用户名: 密码: 验证码:
高填方路堤流变沉降本构模型及其计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速公路逐步向多丘多山的中西部地区延伸,在这些地区修筑高速公路不可避免地出现了大量填切高度在10~30米的高填方路基,如何有效计算和预测高填方路堤工后沉降,消除路堤沉降所带来的危害已成为中西部地区公路建设科技领域的一个重要课题。本文以粘弹性流变理论为基础,从对路基流变沉降的本构模型入手,主要开展以下研究工作:
     (1)结合已建和在建的高填方工程实例,就高填方问题产生的原因、表现形式以及导致其流变沉降的因素等问题进行了较为深入剖析,并通过对路基填土的流变性开展室内试验研究,从流变实验装置的设计、实验方案的制订到流变实验的实施,形成较为完整的岩土材料室内流变规程,获得了一系列实验数据,为高填方路基沉降计算提供参考。
     (2)在流变实验的基础上对岩土材料流变本构模型的建立进行深入探讨,通过对已有流变本构模型的优缺点的比较,本文最终选择了基于分数阶微积分的流变本构模型,并对该类模型中普遍存在的量纲问题进行了探讨。通过引入名义松弛时间不仅解决了本构关系中的量纲问题,而且结合流变学中Deborah数,更为深刻地揭示了岩土流变实验中时间尺度效应,并基于分数阶微积分理论和Mittag-Leffler函数建立了压实土的三参数和四参数类Maxwell以及四参数类Kelvin-Voigt流变本构模型,采用含权值的面积判定函数以及逐点搜索的方式,实现了本构模型参数的自动辨识。
     (3)在建立的流变本构模型的基础上对高填方路堤在填筑过程以及工后的沉降变形问题进行了力学模型抽象,利用弹性半空间在荷载作用应力分布的Boussineq-Flamant解析解,按照弹性-粘弹性对应原理,并采用基于分数阶微积分的流变本构得到了半无限粘弹性空间下的应力分布及位移变化的解析近似解,进而研究了高填方路堤自身的应力分布及变形的解析近似解,最终得到了较为完整的高填方路堤流变沉降的简化计算公式。
     (4)基于粘弹性有限元方法,借助大型通用非线性有限元软件ADINA,通过采用粘弹性材料模式,利用单元生死技术,着重探讨了高填方路堤在三维复杂边界条件下的流变性状,并模拟了地形、填筑速度以及路堤边坡等因素对其流变沉降量的影响。
Along with the streth of China’s highway gradually forwards the central-western regions of multihilllock and multimound in China where in highway building would appear unavoidably a large number of high-filling subgrades whose fill-cutting height is about 10~30 meters. How to calculate and predict efficiently the settlement of the high-filling embankment after establishment so as to eliminate the harm brought by the embankment settlement has become an important topic in the field of scientific technology of highway construction in the central-western regions. Based on the viscoelastic rheological theory, staring with the constitutive model of rheological settlement of subgrade, this paper unfolds the following researches:
     Combining the practical examples of built and underbuilding high-filling engineerings, the deep analysis is carried out on these problems of the reason caused by high-filling, the manifestation and the factors leading to its rheological settlement, and the indoor experiment research is unfolded on the rheological property of the subgrade filling, which is from the design of rheological experiment device, the formulation of experimental scheme to implementation of rheological experiment, so one integrated indoor rheological regulation of geotechnical materials is formed, and a series of test data have been obtained, which provide one reference for the calculation of high-filling subgrade settlement.
     The establishment of the rheological constitutive model of geotechnical material has been deeply explored at the base of the rheological experiment, comparing the merit and shortcoming of the existing rheological constitutive model, in this paper, the rheological constitutive model based on fractional order infinitesimal analysis was selected at last and the dimension problems existing generally in this kind of model have been explored. By introducing the nominal relaxation time, not only the dimension problem in the constitutive relation was resolved, but also combining Deborah number in rheology, and the time scale effect in the experiment of geotechnical rheology has been revealed profoundly, and based on the fractional order infinitesimal analysis theory and Millay-Leffler function, the three-parameter and four-parameter type Kelvin-Voigt rheological constitutive model have been built, by adoping the area decision function containing weight value and the means of pointwise searching, the automatic identifying of the constitutive model parameter has been realized.
