marine Testing Board for Certification of Ballast Water Treatment Technologies[J]. Marine Pollution Bulletin, 2002, 44: 1327-1335.
    [14]刘昭青.国际船舶压载水及其沉积物控制和管理公约概述[J].交通环保, 2004, 25(2): 49-50.
    [15]余育聪.船舶压载水及其沉积物控制和管理[J].江苏船舶, 2005, 22(5): 35-37.
    [16]王民,刘富生.压载水管理公约的动向和对策[J].航海技术, 2004, 1: 65-67.
    [17] Mccollin T, Shanks A M, Dunn J. The Efficiency of Regional Ballast Water Exchange: Changes in Phytoplankton Abundance and Diversity[J]. Harmful Algae, 2007, 6: 531–546.
    [18] Ruiz G M, Rawlings T K, Dobbs F C, et al. Global Spread of Microorganisms by Ships[J]. Nature, 2000, 408: 49-50.
    [19] Galil B S. Lessepsian Migration-Biological Invasion of the Mediterranean[J]. European Commission. Luxembourg. 1994, 8: 63-66.
    [20]刘巍巍.臭氧辅助光催化处理船舶压载水灭菌机制的研究[D].哈尔滨工业大学硕士学位论文, 2008.
    [21]杜清华. UV/O3船舶压载水灭菌系统研究[D].哈尔滨工业大学硕士学位论文, 2006.
    [22] Tang Z, Butkus M A, Xie Y F. Enhanced Performance of Crumb Rubber Filtration for Ballast Water Treatment[J]. Chemosphere, 2009, 74: 1396-1399.
    [23]党坤,殷佩海,孙培廷.国内外船舶压载水处理技术现状[J].航海技术, 2004, 2: 64-66.
    [24]符文侠,黄文祥.中国沿海赤潮危害及原因分析[J].环境与管理, 2002, 7(3): 45-47.
    [25]刘明杰,李志胜,于健等.应对《国际船舶压载水和沉积物控制与管理公约》实施完善船舶压载水的控制与管理[J].中国国境卫生检疫杂志, 2007, 30 (4): 112-114.
    [26]李斌,孙培廷.利用船舶柴油机余热加热压载水的新方法[J].大连海事大学学报(增刊), 2003, 29: 52-56.
    [27] Boldor D, Balasubramanian S, Purohit S, et al. Design and Implementation of a Continuous Microwave Heating System for Ballast Water Treatment[J]. Environ. Sci. Technol, 2008, 42: 4121-4127.
    [28] Rigby G R, Hallegraeff G M, Sutton C. Novel Ballast Water Heating Technique Offers Cost-Effective Treatment to Reduce the Risk of Global Transport of Harmful Marine Organisms[J], Mar. Ecol. Prog. Ser, 1999, 191: 289-293.
    [29] Sutherland T F, Levings C D, Elliott C C, et al. Effect of a Ballast Water Treatment System on Survivorship of Natural Populations of Marine Plankton[J]. Mar. Ecol. Prog. Ser, 2001, 210: 139-148.
    [30] Waite T D, Kazumi J, Lane P V Z, et al. Removal of Natural Populations of Marine Plankton by a Large-Scale Ballast Water Treatment System[J]. Marine Ecology- Progress Series, 2003, 258: 51-63.
    [31] Sakai H, Oguma K, Katayama H, et al. Effects of Low or Medium Pressure Ultraviolet Lamp Irradiation on Microcystis Aeruginosa and Anabaena Variabilis[J]. Water Res, 2007, 41(1): 11-18.
    [32] Holm E R, Stamper D M, Brizzolara R A, et al. Sonication of Bacteria, Phytoplankton and Zooplankton: Application to Treatment of Ballast Water[J].Marine Pollution Bulletin, 2008, 56(6): 1201-1208.
    [33] Simpson G. Ballast Water Disinfection with ClO2[C]. International Conference on Marine Bioinvasions, 2001 New Orleans, LA.
    [34]张硕慧,王倩,郭皓,等.氯化处理船舶压载水对外来生物存活的影响[J].交通环保, 1999, 20(4): 14-15.
    [35] Oemcke D J, Leeuwen J H. Ozonation of the Marine Dinoflagellate Alga Amphidinium Sp-Implications for Ballast Water Disinfection[J]. Water Research. 2005, 39: 5119-5125.
    [36] Perrins J C, Cooper W J, Van Leeuwen J, et al. Ozonation of Seawater from Different Locations: Formation and Decay of Total Residual Oxidant-Implications for Ballast Water Treatment[J]. Mar. Pollut. Bull., 2006, 52: 1023-1033.
    [37] Smit M G D, Ebbens E, Jak R G, et al. Time and Concentration Dependency in the Potentially Affected Fraction of Species: the Case of Hydrogen Peroxide Treatment of Ballast Water[J]. Environ. Toxicol. Chem, 2008, 27: 746-753.
