用户名: 密码: 验证码:
番茄灰霉病菌对丙烷脒的抗药性风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于杀菌剂抗药性问题日趋严重,许多杀菌剂对植物病害防治效果逐渐下降,某些原已被很好控制的植物病害也有加重发生的趋势,随着传统内吸性杀菌剂的持续应用,抗药性问题势必更加突出。研究新型杀菌剂抗药性风险对延长药剂使用寿命,指导田间科学用药,避免和延缓抗药性的发生具有十分重要的意义。番茄灰霉病菌(Botrytis cinerea)是一种寄主范围广、繁殖速度快、遗传变异大、危害极其严重的病原菌,目前抗药性问题已成为该病菌防治中所面临的突出问题。丙烷脒是西北农林科技大学无公害农药研究服务中心研制的具有我国自主知识产权的新型芳香二脒类内吸性杀菌剂,主要用于防治由番茄灰霉病菌引起的灰霉病。目前其抗药性方面的研究还未见报道。基于此,本研究以番茄灰霉病菌为靶标菌,主要从敏感基线的建立、抗药性风险评价、抗药突变体产生抗药性的机制等方面进行了较为系统的测试和探讨,取得如下结果:
     1.采用菌丝生长速率法测定了采自西安、咸阳、杨凌、渭南、宝鸡等5个地区的41株番茄灰霉病菌对丙烷脒的敏感性。结果表明,丙烷脒对所有供试番茄灰霉病菌菌株均具有良好的抑制作用,不同菌株间EC50值差异较小,其中最大为1.460μg/mL,最小为0.182μg/mL,相差8.0倍,平均EC50值为0.791±0.269μg/mL。不同番茄灰霉病菌菌株对丙烷脒的敏感性频率分布呈连续单峰曲线,接近正态分布。因此,可以采用这些菌株的平均EC50值作为田间抗药性检测的敏感基线。
     2.通过紫外诱变和药剂选择共获得10株抗药突变体,其中紫外诱导获得1株,突变频率为1.98×10-9,药剂选择获得9株,突变频率为0.025。根据FAO对抗性的划分标准,结合敏感基线及抗药突变体的抗性水平,本研究将抗性表型划分为4类:EC50值小于5.0μg/mL时,为敏感菌株(S);EC50值在5.0~15.0μg/mL时,为低抗菌株(LR);EC50值在15.1~75.0μg/mL时,为中抗菌株(MR);EC50值大于75.0μg/mL时,为高抗菌株(HR)。据此,本试验共获得了8株低抗菌株和2株中抗菌株,未获得高抗菌株。获得抗性菌株的突变频率和抗性菌株的抗性水平均很低,表明番茄灰霉病菌对丙烷脒的抗药性发展非常缓慢。适合度研究结果显示,抗性菌株的生长量、产孢量、孢子萌发率、致病力等适合度指标均明显低于敏感菌株。交互抗药性测定结果表明,丙烷脒与嘧霉胺、多菌灵、速克灵、扑海因等常用杀灰霉剂无交互抗药性。综合分析以上研究结果可见,番茄灰霉病菌对丙烷脒具有低等抗药性风险。
     3.线粒体复合酶Ⅲ活性测定结果表明,离体条件下丙烷脒对敏感菌株和抗性菌株线粒体复合酶Ⅲ的活性均没有影响,活体条件下丙烷脒对敏感菌株线粒体复合酶Ⅲ的活性具有明显抑制作用,而抗性菌株的活性基本没有变化。结合前人研究结果可见丙烷脒对病菌线粒体复合酶Ⅲ相关基因表达的抑制是其抑菌的主因;番茄灰霉病菌对丙烷脒的抗药性与线粒体复合酶Ⅲ活性的变化密切相关。
     4.渗透压敏感性测定结果表明,敏感菌株对低渗透压和高渗透压均表现敏感,低抗菌株仅对低渗透压敏感,中抗菌株对低渗透压和高渗透压均不敏感,说明抗性菌株的渗透调节能力要大于敏感菌株。细胞膜透性测定结果表明,用各供试浓度丙烷脒处理番茄灰霉病菌敏感菌株和低抗菌株,以及用高浓度丙烷脒(25μg/mL和50μg/mL)处理中抗菌株后,所有菌株细胞膜的透性均有所增大;敏感菌株和低抗菌株最终(240min)的相对渗率虽然比较接近,但丙烷脒对敏感菌株细胞膜的损伤速度明显快于低抗菌株,说明两者的细胞膜透性及对丙烷脒的适应能力存在一定差异;此外,中抗菌株最终(240min)的相对渗率明显低于敏感菌株和低抗菌株,说明中抗菌株适应丙烷脒的能力明显强于敏感菌株和低抗菌株,其细胞膜受损伤的程度相对较小,使其细胞膜的透性相对低于敏感菌株和低抗菌株,且这种适应能力随着丙烷脒处理浓度的增大而降低。对渗透压的研究结果也证实了这一点。可见,渗透压敏感性下降和细胞膜透性的改变可能是番茄灰霉病菌对丙烷脒产生抗药性的生理机制之一。
     5.通过聚丙烯酰胺凝胶电泳比较了抗性菌株和敏感菌株酯酶同工酶和可溶性蛋白质的差异,发现抗性菌株和敏感菌株之间无论在谱带数上还是含量上都存在明显的差异,说明番茄灰霉病菌对丙烷脒的抗药性与酯酶同工酶和可溶性蛋白的组成及含量变化有关。
     6.利用cDNA-AFLP技术,对敏感菌株(091)和中抗菌株(F091-16)的基因表达进行了分析,共分离得到38个差异表达的TDFs片段,并对其中6个典型的TDFs片段进行克隆、测序和序列分析。结果表明,在6个差异片段中,有4个找到了同源序列,其中TDF2、TDF4、TDF5是同一基因片段,其与细胞色素P450烷烃羟化酶基因序列有很高的同源性,另一片段TDF1与C-1-四氢叶酸复合酶有较高的同源性,其余两个基因片段TDF3、TDF6未找到与之同源的序列。C-1-四氢叶酸复合酶基因的上调表达,必将促进核酸生物合成速率的加快,进而补偿因药物分子作用导致的靶基因表达水平的下降,使线粒体复合酶Ⅲ的活性恢复正常。结合丙烷脒抑菌机理研究结果,推测C-1-四氢叶酸复合酶基因的上调表达可能是番茄灰霉病菌对丙烷脒产生抗药性的主要因素。另外,细胞色素P450烷烃羟化酶基因的上调表达也与抗药性的产生有关。
     综上所述,番茄灰霉病菌对丙烷脒具有低等抗药性风险。番茄灰霉病菌对丙烷脒的抗药性是多种因素综合作用的结果,其中C-1-四氢叶酸复合酶基因的上调表达可能是主要因素,具体的抗性机制可能为:渗透压敏感性和细胞膜透性下降,使药物分子难以穿过细胞膜进入菌丝体内,进入菌丝体内的部分药物又在酯酶同工酶、细胞色素P450烷烃羟化酶等解毒代谢酶的作用下被代谢分解;C-1-四氢叶酸复合酶基因的上调表达,使核酸生物合成速率加快,补偿了因药物分子作用导致的靶基因表达水平的下降,使线粒体复合酶Ⅲ的活性恢复正常,从而使抗性菌株表现出一定的抗药性。此外,结合前人研究结果可以进一步确认丙烷脒对病菌线粒体复合酶Ⅲ相关基因表达的抑制是其抑菌的主因。
In recent years, the problem of fungicide resistance causes a decline effect in kinds of diseases. Besides, some kinds of diseases, which can be easily managed before, show a tendency of more and more severe. Along with the advance of agricultural modernization and chemical control of plant diseases, the resistant problem becomes more serious than before. B. cinerea, which has the characteristic of wide hosts, fastly genetic mutation and severe damage, is of a pathogen with serious resistance problem. Propamidine, a kind of aromatic diamidine compound with Chinese intellectual property rights, is developed by Research & Development Center of Biorational Pesticide in Northwest A&F University independently and is used for controlling grey mould caused by B. cinerea. Until now, few articles about resistance of propamidine had been reported. So, this research is based on the target pathogen B. cinerea and in terms of baseline-sensitivity assay, assess of resistance risk and the mechanism of development of resistance on resistant mutants. The main results and conclusions were outlined as follows:
     1. The sensitivity of 41 strains of B. cinerea which was isolated from 5 districts of Xi’an, Xianyang, Yangling, Weinan and Baoji was tested by the method of mycelial growth rate. According to the result, all the tested strains were inhibited seriously by propamidine. Besides, low differential of EC50 values was tested among the different strains. The EC50 values were 0.182 to 1.460μg/mL. The mean EC50 was 0.791±0.269μg/mL, representing a range-of-variation factor of 8.0. The frequency distribution of sensitivities of different strains to propamidine was representing a curve of continuous single peak which was approaching a unimodal curve. No low sensitivity of resistant population was detected. So the mean EC50 of these strains could be used as a baseline for observing the sensitivity in B. cinerea populations to propamidine.
     2. 10 resistance mutants with high genetic stability were obtained by UV irradiation and selection for resistance to fungicide. One resistant mutant was induced by UV irradiation and nine resistant mutants were obtained by selection for resistance to fungicide with the mutation frequency 1.98×10-9 and 0.025 respectively. Based on the standard of resistance created by FAO and the baseline sensitivity and the resistance level of resistant mutants, the resistant mutants were divided into low (L), moderate (M) and high (H) resistant level, determined by the EC50 values of 5.0-15.0μg/mL, 15.1-75.0μg/mL and more than 75.0μg/mL, respectively. So, 8 LR mutants, 2 MR mutants and no HR mutant were obtained. Low mutation frequency and resistant level showed the fact that it is hard for B. cinerea developing resistance to propamidine. According to the result of fitness parameters of the mutants, the hyphal growth, sporulation, spore germination and pathogenicity, showed significantly lower than the sensitive strains. Besides, with the result of cross resistance test, propamidine has no cross resistance with the botryticides in common use like pyrimethanil, carbendazim, iprodione and procymidone. Above all, B. cinerea has low resistance risk to propamidine.
     3. According to the result of activity of mitochondrial complexⅢ, propamidine had no effect on both sensitive strain and resistance-strains during the test of post-treatment on mitochondrial. However, during the pre-treatment activity test, propamidine possessed obvious inhibition on sensitive strains and had no significant effect on resistance-strains. The inhibition of propamidine on mitochondrial complexⅢrelative genes expression is a key factor, according to previous research.
     4. During the osmolarity sensitivity test, sensitive strain was sensitive against low and high osmolarity. And, LR (low resistance) strain was sensitive against low osmolarity only. Besides, MR (moderate resistance) strain possessed no sensitivity against both low and high osmolarity. Basing on the result of cell membrane permeability, both sensitive strains and LR strains showed high cell membrane permeability after treated by different concentration of propamidine, especially treated by high concentration of propamidine (25μg/mL and 50μg/mL). Although the final relative leakage rate (240min) of sensitive strains and LR strains were close, the membrane injury speed of sensitive strains showed more fast than LR strains during the treatment of propamidine, which indicates that the cell membrane permeability and the adaptation to propamidine between sensitive strains and LR strains is different. Further more, the final relative leakage rate (240min) of MR strains showed more lower than sensitive strains and LR strains, which indicates that MR strains with much higher ability of adapting to propamidine than sensitive strains and LR strains. The lower cell membrane injury degree makes the lower cell membrane permeability of MR strains comparing with sensitive strains and LR strains, and the ability of adapting to propamidine become lower with the concentration increasing, which also can be indicated by the result of osmolarity test. So, the decrease of osmotic sensitivity and the change of cell membrane permeability may be one of the physiological and biochemical mechanisms on resistance of B. cinerea to propamidine.