     On the base of the built constitutive model of rheology, the problems of settlement deformation of high-filling embankment in filling and after building have been abstracted with mechanics model, using Boussineq and Flamant analytic solution of the elasticity half-space in the stress distribution of load action, according to the corresponding principle of elasticity-viscoelasticity, and adopting the rheological constitution based on the fractional order infinitesimal analysis, the stress distribution at the semi-infinite viscoelastic space and the analytic approximate solution of displacement variation have been obtained, and then, its own stress distribution of the high-filling embankment and the analytic approximate solution of its deformation have been researched, at last, the compatibly complete simplified calculation formula of the high-filling embankment in rheological settlement has been obtained.
     Based on the viscoelastic finite element method, with the aid of ADINA, the large-scale universal non-linear finite-element software, adopting the model of viscoelastic material, and utilizing the element living-death technology, the rheological performance of the high-filling embankment in the condition of complex three-dimension boundary has been explored emphatically, and the influence of these factors, the topography, the reclamation speed and the embankment slope on its rheological settlement quantity have been simulated.
引文
[1]交通部规划研究院.国家高速公路网规划[R].中华人民共和国交通部, 2004.
    [2]霍明.山区高速公路勘察设计指南[M].北京:人民交通出版社, 2003.
    [3]吴平,黄庆,王桂尧.耒宜高速公路高路堤稳定及沉降监测系统[J].公路与汽运, 2002, (6): 26-27.
    [4]高伏良.高填方路基自然沉降现象与应对措施[J].中南公路工程, 2003, 28(2): 63-64.
    [5]徐晓宇.高填方路基沉降变形特性及其预测方法研究[硕士论文].长沙:长沙理工大学, 2005.
    [6]赵炼恒,罗恒,李亮等.冲击压实技术在高速公路高填方路基中的应用研究[J].公路工程, 2006, 25(S2): 4191-4197.
    [7]张重禄,张映雪,宁向向等.基于CSD的常吉高速公路高路堤和高架桥方案比选[J].公路与汽运, 2007, (5): 102-104.
    [8]方来,侯桂荣,陶可.邵怀高速公路路基沉降与稳定观测及分析[J].公路工程, 2007, 32(5): 193-196.
    [9]彭敏.衡炎高速公路关键工程的施工技术[J].山西建筑, 2008, 34(19): 272-273.
    [10]杨兵,陈谦应.成渝高速公路三星沟高路堤软弱地基处理试验研究[J].路基工程, 2000, (3): 36-39.
    [11]唐双林.干沟填石高路堤稳定性监测技术研究[J].路基工程, 2010, (1): 37-38.
    [12]袁龙蔚著.流变力学[M].北京:科学出版社, 1986.
    [13]孙钧著.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社, 1999.
    [14]维亚洛夫著.土力学的流变原理[M].北京:科学出版社, 1987.
    [15]倪俊.高速公路高填方路基沉降智能反分析与预测方法研究[博士论文].武汉:中科院武汉岩土力学研究所, 2006.
    [16]景宏君著.土质路基三维固结变形理论及其应用[M].北京:科学出版社, 2008.
    [17]交通部第二公路勘察设计院.路基(第二版)[M].北京:人民交通出版社, 2004.
    [18]中华人民共和国行业标准.公路路基设计规范(JTG D30-2004)[M].北京:人民交通出版社, 2004.
    [19]东南大学,浙江大学,湖南大学等合编.土力学(第二版)[M].北京:中国建筑工业出版社, 2005.
    [20]冯文凯,刘汉超.修正双曲线法在路基沉降变形初期阶段的应用探讨[J].地质灾害与环境保护, 2001, 12 (3):60-63.
    [21]魏汝龙.从实测沉降过程推算固结系数[J].岩土工程学报, 1993, 15(2): 12-19.
    [22]杨光华.基础非线性沉降变形计算的双曲线模型法[J].地基处理, 1997, 8(1): 50-53.