    [38]宋永欣,党坤,宋家慧,等.船舶压载水处理方法[J].世界海运, 2002, 26(2): 42-43.
    [39] Bolch C J, Hallegraeff G M. Chemical and Physical Treatment Options to Kill Toxic Dinoflagellate Cysts in Ships’Ballast Water[J]. J Mar Env Engg, 1993, 1: 23-29.
    [40]陈繁忠,傅家漠,盛国英,等.电化学灭菌的试验研究[J].环境工程, 1999, 17(2): 66-69.
    [41]宋永欣,党坤,池华方,等.电解法处理船舶压载水对压载舱金属腐蚀的影响[J].大连海事大学学报, 2005, 31(3): 45-46.
    [42] Bai X Y, Zhang Z T, Bai M D, et al. Killing of Invasive Species of Ship's Ballast Water in 20 t/h System Using Hydroxyl Radicals[J]. Plasma Chemistry and Plasma Processing, 2005, 25(1): 41-54.
    [43] Bolch C J, Hallegraeff G M. Chemical and Physical Treatment Options to Kill Toxic Dinoflagellate Cysts in Ships’Ballast Water[J]. J Mar. Env. Eng, 1993, 1: 23-29.
    [44] Hardwick T J. The Free Fadical Mechanism in the Reactions of Hydrogen Peroxide[J]. Can. J. Chem, 1997, 35(3): 428.
    [45] Weiss J. Investingation on The Radical HO·in the Solution[J]. Trans. Faraday Soc, 1995, 31(3): 668.
    [46] Mattews R W. Photooxidation of Organic Material in Aqueous Suspensions of Titanium Dioxide[J]. Water Research. 1990, 24(5): 653.
    [47] Prengle H W. Experimental Rate Constant and Reactor Considerations for the Destruction of Micropollutants and Trihalomethane Precursors by Ozone with UVRadiations[J]. Environment Science &Technology, 1983, 17(4): 743.
    [48] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semi-Conductor Electrode[J]. Nature, 1972, 238: 37-40.
    [49] Linsebigler A L, Lu G. Photocatalysis on TiO2 Surfaces, Principles Mechanisms and Selected Results[J]. Chem. Rev, 1995, 95: 735-758.
    [50]汪新民,石宗明.臭氧的制备及在水处理中的应用[J].安徽化工, 2002, 118(4): 32-34.
    [51]靳俊伟,林衍,李东.臭氧消毒现状与发展[J].四川环境, 2004, 23(1): 18-21.
    [52]雷乐成,汪大翚.水处理高级氧化技术[J].化学工业出版社, 2001: 210-226.
    [53]内山宏.臭氧在循环冷却水系统中的应用[J].水处理信息导报, 1999, (6): 25-29.
    [54] Roy D, Wong P K, Engelbrecht R S, et al. Mechanism of Enteroviral Inactivation by Ozone[J]. Appl. Environ. Microbiol, 1981, 41(3): 718-723.
    [55] Kim C K, Gentile D M, Sproul O J. Mechanism of Ozone Inactivation of Bacteriophage F2[J]. Appl. Environ. Microbiol, 1980, 31(1): 210-218.
    [56] Jeanine D P, James K E. Effect of Ozone on Disinfection By-Product Formation of Algae[J]. Water Research, 1998, 37(2): 49-55.
    [57] Peyton G R, William H G. Destruction of Pollutants in Water with Ozone in Combination with Ultraviolet Radiation[J]. Environment Science Technology, 1988, 22(7): 761-767.
    [58]张彭义,祝万鹏.臭氧水处理技术的进展[J].环境科学进展, 1995, 3(6): 21.
    [59]薛向东,金奇庭,黄永勤.紫外光助氧化法处理TNT废水研究[J].给水排水, 2001, 27(10): 53-55.
    [60] Wu J J, Muruganandham M, Chang L T, et al. Ozone-Based Advanced Oxidation Processes for the Decomposition of N-Methyl-2-Pyrolidone in Aqueous Medium[J]. Ozone Science and Engineering, 2007, 9(3): 177-183.
    [61] Chou M S, Chang K L. Decomposition of Aqueous 2,2,3,3-Tetra-Fluoro-Propanol by UV/O3 Process[J]. Journal of Environmental Engineering, 2007, 133(10): 979-986.
    [62] Bustos Y A, Vaca M, Raymundo R, et al. Disinfection of A Wastewater flow Treated by Advanced Primary Treatment Using O(3), UV and O(3)/UV Combinations[J]. J Environ. Sci. Health A Tox Hazard Subst Environ. Eng, 2010, 45(13): 1715-1719.