     5. The difference of esterase isoenzyme and soluble proteins were compared by the PAGE between resistance-strains and sensitive strains . The result showed obvious difference of the band amount and content between resistance-strains and sensitive strains, which indicates that the resistance of B. cinerea to propamidine is relative to the formation or content change of esterase isoenzyme and soluble proteins.
     6. Gene expression of resistance strain (091) and MR strain (F091-16) was analyzed by the cDNA-AFLP. About 38 differentially expressed TDFs were isolated and 6 of them were cloned and sequenced. The result showed that 4 of 6 differentially expressed TDFs were found with homological sequences. Besides, TDF2, TDF4 and TDF4, which belongs to the same gene fragment, possess high homology with the gene sequence of cytochrome P450 alkane hydroxylase. And, another differential TDF named TDF1 possesses high homology with gene sequence of C-1-tetrahydrofolate synthase and the others two TDFs, TDF3 and TDF6, possesses no homology with existing sequences. Up-regulated expression of C-1-tetrahydrofolate synthase gene can promote the synthesis speed of nucleic acid which lead to the decrease of target gene expression which caused by retrieving of medical molecular effect, and the activity of mitochondrial complexⅢcan be recovered. Along with the result of mechanism on agriculture fungal inhibition of propamidine, the conclusion is speculated that the up-regulated expression of C-1-tetrahydrofolate synthase gene may be the main fact of resistance development on B. cinerea to propamidine. Further more, the up-regulated expression of cytochrome P450 alkane hydroxylase gene is also relation to the resistance development.
     Above all, the resistance risk is low on B. cinerea to propamidine. The resistance of B. cinerea to propamidine is leaded by lots of factors. Among the factors, the up-regulated expression of C-1-tetrahydrofolate synthase gene may be the main factor: The decrease of osmolarity and cell membrane permeability makes propamidine hard to pass through the cell membrane into plasma. Part of some medical molecular in plasma can be degraded by esterase isoenzyme or cytochrome P450 alkane hydroxylase. C-1-tetrahydrofolate synthase gene can promote the synthesis speed of nucleic acid which leads to the decrease of target gene expression caused by retrieving of medical molecular effect and resistance is possessed finally on resistance-strains. Besides, the gene expression which inhibition of propamidine on mitochondrial complexⅢis a key factor, according to previous research.
引文
常法平,张雪江,石振飞.2006.日光温室番茄几种主要病害的综合防治[J].农业工程技术温室园艺,12: 42.
    陈安良,冯美杰,冯俊涛,等.2007.丙烷脒对灰霉病菌菌丝形态和超微结构的影响[J].中国农业科学,40:633-637.
    陈安良,何军,廉应江,等.2005.丙烷脒防治番茄灰霉病菌效果初报[J].中国农学通报,21:301-303.
    陈安良,何军,廉应江,等.2006.4种戊烷脒同系物对灰霉病的防治效果[J].植物保护学报,33:68-72.
    陈安良.2004.丙烷脒杀菌剂开发研究[D].陕西杨凌:西北农林科技大学.
    陈长军.2004.禾谷镰孢菌对多菌灵抗药性基因的克隆[D].江苏南京:南京农业大学.
    迟玉杰,杨谦.2001.植物病原菌对杀菌剂产生抗性的机制与抗性的利用[J].农业系统科学与综合研究,17(4):310-312.
    丁中,刘峰,慕立义.2003.应用电导仪测定番茄灰霉病菌对多菌灵抗药性的初步研究[J].农药学学报, 5(3):94-96.
    丁中,刘峰,王会利,等.2001.番茄灰霉菌的多重抗药性研究[J].山东农业大学学报,32(4):452-456.
    董金皋.2001.农业植物病理学(北方本)[M].北京:中国农业出版壮:183-185.
    冯兰香,郑建秋,师迎春.1998.番茄甜椒茄子病虫害诊断与防治新技术[M].北京:中国农业出版社:6-9.
    甘芳.2002.大棚番茄灰霉病的发生与防治[J].安徽农业,12:25.
    高亚楠.2010.丙烷脒对番茄灰霉病菌线粒体呼吸链复合酶的影响[D].陕西杨凌:西北农林科技大学.
    葛绍荣,牛莉娜,李铭.2007.番茄灰霉病害及其微生物防治的研究进展[J].生物加工过程,5(3):15-19.
    辜运富,张小平,陈强,等.2003.双孢蘑菇菌丝体酯酶同工酶及可溶性蛋白的电泳分析[J].四川农业大学学报,21(3):217-220.
    顾宝根,刘经芬.1990.小麦赤霉病菌对多菌灵抗药性的研究Ⅱ-抗性检测和诱导[J].南京农业大学学报,13(1):57-61.
    顾宝根,刘经芬.1990.小麦赤霉病菌对多菌灵抗药性测定方法的探讨[J].植物保护学报,17(3):275-278.
    韩斌,彭建营.2006.cDNA-AFLP技术及其在植物基因表达研究中的应用[J].西北植物学报, 26(8):1753-1758.