    [23]杨涛,李国维,杨伟清.基于双曲线法的分级填筑路堤沉降预测[J].岩土力学, 2004, 25(10): 1551-1554.
    [24] Sridharan A, Murthy N S, Prskash K. Rectangular Hyperbola Method of Consolidation Analysis[J]. Geotenique, 1987, 37 (3): 355-368.
    [25] MOSLEH A. AL-SHAMRANI. Applicability of the rectangular hyperbolic method to settlementpredictions of sabkha soils[J]. Geotechnical and Geological Engineering, 2004, 22(4): 563-587.
    [26]НичипоровичA A,ПротнозосацокВетонныхгидротехническихсооруженийнанескальныхоснованиях,ГидротехническоеСтроительство, 1955 (5): 32-38.
    [27]曾国熙,杨锡令.砂井地基沉陷分析[J].浙江大学学报(工学版), 1959, (3): 34-72.
    [28]曾国熙等.地基处理手册[M].北京:中国建筑工业出版社, 1988.
    [29]中堀和英等集体编著(日文),张文全译.软土地基处理[M].北京:人民交通出版社, 1982.
    [30]星埜和.最近における基礎の諸問題[J].土木学会誌, 1962, 47(7): 63-67.
    [31]张留俊,王福胜,刘建都著.高速公路软土地基处理技术—试验研究与工程实例. [M].北京:人民交通出版社, 2002.
    [32] Asaoka A. Observational procedure of settlement prediction[J]. Soils and Foundation, 1978, 18(4): 87-101.
    [33] Bergado D T, Dario P M, Sampaco C L, et al. Prediction of Embankment Settlements by In-Situ Tests[J]. Geochemical Testing Journal, 1991, 14(4): 425-439.
    [34]许永明,徐泽中.一种预测路基工后沉降量的方法[J].河海大学学报, 2000, 28(5): 111-113.
    [35]宰金眠,梅国雄.泊松曲线的特征及其在沉降推算中的应用[J].重庆建筑大学学报, 2001, 23(1): 30-35.
    [36]邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社, 1988.
    [37]冯希杰,刘玉海.西安市地面沉降发展趋势的灰色系统预测[J].长安大学学报(地球科学版), 1989, 11(2): 57-63.
    [38]陆少伟,周春平,傅鹤林.利用不等时距灰色理论预测地基沉降[J].世界采矿快报, 1998, 14(7): 44-46.
    [39]石世云.多变量灰色模型MGM(1, n)在变形预测中的应用[J].测绘通报, 1998, (10): 9-12.
    [40]左其亭,马军霞,张能奎.建筑物沉降量预测和最终沉降量早期确定的灰色Verhulst模型[J].岩土工程技术, 1998, 19(1): 59-62.
    [41]张仪萍,张土乔,龚晓南.沉降的灰色预测[J].工业建筑, 1999, 29(4): 45-49.
    [42] Hecht-Nielsen R. Theory of the back-propagation neural network. Proceedings of International Joint Conference on of Neural Networks. 1989 (1): 593-599.
    [43] Hornik K, Stinchcombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforword networks. Neural Networks, 1990, 3: 551-560.
    [44] Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks, 1989 (2): 183-192.
    [45] Hinton G H, Sejnowskii T J, Ackley D H. Boltzmann machine: constraint satisfaction networks that learn. CMU-CS-84-119, Carnegie-Millon Uni., 1984.
    [46] Powell M J D. Radial basis functions for multivariate interpolation: a review. Department of App. Math. and Theoretical Physics, Cambridge University. Cambridge, England. 1985
    [47] Albus J S. A new approach to manipulator control: The cerebellar model articulation controller (CMAC). Trans. of the ASME Journal of Dynamic Systems. Measurement and Control, 1975, 97:220-227.
    [48]刘勇健.用人工神经网络预测高速公路软土地基的最终沉降[J].公路交通科技, 2000, 17(6): 15- 18.
    [49]李凡,周增来,吴敏.用小波神经网络预测高速公路软土地基最终沉降量[J].合肥工业大学学报(自然科学版), 2001, 24(6): 1124-1127.