    [63] Gong J L, Liu Y D, Sun X B. O3 And UV/O3 Oxidation of Organic Constituents of Biotreated Municipal Wastewater[J]. Water Research, 2008, 42(4-5): 1238-1244.
    [64] Xu B B, Chen Z L, Qi F, et al. Comparison of N-Nitrosodiethylamine Degradation in Water by UV Irradiation and UV/O3: Efficiency, Product and Mechanism[J].Journal of Hazardous Materials, 2010, 179(1-3): 976-982.
    [65] Rao Y F, Chu W. A New Approach to Quantify the Degradation Kinetics of Linuron with UV, Ozonation and UV/O3 Processes[J]. Chemosphere. 2009, 74(11): 1444-1449.
    [66] Jung Y J, Oh B S, Kang J W. Synergistic Effect of Sequential or Combined Use of Ozone and UV Radiation for the Disinfection of Bacillus Subtilis Spores[J]. Water Research, 2008, 42(6-7): 1613-1621.
    [67] Chin A, P. Berube R. Removal of Disinfection By-Product Precursors with Ozone-UV Advanced Oxidation Process[J]. Water Research, 2005, 39(10): 2136-2144.
    [68] Collivignarelli C, Sorlini S. Aops with Ozone and UV Radiation in Drinking Water: Contaminants Removal and Effects on Disinfection Byproducts Formation[J]. Water Science and Technology, 2004, 49(4): 51-56.
    [69] Sharrer M J, Summerfelt S T. Ozonation Followed by Ultraviolet Irradiation Provides Effective Bacteria Inactivation in a Freshwater Recirculating System[J]. Aqucultural Engineering, 2007, 37(2): 180-191.
    [70] Savoye P, Janex M L, Lazarova V. Wastewater Disinfection by Low-Pressure UV and Ozone: a Design Approach Based on Water Quality[J]. Water Science and Technology, 2001, 43(10): 163-171.
    [71] Oh B S, S. J. Park, Y. J. Jung, et al. Disinfection and Oxidation of Sewage Effluent Water Using Ozone and UV Technologies. Wastewater Reclamation and Reuse for Sustainability. 2007, 55(1-2): 299-306.
    [72] Landis H, Neemann J, Hulsey B, et al. Disinfecting the Coquitlam Water Supply: Ozone and UV Disinfection[J]. Ozone: Science and Engineering, 2007, 29(4): 287-390.
    [73] Gehr R, Wagner M, Veerasubramanian P, et al. Disinfection Efficiency of Peracetic Acid, UV and Ozone after Enhanced Primary Treatment of Municipal Wastewater[J]. Water Research, 2003, 37(19): 4573-4586.
    [74] Goncharuk V V, Potapchenko N G, Vakulenko V F, et al. Disinfection of Natural Water by Combined Treatment with Ozone and UV Radiation[J]. Khimiya i Tekhnologiya Vody, 2005, 27(3): 266-282.
    [75]马晓敏,宋强,胡春等.紫外、臭氧复合对饮用水的杀菌除微污染实验[J].环境科学, 2002, 23(5): 57-61.
    [76]马娟,朱琨,赵留辉,等. UV/O3复合对水中大肠杆菌的杀灭作用[J].兰州铁道学院学报, 2003, 22(3): 34-37.
    [77] You H, Du Q, Sun D. Study on Ballast Water Treatment by Using UV/O3 Process: AP-AWTGORT[C]. Dalian, 2006, 9.
    [78] Yang H, Li G Y, An T C, et al. Photocatalytic Degradation Kinetics and Mechanismof Environmental Pharmaceuticals in Aqueous Suspension TiO2: A Case of Sulfa Drugs[J]. Catalysis Today, 2010, 153(3-4): 200-207.
    [79] Piecha M, Sarakha M, Trebse P. Photocatalytic Degradation Of Cholesterol-Lowering Statin Drugs by TiO2-Based Catalyst. Kinetics, Analytical Studies and Toxicity Evaluation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213(1): 61-69.
    [80] Yang H, An T. C, Li G Y, et al. Photocatalytic Degradation Kinetics and Mechanism of Environmental Pharmaceuticals in Aqueous Suspension of TiO2: A Case of Beta-Blockers[J]. Journal of Hazardous Materials, 2010, 179(1-3): 834-839.
    [81] Sun S, Ding J J, Bao J, et al. Photocatalytic Oxidation of Gaseous Formaldehyde on TiO2: An in Situ Drifts Study[J]. Catalysis Letters, 2010, 137(3-4): 239-246.
    [82] Turchi C S, Ollis D F. Photocatalytic Degradation of Organic Water Contaminants, Mechanisms Involving Hydroxyl Radical Attack[J]. Journal of Catalysis, 1990, 122(1): 178~192.