    洪薇.2007.番茄抗叶霉病分子机理及抗病相关基因分离技术体系的建立[D].浙江杭州:浙江大学.
    黄剑.2005.小菜蛾抗阿维菌素品系细胞色素P450的研究[D].陕西杨凌:西北农林科技大学.
    黄启良,李凤敏,王敏.2000.40%嘧霉胺悬浮剂防治黄瓜灰霉病药效试验[J].植物保护,26(2):44-45.
    纪明山,程根武,张益先,等.1998.灰霉病菌对多菌灵和乙霉威抗性研究[J].沈阳农业大学学报, 29(3):213-216.
    纪明山,祁之秋,王英姿,等.2003.番茄灰霉病菌对嘧霉胺的抗药性[J].植物保护学报,30(4):396-400.
    贾晓华.2004.番茄灰霉病菌和油菜菌核病菌对嘧霉胺的敏感性基线及番茄灰霉病菌抗药性研究[D].江苏南京:南京农业大学.
    姜立杰,张开春,张晓明.2003.cDNA-AFLP技术及其在基因表达研究中的应用[J].中国生物工程杂志,23(12):82-86.
    礼茜.2007.浙江省两地草莓灰霉病菌对异菌脲和嘧霉胺的抗药性评价及其分子机制研究[D].浙江杭州:浙江大学.
    李宝笃,沈祟尧.1994.植物病原真菌对杀菌剂的抗性及对策[J].植物病理学报, (3):193-196.
    李保聚,朱国仁,赵奎华,等.1999.番茄灰霉病在果实上的侵染部位及防治新技术[J].植物病理学报,29(1):63-67.
    李科孝,谢宏伟.2001.大棚韭菜灰霉病的发生规律与防治[J].植物保护,27(2):46-47.
    李新凤,刘慧平,程麦芳,等.2003.核盘菌不同水平抗药性菌株可溶性蛋白和酯酶的电泳图谱比较研究[J].山西农业大学学报,23(2):106-108.
    李新凤,刘慧平,韩巨才,等.2005.抗多菌灵和乙霉威叶霉菌株可溶性蛋白和酯酶的电泳图谱研究[J].山西农业大学学报,25(1):27-29.
    廉应江,陈安良,朱海运,等.2005.丙烷脒类似物抑菌活性研究[J].农药,44:8-10.
    廉应江,陈安良,朱海运,等.2005.丙烷脒类似物抑菌活性研究初报[J].西北农业学报,14:112-114.
    刘波,叶钟音,刘经芬,等.1993.对多菌灵、速克灵具多重抗性的灰霉病菌菌株性质的研究[J].南京农业大学学报,16(3):50-54.
    刘长令,张运晓,黄兆信等.2000.防治灰霉病用杀菌剂的开发[J].农药,39(3):1-6.
    刘英华,王开运,姜兴印,等.2004.植物病原菌抗性生物学及生化机制研究进展[J].世界农药,26(3):16-18.
    陆悦健,周明国,叶钟音.2000.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,30(1):30-34.
    罗杰,冯俊涛,马志卿,等.2008.丙烷脒对番茄植株生长/叶片光合作用和前期产量的影响[J].农药学学报, 10(1):80-86.
    马忠华,叶钟音.1997.新靶标杀菌剂-嘧啶胺类化合物[J].农药译丛,19(3):11-13.
    马忠华,周明国,叶钟音.1996.水稻白叶枯病菌对噻枯唑抗药性的测定方法[J].南京农业大学学报,19(增刊):147-149.
    慕立义.1994.植物化学保护研究方法[M].北京:中国农业出版社:79-82.
    潘以楼,吴汉章.1998.油菜菌核病菌抗多菌灵菌株的检测[J].江苏农业学报,14(3):159-163.
    彭云良,刘经芬,叶钟音,等.1993.稻瘟病菌对稻瘟灵耐药性研究[J].植物保护学报,2(1):77-81.
    祁之秋,王建新,陈长军,等.2006.现代杀菌剂抗性研究进展[J].农药,45(10):655-659.
    沈光斌,周明国.2002.水稻白叶枯病菌对噻枯唑的抗药性检测[J].植物保护,28(1):9-11.
    沈嘉祥.1988.云南省稻瘟病菌抗药性初步研究[J].植物保护学报,15(1):49-54.
    石志琦,周明国,叶钟音.2000.核盘菌对菌核净的抗药性机制初探[J].农药学学报,2(2):47-51.
    孙霞,王波,张天宇.2007.链格孢菌酯酶同工酶分析及其分类学意义[J].菌物研究,5(4):229-232.
    王敏.2007.黄瓜白粉病菌对苯醚菌酯抗药性风险评估及抗药性分子机制研究[D].北京:中国农业大学.
    王芊.2007.番茄灰霉病菌抗药性及抗药性控制研究[D].黑龙江哈尔滨:东北林业大学.
    王文桥,刘国容,严乐恩,等.1996.黄瓜和葡萄霜霉病菌对不同内吸杀菌剂的交互抗药性[J].植物保护学报,23(1):84-88.
    王文桥,马志强,张小风,等.2001.植物病原菌对杀菌剂抗药性风险评估[J].农药学学报,3(1):6-11.
    王文桥.2000.气传霜霉和疫霉对恶霜灵、烯酰吗啉和霜脲氰抗性风险研究[D].北京:中国农业大学.
    王岩.2006.黄瓜霜霉病菌对烯肟菌酯的室内抗药性风险评估及抗药性菌株的分子检测技术研究[D].北京:中国农业大学.
    魏艳敏,周与良.1998.红酵母属同工酶酶谱分析及其分类研究[J].菌物系统,17(1):63-67.