    [50]李菊凤,宁立波等.基于RBF神经网络的软基沉降预测研究[J].湖南科技大学学报, 2005, 20(3): 49-52.
    [51]徐晓宇,王桂尧,匡希龙等.基于皮尔-遗传神经网络的高路堤沉降预测研究[J].公路交通科技, 2006, 23(1): 40- 47.
    [52]钟路,郭翠翠,袁景凌等.模糊神经网络在复合地基沉降量预测中的应用[J].武汉大学学报(理学版), 2007, 53(5): 548- 552.
    [53]刘吉福,陈新华.应用沉降速率法计算软土路堤剩余沉降[J].岩土工程技术, 2003, 25(2): 233-235.
    [54] Liu Yong-jian. Application of genetic algorithm to calculation of soft ground settlement[J]. Industrial construction, 2001, 31(5): 39-41.
    [55]李祝龙,章金钊.青藏公路冻土路基沉降的模糊综合评判[J].公路, 2000, (2) :21-24.
    [56] WANG Zhi-chao, LUO Ying-she, TANG Song-hua. Mechanism and calculation method of rheological settlement of high-filled embankment [J]. Journal of Central South University of Technology, 2008, 15:381-385.
    [57]罗晓辉.粘性土地基沉降计算方法的分析[J].武汉城市建设学院学报, 1996, 13(3): 67-72.
    [58]李广信主编.高等土力学[M].北京:清华大学出版社, 2004.
    [59]卢廷浩,刘祖德等编著.高等土力学[M].北京:机械工业出版社, 2006.
    [60]钱家欢,殷宗泽主编.土工原理与计算(第二版)[M].北京:中国水利水电出版社, 2006.
    [61]沈珠江著.理论土力学[M].北京:中国水利水电出版社, 2000.
    [62]黎莉,赵明华,刘晓明.高填石路堤施工阶段地基沉降分析方法初探[J].公路, 2002, (1): 64-66.
    [63]柴贺军,阎宗岭,贾学明著.土石混填路基修筑技术[M].北京:人民交通出版社, 2009.
    [64]刘奉银,赵然,谢定义等.黄土高填方路堤沉降分析[J].长安大学学报(自然科学版), 2003, 23(6): 23-28.
    [65]赵亻黾,韩世莲,陈荣生.考虑材料粘弹性机场高填方道床沉降分析[J].中国公路学报, 1999, 12(S1): 25-30.
    [66]曹喜仁,钟守滨,淤永和.高填石路堤工后沉降分析及工程算法探讨[J].湖南大学学报(自然科学版), 2002, 29(6): 112-117.
    [67]曹喜仁,赵振勇.高填石路堤施工期沉降规律研究[J].公路, 2004, (5): 27-30.
    [68]曹喜仁.高填石路堤工期沉降与工后沉降实用计算方法研究[J].湖南大学学报(自然科学版), 2005, 32(2): 54-58.
    [69]曹喜仁,赵振勇,赵明华.高填石路堤地基沉降计算方法研究[J].公路交通科技, 2005, 22(6): 38-41.
    [70]吕庆,尚岳全,陈允法等.高填方路堤粘弹性参数反演与工后沉降预测分析[J].岩石力学与工程学报, 2005, 24(7): 1231-1235.
    [71]曹文贵,李鹏,程晔.高填石路堤蠕变本构模型及其参数反演分析与应用[J].岩土力学, 2006, 27(8): 1299-1304.
    [72]刘宏,李攀峰,张倬元.用压缩蠕变试验研究高填方体沉降变形[J].西南交通大学学报, 2004, 39(6): 749-753.
    [73]刘宏,张倬元,韩文喜.高填方地基土工离心模型试验技术研究[J].地质科技情报, 2005, 24(1): 103-106.
    [74]傅旭东,邱晓红,赵刚等.巫山县污水处理厂高填方地基湿化变形试验研究[J].岩土力学, 2004, 25(9): 1385-1389.
    [75]董云,柴贺军,杨慧丽.土石混填路基原位直剪与室内大型直剪试验比较[J].岩土工程学报, 2005, 27(2): 235-238.