    [83] Ren C L, Yang B F, Wu M, Et al. Synthesis of Ag/ZnO Nanorods Array with Enhanced Photocatalytic Performance[J]. Journal of Hazardous Materials, 2010, 182(1-3): 123-129.
    [84] Duan X W, Wang G Z, Wang H Q, et al. Orientable Pore-Size-Distribution of Zno Nanostructures and Their Superior Photocatalytic Activity[J]. Crystengcomm, 2010, 12(10): 2821-2825.
    [85] Xu W G, Liu S F, Lu S X, et al. Photocatalytic Degradation in Aqueous Solution Using Quantum-Sized ZnO Particles Supported on Sepiolite[J]. Journal of Colloid and Interface Science, 2010, 351(1): 210-216.
    [86] Matos J, Garcia-Lopez E, Palmisano L, et al. Influence of Activated Carbon in TiO2 and Zno Mediated Photo-Assisted Degradation of 2-Propanol in Gas-Solid Regime[J]. Applied Catalysis B: Environmental, 2010, 99(1-2): 170-180.
    [87] Benabbou A K, Derriche Z, Felix C, et al. Photocatalytic Inactivation of Escherischia Coli: Effect of Concentration of TiO2 and Microorganism, Nature, and Intensity of UV Irradiation[J]. Applied Catalysis B: Environmental, 2007, 76: 257-263.
    [88] Manivasakan P, Rajendran V, Rauta P R, et al. Effect of TiO2 Nanoparticles on Properties of Silica Refractory[J]. Journal of the American Ceramic Society, 2010, 93(8): 2236-2243.
    [89] Umeda J, Kawakami M, Kondoh K, et al. Microstructural and Mechanical Properties of Titanium Particulate Reinforced Magnesium Composite Materials[J]. Materials Chemistry and Physics, 2010, 123(2-3): 649-657.
    [90] Fu Y Q, Jin X D, Ni Q Q. Preparation and Characterization of Pd-Tio2 Photocatalytic Materials Supported by Carbon Fibers[J]. Rare Metal Materials and Engneering, 2010, 39: 1075-1078.
    [91]胡春,王怡中,汤鸿霄.表面键联型TiO2/SiO2固定化催化剂的结构及催化性能[J].催化学报, 2001, 22(2): 385-388.
    [92]杨阳,陈爱平,古宏晨,等.以膨胀珍珠岩为载体的漂浮型TiO2光催化剂降解水面浮油[J].催化学报, 2001, 22(2): 177-180.
    [93]刘唯.高效、高速紫外灭菌系统的研究[D].哈尔滨工业大学硕士学位论文. 2006.
    [94] Lee H U, Jeong Y S, Park S Y, Et al. Surface Properties and Cell Response of Fluoridated Hydroxyapatite/TiO2 Coated on Ti Substrate[J]. Current Applied Physics, 2009, 9(2): 528-533.
    [95] Smith W, Zhao Y P. Superior Photocatalytic Performance by Vertically Aligned Core-Shell TiO2/WO3 Nanorod Arrays[J]. Catalysis Communications, 2009, 10(7): 1117-1121
    [96] Giornelli T, Lofberg A, E. Bordes-Richard. Preparation and Characterization of VOx/TiO2 Catalytic Coatings on Stainless Steel Plates for Structured Catalytic Reactors[J]. Applied Catalysis A: General, 2006, 305(2): 197-203.
    [97] Ding Z, Hu X, Lu G Q, et al. Novel Silica Gel Supported TiO2 Photocatalyst Synthesized by CVD Method[J]. Langmuir, 2000, 16: 6216-6222.
    [98] Riassetto D, Holtzinger C, Langlet M. Influence of Platinum Nano-Particles on the Photocatalytic Activity of Sol-Gel Derived TiO2 Films[J]. Journal of Materials Science, 2009, 40(10): 2637-2646.
    [99] Senthilkumaar S, Porkodi K. Heterogeneous Photocatalytic Decomposition of Crystal Violet in UV-Illuminated Sol–Gel Derived Nanocrystalline TiO2 Suspensions[J]. Journal of Colloid and Interface Science, 2005, 288(1): 184-189.
    [100]Bockmeyer M, Herbig B. Microstructure of Sol–Gel Derived TiO2 Thin Films Characterized by Atmospheric Ellipsometric Porosimetry[J]. Thin Solid Films, 2009, 517(5): 1596-1600.
    [101]潘秉锁,陈裕康,胡国荣,等.金刚石表面沉积二氧化钛薄膜研究[J].地质与勘探, 2000, 36(2): 74-76.
    [102]Yan T T Y, Yip C K, Beydoun D, et al. Effects of Nano-Ag Particles Loading on TiO2 Photocatalytic Reduction of Selenate Ions[J]. Chemical Engineering Journal, 2003, 95(1-3): 179-186.