    吴方丽,陈安良,王智辉,等.2007.丙烷脒对番茄灰霉病菌超微结构的影响[J].浙江大学学报:农业与生命科学版,33(1):74-81.
    吴方丽.2008.丙烷脒对番茄灰霉病菌的抑菌机理初探[D].陕西杨凌:西北农林科技大学.
    夏晓明,王开运,范昆,等.2005.抗戊唑醇禾谷丝核菌的渗透压敏感性及相对渗率变化研究[J].农药学学报,7(2):126-130.
    夏晓明.2006.禾谷丝核菌对戊唑醇的抗性机制研究[D].山东泰安:山东农业大学.
    熊杰,冯亦璞.1999.丁基苯酞对线粒体呼吸链复合酶活性的影响[J].药学学报,34(4):241-245.
    徐明,李海涛,张子君,等.2009.番茄灰霉病病原菌生物学特性的研究[J].贵州农业科学,37(3):68-71.
    徐作珽,李林,于建垒,等.1999.蔬菜灰霉病菌对速克灵抗药性变异研究[J].山东农业科学,(2):30-33.
    许学明,王开运,段海明,等.2007.甲霜灵对烟草黑胫病菌细胞膜透性的影响[J].农药学学报,9(3):301-304.
    许学明.2007.烟草黒胫病菌对六种杀菌剂的抗性测定及抗甲霜灵机制的初步研究[D].山东泰安:山东农业大学.
    杨谦.2003.植物病原菌抗药性分子生物学[M].北京:科学出版社.
    杨谦.1995.核盘菌对多菌灵抗药性及其发展[J].东北林业大学学报,23(5):9-13.
    叶钟音,周明国,刘经芬.1987.紫外光诱导灰葡萄孢产生抗多菌灵菌株的研究[J].植物保护学报,14(4):235-239.
    印利梅.2006.茄科蔬菜灰霉病对嘧霉胺抗药性研究[D].浙江杭州:浙江大学.
    袁善奎,马严明,周明国.2001.小麦白粉病菌对闭囊壳萌发及其对三唑酮敏感基线的建立[J].植物保护,27(1):1-3.
    袁善奎,周明国.2003.玉蜀黍赤霉对多菌灵的抗药性遗传[J].遗传学报,30(5):474-478.
    袁善奎,周明国.2004.植物病原菌抗药性遗传研究[J].植物病理学报,34(4):289-295.
    袁章虎,张小风,韩秀英.1999.灰霉菌抗药性研究进展[J].河北农业大学学报,19(3):107-110.
    翟中和,王喜忠,丁明孝. 2000.细胞生物学[M].北京:高等教育出版社:213-214.
    张传清,张雅,魏方林,等.2006.设施蔬菜灰霉病菌对不同类型杀菌剂的抗性检测[J].农药学学报, 8(3):245-249.
    张开翼,刘志恒,薛春生,等.2009.辽宁省番茄叶霉病菌分化同工酶电泳研究[J].江苏农业科学,(3):108-111.
    张岚岚.2007.番茄果实特异启动子在柑橘中的活性分析及柑橘果实差异表达基因的分离[D].浙江杭州:浙江大学.
    张舒亚,周明国.2002.甲氧丙烯酸酯类杀菌剂的生物学及应用技术研究.中国植物病害化学防治研究(第三卷).1-10.
    张小青,曹军卫,翟超,等.2002.枯草芽孢杆菌渗透压调节基因proB的克隆和表达[J].微生物学报,42(2):163-168.
    张小泉.2009.丙烷脒对灰葡萄孢作用的蛋白质组学初步研究[D].陕西杨凌:西北农林科技大学.
    张永杰,高俊明,韩巨才,等.2004.抗速克灵灰霉病菌菌株电导率变化及对渗透压的敏感性[J].山西农业
    大学学报:自然科学版,24(1):34-36.
    张智,李君明,宋燕,等.2005.番茄灰霉病及其防治研究进展[J].内蒙古农业大学学报,26:125-128.
    周明国,王建新.2001.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究[J].植物病理学
    报,31(4):365-370.
    周明国,叶钟音,刘经芬.1994.杀菌剂抗药性研究进展[J].南京农业大学学报,17(3):33-41.
    周明国,叶钟音.1987.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性[J].植物保护,13(2):31-33.
    周明国,叶钟音.1987.南京市郊灰霉菌对苯并咪唑类杀菌剂田间抗性检测[J].南京农业大学学报,6(2):
    53-57.
    周明国.1996.病原物抗药性[A].中国农业百科全书植物病理学卷.北京:中国农业出版社:48-49.
    周明国.1998.植物病原菌抗药性[A].北京:中国农业科技出版社:50-61.
    周明国.2001.植物病原菌抗药性[J].农药市场信息,8:23-26.
    朱书生.2004.黄瓜霜霉病菌对氟吗啉的抗药性风险评估及氟吗啉作用机制初探[D].北京:中国农业大学.
    Allen J W, Burgess F, Cameron G R. 1945. Toxic effects of propamidine, with special reference to the treatment of burns[J]. J. Path. Bact., 46:217-223.
    Annelies D P, Marnik V, Paul V H, Marc Z, Dominique V D S. 2004. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insight into the early response to ethylene in Arabidopsis[J]. Plant Journal, 39(4):537-559. Avrova A O, Venter E, Birch P R. 2003. Profiling and quantifying differential gene transcription in Phytophthora infestans prior to and during the early stages of potato infection[J]. Fungal Genet Biol, 40(1):4-14.
    Babij J, Zhu Q, Brain P. 2000. Resistance risk assessment of cereal eyespot,Tapesia yallundae and Tapesia acuformis, to the anilinopyrimidine fungicide, cyprodinil[J].European Journal of Plant Pathology,106(9):895-905.