    [76]董云,柴贺军.土石混合料室内大型直剪试验的改进研究[J].岩土工程学报, 2005, 27(11): 1329-1333.
    [77]董云,柴贺军.土石混合料振动压实特性的试验研究[J].路基工程, 2006, (5): 73-75.
    [78]董云,柴贺军,阎宗岭.土石混填路基沉降变形特征的离心模型试验研究[J].公路交通科技, 2007, 24(3): 25-29.
    [79]董云.土石混合料强度特性的试验研究[J].岩土力学, 2007, 28(6): 1269-1274.
    [80]董云,阎宗岭.土石混填路基沉降变形特征的二维力学模型试验研究[J].岩土工程学报, 2007, 29(6): 943-947.
    [81]杨锡武,张永兴.山区公路高填方涵洞减载方法及试验研究[J].土木工程学报, 2005, 38(7): 116-121.
    [82]杨锡武,张永兴.公路高填方涵洞土压力变化规律及计算方法研究[J].土木工程学报, 2005, 38(9): 119-124.
    [83]杨锡武,张永兴.山区公路高填方涵洞的成拱效应及土压力计算理论研究[J].岩石力学与工程学报, 2005, 24(21): 3887-3893.
    [84]景宏君.振动压实与黄土高路堤沉降变形[博士论文].西安:长安大学, 2004.
    [85] Taylor D W, Merchant W. A theory of clay consolidation accounting for second compression[J]. Journal of Mathematics and Physics, 1940, Vol.19.
    [86] Tan Tjong-kie.第五届国际土力学及基础工程会议上的综合报告[C]. 5rd ICOSOMEF, 1953.
    [87] Lama R D, Vutukuri V S. Handbook on Mechanical Properties of Rocks[M]. Vol.III Trans Tech Publications, 1978.
    [88]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [89]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报, 2001, 20(6): 772-779.
    [90]段祝庚,陈晓斌.土石混填路堤长期沉降测试与计算分析[J].铁道科学与工程学报, 2007, 4(5): 57-62.
    [91]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].同济大学学报, 1991, 19(4): 395-401.
    [92]陈晓斌,张家生,封志鹏.红砂岩粗粒土流变工程特性试验研究[J].岩石力学与工程学报, 2007, 26(3): 601-607.
    [93]王智超,罗迎社,罗文波等.高填方路基压实土流变实验方法研究[J].湘潭大学自然科学学报, 2010, 32(3): 48-54.
    [94]沈珠江.土石料的流变模型及其应用[J].水利水运科学研究, 1994, (4): 335-342.
    [95]陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学, 2003, 24(2): 209-214.
    [96]范厚彬,樊志华,陆耀忠.基于层叠模型的岩土材料流变本构关系识别[J].岩石力学与工程学报, 2005, 24(5): 768-773.
    [97]殷德顺,任俊娟,和成亮,陈文.一种新的岩土流变模型元件[J].岩石力学与工程学报, 2007, 26(9): 1899-1903.
    [98]王智超,罗迎社,龚卫锋等.高填方路基压实土力学性状实验[J].铁道科学与工程学报, 2010, 7(4): 74-77.
    [99]王智超,罗迎社,罗文波等.路基压实土流变变形的力学表征及参数辨识[J].岩石力学与工程学报, 2011, 31 (1), 208-216.
    [100]谢康和,周健编著.岩土工程有限元分析理论与应用[M].北京:科学出版社, 2002.
    [101] Kavanagh K, Clough R. Finite element applications in the characterization of elastic solids[J]. Int J Solids Structure, 1972, 7:11-23.
    [102]刘维倩,黄光远,穆永科,等.岩土工程的位移反分析法[J].计算结构力学及其应用.1995, 12(1): 93-101.
    [103] Swoboda G, Ichikawa Y, Dong Q, et al. Back analysis of large geotechnical models[J]. Int J for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1455-1472.
    [104]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J].力学进展.1998, 28(4): 488-498.
    [105]吉林,赵启林,冯兆祥,等.岩土工程中反分析的研究进展[J].水利水运工程学报.2002, (4): 57-63.