    [103]Rodriguez J, Gomez M, Lindquist S E, et al. Photo-Electrocatalytic Degradation of 4-Chlorophenol over Sputter Deposited Ti Oxide Films[J]. Thin Solid Films, 2000,360(1-2): 250-255.
    [104]Dumitriu D, Bally A R, Ballif C, et al. Photocatalytic Degradation of Phenol by TiO2 Thin Films Prepared by Sputtering[J]. Applied Catalysis B: Environmental, 2000, 25(2-3): 83-92.
    [105]Mazzarino I, Piccinini P. Photocatalytic Oxidation of Organic Acids in Aqueous Media by a Supported Catalyst[J]. Chemical Engineering Science, 1999, 54(15-16): 3107-3111.
    [106]Chiang H J, Shyuu J M, Wang C M. Photodegradation of Chlorinated Organic Wastes with N-TiO2 Promoted by P-CuO[J]. Journal of the Chinese Chemical Society, 1996, 43(1): 21-27.
    [107]Choi W, Termin A, Hoffmann M R. Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles[J]. Angewandte Chemie International Edition in English, 1994, 33(10): 1091-1092.
    [108]Chen J, Ollis D F, Rulkens W H, et al. Photocatalyzed Oxidation of Alcohols and Organochlorides in the Presence of Native TiO2 and Metallized TiO2 Suspensions. Part(Ⅱ): Photocatalytic Mechanisms[J]. Water Research, 1999, 33(3): 669-676.
    [109]郭俊怀,沈星灿,郑文君,等.载银纳米TiO2光催化降解水中有机污物[J].应用化学, 2003, 20(5): 4-23.
    [110]Suh H M, Choi J R, Hah H J, et al. Comparison of Ag Deposition Effects on the Photocatalytic Activity of Nanoparticulate TiO2 Under Visible and UV Light Irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1-2): 37-44.
    [111]Sen S, Mahanty S, Roy S, et al. Investigationonsol. Gelsynthesized Ag Doped TiO2[J]. Eermetthinfilms Thin Solid Films, 2005, 474(1-2): 245-246.
    [112]戴晋明,魏丽乔,许并社.纳米Ag/TiO2复合材料抗菌机理及其在聚乙烯基体中分散性的研究[J].合成纤维, 2000, 3: 22-25.
    [113]Herrmann J M, Tahiria H, Ichou Y A, et al. Characterization and Photocatalytic Activity in aqucous Medium of TiO2 and Ag/TiO2 Coatings on Quartz[J]. Applied Catalysis B: Environmental, 1997, 13(2-3): 219-228.
    [114]Sokmen M., Candan F, Sumer Z. Disinfection of E.Coli by the Ag/TiO2/UV System: Lipidperoxidation[J]. Journal of Photochemistry and Photobiology A: Chcmistry, 2001, 143(2-3): 241-243.
    [115]Shi L, Li C, Gu H C, et al. Morphology and Properties of Ultrafine SnO2-TiO2 Coupled Semiconductor Particles[J]. Materials Chemistry and Physics, 2000, 62(1): 62-67.
    [116]Jung K Y, Park S B. Enhanced Photoactivity of Silica-Embedded Titania Particles Prepared by Sol-Gel Process for the Decomposition of Trichloroethylene[J].Applied Catalysis B: Environmental, 2000, 25(4): 249-256.
    [117]Wang J, Zhang G, Guan, et al. Investigation on Photocatalytic Degradation of Ethyl Violet Dyestuff Using Visible Light in the Presence of Ordinary Rutile TiO2 Catalyst Doped with Upconversion Luminescence Agent[J]. Water Research, 2006, 40(11): 2143-2150.
    [118]Zhang Y R, Wan J, Ke Y Q. A Novel Approach of Preparing TiO2 Films at Low Temperature and Its Application in Photocatalytic Degradation of Methyl Orange[J]. Journal of Hazardous Materials, 2010, 117(1-3): 750-754.
    [119]Xu R, Li J, Wang J, et al. Photocatalytic Degradation of Organic Dyes Under Solar Light Irradiation Combined with Er3+:YalO3/Fe- and Co-Doped TiO2 Coated Composites[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1157-1165.
    [120]Anandan S, Kumara P S, Pugazhenthiran N, et al. Effect of Loaded Silver Nanoparticles on TiO2 for Photocatalytic Degradation of Acid Red 88[J]. Solar Energy Materials and Solar Cells, 2008, 92(8): 929-937.
    [121]Mahmoodi N M, Arami M, Limaee N Y. Photocatalytic Degradation of Triazinic Ring-Containing Azo Dye (Reactive Red 198) by Using Immobilized TiO2 Photoreactor: Bench Scale Study[J]. Journal of Hazardous Materials, 2006, 133(1-3): 113-118.