    Bachem C W, Horvath B, Trindade L, Classens M, Davelaar E, Jordi W, Visser R G. 2001. A potato tuber-expressed mRNA with homology to steroid dehydrogenases affects gibberellin levels and plant development[J]. Plant Journal, 25:595-604.
    Bachem C W, Oomen R J F, Visser R G. 1998. Transcript imaging with cDNA-AFLP: a step-by-step ptotocol[J]. Plant Molecular Biology Report,16:157-173.
    Bachem C W, Van der Hoeven R S, de Bru S M. 1996. Visualization f differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development[J]. Plant Journal, 9:745-753.
    Baldwin D, Crane V, Rice D. 1999. A comparison of gel-based, nylon filter and micronarray techniques to detect differential cultivar of Triticum aestivum L. under conditions of aluminium stress[J]. Plant Physiology, 104:1007-1013.
    Baroffio C A, Siegfried W, Hilber U W. 2003. Long-term monitoring for resistance of Botrytis cinerea to anilinopyrimidine, phenylpyrrole, and hydroxyanilide fungicide in Switzerland[J]. Plant Disease, 87:662–666.
    Barret P, Brinkman M, Dufour P, Murigneux A, Beckert M. 2004. Identification of candidate genes for in vitro androgenesis induction in maize[J].Theoretical Applied Genetics, 109:1660-1668. Barug D, Kerenaar A. 1979. Mededelingen van de Faculteit der Landbouwwetenschappen[J]. Rijksuniversiteit Gent, 41:421-427.
    Beever R E, Laracy E P, Park H A. 1989. Strain of Botrytis cinerea resistant to dicarboximide and benzimidazole fungicides in New Zealand vineyards[J]. Plant Pathology, 38:427–437.
    Beraha L, Garber E D. 1980. A genetic study of resistance to thiabendazole and sodium phenylphenate in Penicillium italicum by the parasexual cycle[J]. Bot. Gaz., 141:204-209.
    Bollen G J. 1971. Acquired resistance to benomyl and some other systemic fungicides in a Stain of Botrytis cinerea in cyclamen[J]. Neth. J. Plant Pathol.,77: 83-90.
    Bove J, Lucas P, Godin B. 2005. Gene expression analysis by cDNA-AFLP highlights a set of newsignaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia[J]. Plant Molecular Biology, 7:593-612.
    Brent K J, Hollomon D W, Shaw M W. 1990. Managing resistance to Agrochemicals, Washington DC: American Chemical Society,308-319.
    Brent K J, Hollomon D W. 1999. Fungicide resistance: The assessment of risk [C]// FRAC Monograph No 2. Global Crop Protection Federation, Brussels, Belgium.:1–48.
    Broomfield P L E, Hargreaves J A. 1992. A single amino-acid change in the iron-sulfur protein subunit of succinate dehydrogenase controls resistance to carboxin in Ustilago Maydis[J]. Curr. Genet., 22:117-121.
    Brown J K M, Jessop A C, Thomas S. 1992. Genetic control of the response of Erysiphe graminis f. sp. hordei to ethirimol and triadimenol[J]. Plant Pathology, 41:126-135.
    Cecilia T, Cecile B, Francoise F, Laurent G, Thierry L. 2004. Mass cloning of differential and nondifferential transcript derived fragments from cDNA-AFLP experiments in sunflower[J]. Plant Biology Reporter, 22:165-171.
    Chapeland F, Fritz R, Lanen C.1999. Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea[J]. Pesiticide Biochemistry and Physiology,64(2):85-100.
    Chen Y, Li H K, Chen C J, Zhou M G. 2008. Sensitivity of Fusarium graminearum to fungicide JS399-19: in vitro determination of baseline sensitivity and the risk of developing fungicide resistance[J]. Phytoparasitica, 36(4):326-337.
    Christian B, Daniel P, Jean-Charles L. 1997. Sequence-selective binding to DNA of bis (amidinophenoxy) alkanes related to propamidine and pentamidine[J]. Biochem. J. , 323:23-31.
    Constance A B, James E H, Dennis E K. 1990. Structure-activity relationships of analogs of pentamidine against Plasmodium falciparum and Leishmana mexicana amazonensis[J]. Antimicrobial Agents and Chemotherapy,34:1381-1386.
    Crute I R, Harrison J M. 1988. Studies on the inheritance of resistance to metalaxyl in Bremia lactucae and on the stability and fitness of field isolates[J]. Plant Pathol., 37:231-250.
    Davides L C.1985. Benzimidazole fungicides mechanism of action and biological impact[J]. Phytopathology,24:43-45.
    De Falandre A, Daboussi M, Leroux P. 1991. Inheritance of resistance to fenpropimorph and terbinafine, two sterol biosynthesis inhibitors, in Nectria haematococca[J]. Phytopathology, 81:1432-1438.
    Dellagi A, Birch P R, Heilbronn J, Lyon G D, Toth I K. 2000. cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora[J]. Microbiology, 146:165-171.
    Demarkopoulou M G, Ziogas B N, Georgopoulos S G. 1989. Evidence for poly-gene control of fenpropimorph resistance in laboratory mutants of Nectria haematococca var. cucurbitae[J].ISPP Chemical Control Newsletter, (12):34-35.
    Dimitra M, Pierre E S, Nicola J S, Keith R, Maureen C M. 2002. Early gene expression associated with the commitment and differentiation of a plant tracheary element is revealed by cDNA-amplified fragment length polymorphism analysisr[J]. The Plant Cell, 14(11):2813-2824.
    Ditt R F, Nester E W, Comai L. 2001. Plant gene expression response to Agrobacterium tumefaciens[J].Proceedings of The National Academy of Sciences of The United States of America, 98:10954-10959.