    [106]中国岩石力学与工程学会编.面向国民经济可持续发展战略的岩石力学与岩石工程,中国岩石力学与工程学会第五次学术大会论文集[M].北京:中国科学技术出版社.1998.
    [107] Jurina L, Maier G, Podolak K. On Model Identification Problem in Rock Mechanics[A]. Proc. Symp. on the Geomechanics of Structurally Complex Formations[C]. Capri, 1977.
    [108] Gioda G, Sakurai S. Back Analysis Procedures for the Interpretation of Field Measurements in Geomechanics[J].Int. J. for Num. &Anal. Meth. in Geomech. 1987, 11:555-583.
    [109]袁勇.岩土工程中的系统辨识理论及其工程应用[博士论文].上海:同济大学, 1991.
    [110]袁勇,孙钧.岩体本构模型反演识别理论及其工程应用[J].岩石力学与工程学报, 1993, 12(3): 232-239.
    [111]杨林德等著.岩土工程问题的反演理论与工程实践[M].北京:科学出版社, 1995.
    [112]薛林.岩体粘弹性力学模型的判定定理及应用[J].岩土工程学报, 1994, 16(5): 1-10.
    [113]薛林.圆形隧道围岩蠕变柔量的确定及粘弹性力学模型的识别[J].岩石力学与工程学报, 1994, 12(4): 5-8.
    [114]薛林.粘弹性岩体力学模型识别与参数反演解析方法研究[J].工程地质学报, 1995, 3(1): 70-77.
    [115]夏才初,孙钧.蠕变实验中的流变模型辨识及参数确定[J].同济大学学报, 1996, 24(6): 498-503.
    [116]刘保国,孙钧.岩体粘弹性本构模型辨识的一种方法[J].工程力学, 1999, 16(1): 18-25.
    [117]左红伟.岩石流变模型的辨识[博士论文].上海:同济大学, 2000.
    [118]冯夏庭,刁心宏.智能岩石力学(1)-总论[J].岩石力学与工程学报, 1999, 18(2): 217-221.
    [119]冯夏庭著.智能岩石力学导论[M].北京:科学出版社, 2000.
    [120]冯夏庭.智能岩石力学的发展[J].中国科学院院刊, 2002, (4): 256-259.
    [121]冯夏庭,杨成祥.智能岩石力学(2)-参数与模型的智能辨识[J].岩石力学与工程学报, 1999, 18(3): 350-353.
    [122] Stephansson O, Hudson J A, Tsang C F. DecovalexⅡProject Task 4-Satte of Science Statement on Coupled T-H-M Issue Related to Performance Assessment, Draft 1, Decovalex Project, Stockholm,Sweden, 1996.
    [123] Detournay E J, Pearson R P, Thiercelin M. Modeling Rock Mechanical Processes in Petroleum Exploration and Production[J]. News Journal of ISRM, 1993, 2(1): 17-20.
    [124] Holland J H. Adaptation in neural and artificial systems[M]. Ann Arbor, MI: Univ. of Michigan Press, 1975.
    [125]代永新,王运敏,李如忠.用BP网络识别岩土材料本构关系的研究[J].金属矿山, 2001, 306(12): 28-30.
    [126]杨成祥,冯夏庭.非线性材料本构模型结构和参数的耦合进化识别[J].东北大学学报, 2002, 23(4): 379-382.
    [127]高玮,冯夏庭.岩土本构模型智能识别的若干研究[J].岩石力学与工程学报, 2002, 21(S2): 2532-2538.
    [128]高玮,郑颖人.基于生态竞争模型的岩体本构模型辨识新算法[J].岩土工程学报, 2002, 24(1): 93-97.
    [129]高玮,郑颖人,冯夏庭.岩土本构模型识别的仿生算法研究[J].岩土力学, 2004, 25(1): 31-36.
    [130]陈沅江.岩石流变的本构模型及其智能辨识研究[博士论文].长沙:中南大学, 2003.
    [131] WANG Zhichao, LUO Yingshe, TANG Songhua, et al. Identification technology based on constitutive model database of geotechnical material[J]. Journal of Central South University of Technology, 2007, 14:458-461.