    [122]Mills A, Hunte L. An Overview of Semiconductor Photocatalysis[J]. Journal of Photochemistry and Photobiology. A: Chemistry, 1997, 108(1): 1-35.
    [123]Bolduc L, Anderson W A. Enhancement of the Biodegradatbility of Model Wastewater Containing Recalcitrant of Inhibitory Chemical Compounds by Photocatalytic Pre-Oxidation[J]. Biodegradation, 1997, 8(4): 237-249.
    [124]Lu Z X, Zhou L, Zhang Z L, et al. Cell Damage Induced by Photocatalysis of TiO2 Thin Films[J]. Langmuir, 2003, 19: 8765-8768.
    [125]Sunada K, Watanabe T, Hashimoto K. Studies on Photokilling of Bacteria on TiO2 Thin Film[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156: 227-233.
    [126]Hieronim S, Anna S G, Adam R, et al. Photo-Induced Properties of Thin TiO2 Films Deposited Using the Radio Frequency Plasma Enhanced Chemical Vapor Deposition Method[J]. Thin Solid Films, 2007, 515: 5275-5281.
    [127]Wu D. H., You H., Liu W W, et al. Ballast Water Treatment by UV/Ag/TiO2 Process[J]. Journal of Biotechnology, 2008, S136: 763-764.
    [128] Li X Z, Liu H S. Development of an E-H2O2/TiO2 Photoelectrocatalytic Oxidation System for Water and Wastewater Treatment[J]. Environmental Science and Technology, 2005, 39(12): 4614-4620.
    [129]陶海军,陶杰,王玲,等.纯钛及其合金表面纳米多孔TiO2膜的制备研究[J].南京航空航天大学学报, 2005, 37(5): 597-602.
    [130]巩运兰,任云霞,杨云,等.电压施加方式在阳极氧化钛薄膜形成过程中的作用[J].化工学报, 2007, 52(12): 3185-3190.
    [131]Matsunaga T, Nakajima T, Wake H. Photochemical Sterilization of Microbial Cells by Semiconductor Powders[J]. FEMS Microbiol Lett, 1985, 29: 211-214.
    [132]Cho M, Chung H, Choi W, et al. Linear Correlation Between Inactivation Of E. Coli and OH Radical Concentration in TiO2 Photocatalytic Disinfection[J]. Water Research, 2004, 38: 1069–1077.
    [133]Daoud W A, Xin J H, Zhang Y H. Surface Functionalization of Cellulose Fibers with Titanium Dioxide Nanoparticles and Their Combined Bactericidal Activities[J]. Surface Science, 2005, 599(1-3): 69-75.
    [134]Hara-Kudo Y, Segawa Y, Kimura K. Sanitation of Seawater Effluent from Seaweed Processing Plants Using a Photo-Catalytic TiO2 Oxidation[J]. Chemosphere, 2006, 62(1): 149-154.
    [135]Kim B, Kim D, Cho D, et al. Bactericidal Effect of TiO2 Photocatalyst on Selected Food-Borne Pathogenic Bacteria[J]. Chemosphere, 2003, 52(1): 277-281.
    [136]Kuhn K P, Chaberny I F, Massholder K, et al. Disinfection of Surfaces by Photocatalytic Oxidation with Titanium Diox and UVA Light[J]. Chemosphere, 2003, 53(1): 71-73.
    [137]Huang H, Maness P C, Blake D M, et al. Bactericidal Mode of Titanium Dioxide Photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 130(2-3): 163.
    [138]徐瑞芬,佘广为,许秀艳.复合涂料中纳米TiO2降解污染物和抗菌性能研究[J].化工进展, 2003, 22(11): 1193-1195.
    [139]Kikuchi Y, Sunada K, Lyoda T, et al. Photocatalytic Bactericidal Effect of TiO2 Thin Film: Dynamic View of the Active Oxygen Species Responsible for the Effect[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 106: 51-56.
    [140]Cai R, Kubota Y, Shuin T, et al. Induction of Cytotoxicity by Photoexcited TiO2 Particles[J]. Cancer Research, 1992, 52: 2346-2348.
    [141]Sakai H, Baba R, Hashimoto K, et al. Selective Killing of a Single Cancerous T24 Cell with TiO2 Semiconducting Microelectrode Under Irradiation[J]. Chemistry Letters, 1995, 24(3): 185-186.
    [142]Sunada K, Kikuchi Y, Fujishima A. Bactericidaland Detoxification Effects of TiO2 Thin Film Photocatalysts[J]. Environmental Science and Technology, 1998, 32(5): 726-728.
    [143]Jacoby W A, Maness P C, Wolfrum E J. Mineralization of Bacterial Cell MassonaPhoto Catalytic Surface in Air[J]. Environmental Science and Technology, 1998, 32(17): 2650-2653.