    Dong W B, Latijnhouwers M, Jiang R H Y, Meijer H J G, Govers F. 2004. Downstream targets of the Phytophthora infestans G alpha subunit PiGPA1 revealed by cDNA-AFLP[J]. Molecular Plant Pathology, 5: 483-494.
    Donkor I O, Queener S F, Dalton J T. 1996. Pentamidine congeners 4 DNA binding affinity and anti-Pneumocystis carinii activity of butamidine analogues[J]. Bioorganic and Medicinal Chemistry, 6:1967-1970.
    Donkor I O, Tidwell R R, Jones S K J. 1994. Pentamidine congeners 2.2-butene-bridged aromatic diamidines and diimidazolines as potential anti Pneumocystis carinii pneumonia agents[J]. Journal of Medicinal Chemistry, 37:4554-4557.
    Dubos C, Plomion C. 2003. Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots[J]. Plant Molecular Biology, 51:249-262.
    Durrant W E, Rowland O, Piedras P, Hammond-Kosack K E, Jones J D G. 2000. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles[J]. Plant Cell, 12:963-977.
    Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel K H. 2004. Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase[J]. Plant Molecular Biology, 55:1-15.
    Edwards K J, Jenkins T C, Neidle S. 1992. Crystal structure of pentamidine-oligonucleotide complex: implications for DNA-binding properties[J]. Biochemistry, 31:7104-710.
    Ellis S W, Grindle M. 1981. Effect of osmotic stress on yield and polyolcontent of dicarboximide sensitive and resistant strains of Neurospora crassa [J]. Mycol Res, 95:457-464. Elson W O. 1945. The antibacterial and fungistatic properties of propamidine[J]. J. Infect. Dis., 76:193-197.
    Faretra F, Antonacci E, Ungaro A.1987. Benzimidazle and dicarboximide resistant isolates of Botrytis cinerea on greenhouse flower and vegetable crops[J].La Difesa delle Piante,10:211-220.
    Faretra F, Pollastro S, Ditonno A P.1989. New natural variants of Botrytis cinerea coupling resistance to benzimidazoles to insensitivity towards the N-phenylcarbamate diethofencarb[J]. Phytopathologia mediterranea, 28:98-104.
    Faretra F, Pollastro S. 1991. Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botrytis cinerea[J]. Mycol. Res., 95:943-951.
    Faretra F, Pollastro S. 1993. Genetic basis of resistance to the phenylpyrrole fungicide CGA 173506 in Botrytis cinerea[A]. Lyr H, Polter G. Systemic Fungicides and Antifungal Compounds[C]. Stuttgart: Eugen Ulmer, 405-409.
    Fox K R, Sansom C E, Stevens M F G. 1990. Footprinting studies on the sequence-selective binding of pentamidine to DNA[J]. Febs Lett.,150-154.
    Fukuda T, Kido A, Kajino K, Tsutsumi M, Miyauchi Y, Tsujiuchi T, Konishi Y, Hino O. 1999. Cloning of differentially expressed genes in highly and low metastatic rat osteosarcomas by a modified cDNA-AFLP method[J]. Biochemical and Biophysical Research Communications, 261:35-40.
    Fuller A T. 1942. Antibacterial action and chemical constitution in long-chain aliphatic bases[J]. Biochem. J., 36:548-558.
    Gabri?ls S H E J, Takken F L W, Vossen J H, de Jong C F, Liu Q, Turk S C H J, Wachowski L K, Peter J,
    Witsenboer H M A, de Wit P J G M, Joosten M H A J. 2006. cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response[J]. Molecular Plant-Microbe Interactions,19: 567-576.
    Gareth J, Mckay D E, Elizabeth M. 1998. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method[J]. Mycological research,102:671-676.
    Georgopoulos S G, Chrysayi M, White G A. 1975. Car-boxin resistance in the haploid,the heterozygous diploid and the plant parasite dicaryotic phase of Ustilago maydis[J]. Pesticide Biochem. Physiol.,5:543-549.
    Georgopoulos S G, Ziogas B N. 1977. A new class of carboxin resistant mutants of Ustilago Maydis[J]. Netherl. J. Plant Pathol., 83:235-242.
    Gisi U, Sierotzki H, Cook A.2002. Mechanism influencing the evolution of resistance to Q0 inhibitor fungicides[J].Pest Management Science,58(9):859-867.
    Gisi U, Staehle Csech U. 1988. Fungicide resistance in north America, Minnesota: American Phytopathological Society, 101-105.
    Grindle M, Temple W. 1982. Fungicide resistance of mutants of Neurospora crassa[J].Neurospora Newsletter,29:16-17.
    Grindle Z Y. 1988. Isolation, characterization and genetic analysis of mutants of Aspergillus nidulans resistant to tolclofos-methyl[A]. Proc. Brighton Crop Prot. Conf. Pests and Disease[C]. Thornton Heath, Surrey, U K: British Crop Protection Council, 409-414.
    Gutteridge W E. 1985. Existing chemotherapy and its limitations[J]. Brit. Med. Bull., 41:162-168.
    Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S. 1997. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence[J]. Biochemical and Biophysical Research Communications, 234:516-521.
    Haruko Sawada, Minoru Sugihara, Makiichi Takagaki. 2004. Monitoring and characterization of Magnaporthe Grisea isolates with decreased sensitivity to scytalone dehydratase inhibitors[J]. Pest Management Science, 6:777-785.
    Heaney S P. 1993. Population dynamics in DMI fungicide sensitivity changes in barley powdery mildew[A]. Delpmer, 45-50.