    [132]李鹏.高填石路堤蠕变模型与参数反演分析及其应用研究[硕士论文].长沙:湖南大学, 2005.
    [133]张俊.高填方黄土路堤沉降规律研究[硕士论文].西安:长安大学, 2004.
    [134]张卫兵.黄土高填方路堤沉降变形规律与计算方法的研究[博士论文].西安:长安大学, 2007.
    [135]张林洪,吴华金编著.路基填筑施工技术[M].北京:人民交通出版社, 2008.
    [136]邝奋标,张三平,高燕希.施工期软土地基路堤填筑速率控制[J].公路与汽运, 2010, (1): 103-105.
    [137]杨人凤.冲击与振动复合压实技术的研究[博士论文].西安:长安大学, 2003.
    [138]杨挺青,罗文波等著.黏弹性理论与应用[M].北京:科学出版社, 2004.
    [139]罗迎社.金属流变成形的理论、实验与应用研究[博士论文].长沙:国防科学技术大学, 2000.
    [140]松岡元著,罗汀等编译.土力学[M].北京:中国水利水电出版社, 2001.
    [141]谢宁.土流变试验设计及有关问题研究[J].云南工学院学报,1994, 10(4): 76-82.
    [142]赵玉,张保俭,吕鹏.高速公路非软土路基沉降变形分析[J].路基工程, 2006, (5): 91-93.
    [143]黄生文编著.公路工程地基处理手册[M].北京:人民交通出版社, 2005.
    [144]中华人民共和国行业标准.公路土工试验规程(JTG E40-2007)[M].北京:人民交通出版社, 2007.
    [145]胡瑞林等.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社, 1995.
    [146]龚晓南,袁静,益德清.岩土流变模型研究的现状与展望[J].工程力学, 2000,增刊: 145-155.
    [147] Gemant A. A Method of Analyzing Experimental Results Obtained from Elasto-Viscous Bodies[J]. PHYSICS, 1936, 7: 311-317.
    [148] Mandelbrot B B. The fractal geometry of nature[M]. San Francisco: Freeman, 1982.
    [149] Shestopal V O, Goss P C J. The Estimation of Column Creep Buckling Durability from the InitialStages of Creep[J]. Acta Mechanica, 1984, 52: 269-275
    [150] Bagley R L,Torvik P J. On the Fractional Calculus Model of Viscoelastic Behavior[J]. Journal of Rheology, 1986, 30(1): 133-155.
    [151] Nonnenmacher T F, Metzler R. On the Riemann-Liouville fractional calculus and some recent applications[J]. Fractals, 1995, 3(3): 557-566.
    [152]张为民.一种采用分数阶导数的新流变模型理论[J].湘潭大学自然科学学报, 2001, 23(1): 30-36.
    [153] Ralf Metzlera, Theo F.Nonnenmacher. Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials[J]. International Journal of Plasticity, 2003, 19: 941-959.
    [154] YANG Pan, LAM Yee-Cheong, ZHU Ke-Qin. Constitutive equation with fractional derivatives for the generalized UCM model[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165: 88-97.
    [155] Podlubny L. Fractional Differential Equations[M]. Academic Press, New York, 1999.
    [156]孟祥增,钟义信,王翔英.信息的表征和测度方法及应用研究[J].情报学报, 2004, 23(1): 91-96.
    [157]钟义信.信息科学原理(第三版)[M].北京:北京邮电大学出版社, 2002.
    [158]李峻利,姚代禄主编.路基设计原理与计算[M].北京:人民交通出版社, 2004.
    [159]王敏中.发散积分的有限部分在弹性力学中的应用[J].应用数学和力学, 1985, 6(12): 1071-1078.
    [160] Poulos H G, Booker J R, Ring G J. Simplified caculaion of embankment deformations[J]. Soils and foundations, 1972, 12(4):1-17.
    [161] Poulos H G, Davis E H.著,孙幼兰译.岩土力学弹性解[M].北京:中国矿业大学出版社, 1986.
    [162]王芝银,李云鹏著.岩体流变理论及其数值模拟[M].北京:科学出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700