    [144]彭文璟,汤华钊,向晶晶,等.纳米TiO2抑菌机理研究[J].四川大学学报(自然科学版), 2006, 43(4): 908-912.
    [145]Saito T, Iwase T, Horie J, et al. Mode of Photocatalytic Bactericidal Action of Powered Semiconductor TiO2 on Mutants Streptococci[J]. Journal of Photochemistry and Photobiology B: Biology, 1992, 14: 369-379.
    [146]Dunlop P S, Byrne J A, Manga N, et al. The Photocatalytic Removal of Bacterial Pollutants from Drinking Water[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148(1): 355-363.
    [147]Hirakawa K, Mori M, Yoshida M, et al. Photoirradiated Titanium Dioxide Catalyzes Site Specific Damage Via Generation of Hydrogen Peroxide[J]. Free Radic Res, 2004, 38(5): 439-447.
    [148]刘平,林华香,付贤智,等.掺杂TiO2光催化膜材料的制备及其灭菌机理[J].催化学报, 1999, 20(3): 325-328.
    [149]Matsunaga T, Tomoda R, Nakajima T, et al. Continuous Sterilization System that Use Photosemiconductor Powders[J]. Applied and Environmental Microbiology, 1988, 54(6): 1330-1333.
    [150]Wamer W G, Yin Y Y, Wei R R, et al. Oxidation Damage to Nucleic Acids Photo Sensitized by Titanium Dioxide[J]. Free Radic Biol. Med, 1997, 23(6): 851-858.
    [151]Dunford R, Salinaro A, Cai L, et al. Chemical Oxidation and DNA Damage Catalysed by Inorganic Sunscreen Ingredients[J]. FEBS Lett, 1997, 418(1): 87-88.
    [152]Ilmay J A, Fridovich I. Suppression of Oxidative Envelope Damage by Pseudoreversion of a Superoxide Dismutase-Deficient Mutant of E. Coli[J]. Bacteriol, 1992, 174(3): 953-961.
    [153]Hidaka H, Horikoshi S, Serpone N, et al. In Vitro Photochemical Damage to DNA RNA and Their Bases by an Iinorganic Sunscreen Agent on Exposure to UVA and UVB Radiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 111(1): 205-213.
    [154]Wang S P, Shiraishi F, Nakano K. A Synergistic Effect of Photocatalysis and Ozonation on Decomposition of Formic Acid in an Aqueous Solution[J]. Chem. Eng. J, 2002, 87: 261-271.
    [155]Nakamura Y, Kobayashi F, Daidai M, et al. Purification of Seawater Contaminated with Undegradable Aromatic Ring Compounds Using Ozonolysis Followed by Titanium Dioxide Treatment[J]. Mar. Pollut. Bull, 2008, 57: 53-58.
    [156]Agustina T E, Ang H M, Vareek V K. A Review of Synergistic Effect of Photocatalysis and Ozonation on Wastewater Treatment[J]. J. Photochem.Photobiol. C: Photochem. Rev, 2005, 6: 264-273.
    [157]Ragaini V, Selli E, Bianehi C L, et al. Sono-Photoeatalytic Degradation of 2-Chlorophenol in Water: Kinetie and Energetic Comparison with other Techniques[J]. Ultrasonics Sonochemistry, 2001, 8(3): 251-258.
    [158]Kopf P, Gilbert E, Eberle S H. TiO2 Photocatalytic Oxidation of Monoehloroacetic Acid and Pyridine: Influence of Ozone[J]. J. Photoehem. Photobiol. A: Chem, 2000, 136(3): 163-168.
    [159]CJ/T 3028.2-94.臭氧发生器臭氧浓度、产量、电耗的测量[S].北京:中华人民共和国建设部,1994.
    [160]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版) [S].北京:中国环境科学出版社, 2002.
    [161]Amsler C D, Moeller C B, Mcclintock J B, et al. Chemical Defenses Against Diatom Fouling in Antarctic Marine Sponges[J]. Biofouling, 2000, 16(1): 29-45.
    [162] Gavand M R, Mcclintock J B, Amsler C D, et al. Effects of Sonication and Advanced Chemical Oxidants on the Unicellular Green Alga Dunaliella Tertiolecta and Cysts, Larvae and Adults of the Brine Shrimp Artemia Salina: a Prospective Treatment to Eradicate Invasive Organisms from Ballast Water[J]. Marine Pollution Bulletin, 2007, 54(11): 1777-1788.
    [163]APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater (20th Ed.)[D]. Washington DC, USA, 1998.
    [164]Esterbauer H, Cheeseman K H. Determination of Aldehydic Lipid Peroxidation Products: Malonaldehyde and 4-Hydroxynonenal[J]. Methods Enzymol, 1990, 186B: 407-421.
    [165]Maness P C, Molinski S S, Blake D M, et al. Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward an Understanding of its Killing Mechanisms[J]. Appl. Environ. Microbiol, 1999, 65: 4094-4098.
    [166]Bradford M M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding[J]. Anal. Biochem, 1976, 72: 248-254.
    [167]Rizzo L. Inactivation and Injury of Total Coliform Bacteria after Primary Disinfection of Drinking Water by TiO2 Photocatalysis[J]. J. Hazard. Mater, 2009, 165: 48–51.
    [168]Yao K S, Wang D Y, Ho W Y, et al. Photocatalytic Bactericidal Effect of TiO2 Thin Film on Plant Pathogens[J]. Surf. Coat. Technol, 2007, 201: 6886-6888.
    [169]Koivunen J, Heinonen T H. Inactivation of Enteric Microorganisms with Chemical Disinfectants, UV Irradiation and Combined Chemical/UV Treatments[J]. WaterRes., 2005, 39(8): 1519-1526.
    [170]Kumiko O, Hiroyuki K, Shinichiro O. Photoreactivation of Legionella Pneumophila after Inactivation by Low-Or Medium-Pressure Ultraviolet Lamp[J]. Water Res., 2004, 38: 2757-2763.
    [171]Sanz E N, Davila I S, Balao J A A, et al. Modelling of Reaction after UV Disinfection: Effect of UV-C Dose on Subsequent Photoreactivation and Dark Repair[J]. Water Res., 2007, 41 (14): 3141-3151.
    [172]Mirat D G, Vatistas R. Oxidation of Phenolic Compounds by Ozone and Ozone/UV Radiation: a Comparative Study[J]. Water Research, 1987, 21: 895-900.
    [173]Palombari R, Ranchella M, Rol C, et al. Oxidative Photoelectrochemical Technology with Ti/TiO2 Anodes. Solar Energy Materials and Solar Cells[J]. 2002, 71(3): 359-368.
    [174]Oha H J, Lee J H, Jeong Y, et al. Microstructural Characterization of Biomedical Titanium Oxide Film Fabricated by Electrochemical Method[J]. Surface and Coating Technology, 2005, 198: 247-252.
    [175]Su C, Yeh J C, J. Lin L, et al. The Growth of Ag Films on a TiO2 (110)-(1x1) Surface[J]. Applied Surface Science, 2001, 169/170: 366-370.
    [176]Haick H, Paz Y. Long-Range Effects of Noble Metals on the Photocatalytic Properties of Titanium Dioxide[J]. Journal of Physical Chemistry B, 2003, 107(10): 2319-2326.
    [177]任学昌,史载锋,孔令仁. TiO2薄膜的Ag改性及光催化活性[J].催化学报, 2006, 27(9): 815-822.
    [178]刘守新,曲振平,韩秀文,等. Ag担载对TiO2光催化活性的影响[J].催化学报, 2004, 25(2): 133-137.
    [179]Shang C, L. Cheung M, Ho C M, et al. Repression of Photoreactivation and Dark Repair of Coliform Bacteria by TiO2-Modified UV-C Disinfection[J]. Appl. Catal. B: Environ, 2009, 89: 536–542.
    [180]Hu C, Guo J, Qu J H, et al. Photocatalytic Degradation of Pathogenic Bacteria with AgI/TiO2 under Visible Light Irradiation[J]. Langmuir, 2007, 23(9): 4982-4987.
    [181]刘坤,高廷耀.关于微孔曝气系统性能及其设计的探讨[J].净水技术, 2002, 21(4): 5-8.
    [182]元宝艳,闫庆松.臭氧在水处理中应用综述[J].西南给排水, 2005, 27(4): 5-8.
    [183]刘秀华,傅依备.废水处理光催化反应器的发展[J].工业水处理, 2004, 24(12): 1-4.
    [184]Mamane H, Shemer H, Linden G K. Inactivation of E. Coli, B. Subtilis Spores, andMS2, T4, and T7 Phage Using UV/H2O2 Advanced Oxidation[J]. J. Hazard. Mater, 2007, 146: 479-486.
    [185]Ikemizu K, Morooka S, Kato Y. Decomposition Rate of Ozone in Water with Ultraviolet Radiation[J]. J. Chem. Eng. Japan,1987, 20: 77-81.
    [186]张晖,陈焕钦.紫外光辐射下臭氧在水中的分解动力学[J].高校化学工程学报, 2002, 16(1): 28-32.
    [187]Cho M, Chung H, Yoon J. Effect of pH and Importance of Ozone Initiated Radical Reactions in Inactivating Bacillus Subtilis[J]. Ozone Science and Engineeering, 2002, 24(2): 145-150.
    [188]吴迪,刘淼,董德明.影响羟基自由基在O3/UV体系中生成规律的因素[J].吉林大学学报(地球科学版), 2007, 37(1): 148-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700