    Hi1ber U W, Schuepp H, Schwinn F J. 1994. Fungicide Resistance, Farnharm, Surrey: British Crop Protection Council, 397-402.
    Hideo Ishii. 2006. Review impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment[J]. JARQ, 40(3):205-211.
    Hilber U W, Hilber B M. 1998. Genetic basis and monitoring of resistance of Botryotinia fuckeliana to anilinopyrimidines[J]. Plant Disease, 82:496-500.
    Hiroshi H, Koji H, Ryoji N. 2001. PCR-based detection of sterol demethylation inhibitor resistance strains of Penicillium digitatum[J]. Pest Management Science, 57:839-843.
    Hollomon D W, Butters J, Clark J. 1984. Genetic control of triadimenol resistance in barley powdery mildew[A].Proc. Br. Crop. Prot. Conf.–Pests and Disease[C]. Thornton Heath, Surrey, UK:BCPC.,477-482.
    Hollomon D W.1981. Genetic control of ethirimol resistance in a natural population of Erysiphe graminis f. sp. hordei[J]. Phytopathology, 71:536-540.
    Ivady V G, Paldy L. 1958. Ein neves Behandlungsverfahren der interstitiellen plasmazelligen Pneumonie Fruhgeborener mit funfwertigen Stibium und aromatischen Diamidinen[J]. Monatschr. Kinderheilkd, 106:10-14.
    Jenkins T C, Lane A N. 1997. AT selectivity and DNA minor groove binding: modlelling, NMR and structural studies of the interactions of propamidine and pentamidine with d(CGCGAATTCGCG)2[J]. Biochim. Biophys. Acta, 1350:189-204.
    Jiang J H, Ding L S, Michailides T J, Li H Y, Ma Z H.2009. Molecular characterization of field azoxystrobin-resistant isolates of Botrytis cinerea[J]. Pesiticide Biochemistry and Physiology, 93:72-76.
    Jones S K, Hall J E, Allen M A. 1990. Novel pentamidine analogs in the treatment of experimental Pneumocystis carinii pneumonia[J]. Antimicrobial Agents and Chemotherapy, 34:1026-1030.
    Joo Y J, Kim J A, Baek J H, Seong K M, Han K D, Song J M, Choi J Y, Kim J.2009. Cooperative regulation of ADE3 transcription by Gcn4p and Bas1p in Saccharomyces cerevisiae[J].Eukaryot Cell, 8:1268-1277.
    Kappas A, Georgopoulos S G. 1970. Genetic analyze of dodine resistance in Nectria haematococca[J]. Genetics, 66:617-622.
    Kapusnik J E, Mill J. 1987. Pentamidine: Antimicrobial Agents Annual[J]. Elsevier Science, 271-281. Karl E M, Michael J L. 2000. Pentamidine inhibition of group I intron splicing in Candida albicans correlates with growth inhibition[J]. Anti microbial Agents and Chemotherapy, 208:958-966.
    Katana T, Elad Y, Yunis H.1989. Resistance to diethofencarb in benomyl-resistant field isolates of Botrytis cinerea[J].Plant Pathology,38:86-92.
    Kato Y. 1984. Negatively correlated cross resistance between benzimidazole fungicides and methyl N-(3,5-dichlorophenyl) carbamate[J]. Pesticide sci., 9:489-495.
    Koenraadt H, Somerville S G, Jones A L.1992. Characterization of mutations in the beta-tubulin gene of benomyl resistant field strains of Venturia inaequalis and other plant pathogenic fungi[J].Phytopathology,82:1348-1354.
    Kopac M J. 1945. Cellular mechanisms in chemotherapy[J]. Transactions of the New York Academy of Sciences II, 8:5-10.
    Korolev N, Mamiev M, Zahavi T, Elad Y. 2011. Screening of Botrytis cinerea isolates from vineyards in Israel for resistance to fungicides[J]. European Journal of Plant Pathology, 129:591-608.
    Krzysztof B, Anna G, Anna B. 2000. Inhibitory effects of pentamidine analogues on protein biosynthesis in vitro[J]. Acta Biochimica Plonica, 47:113-120.
    Lancashire W E, Griffiths D E. 1971. Biocide resistance in yeast: isolation and general properties of trialkyltin resistant mutants[J]. Fed. Europ. Biochem. Soc. Letters, 17:209-214.
    Lansiaux A, Tanious F, Mishal Z. 2002. Distribution of furamidine analogues in tumor cells: targeting of the nucleus or mitochondria depending on the amidine substitution[J]. Cancer Rasearch., 62:7219-7229.
    Latorre B A, Spadaro I, Rioja M E. 2002. Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile[J]. Crop Protection,21(10):957-961.
    Li C W, Bai Y L, Jacobsen E. 2006. Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic and polygenic resistance responses are mainly intiming[J]. Plant Mol. Biol.,62:127-140.
    Liu Y, Tidwell R R, Leibowitz M J. 1994. Inhibition of in vitro splicing of a group I intron of Pneumocystis carinii[J]. J. Eukaryot. Microbiol., 41:31-38.
    Loannis Stergiopoulos, Johannes G M van Nistelrooy, Gert HJ Kema. 2003. Multiple mechanisms account for variation in base-line sensitivity to azole fungicides in field isolates of Mycosphaerella graminicola[J]. Pest Management Science, 59:1333-1343.
    Lourie E M, Yorke W. 1939. The trypanocidal action of certain aromatic diamidines[J]. Ann. Trop. Med. Para., 33:289-304.
    Luck G, Zimmer C, Schweizer D. 1988. DNA binding studies of the nonintercalative ligand pentamidine: dAodT base-pair preference[J]. Stud. Biophys.,107-119.
    Luck J E, Gillings M R.1995. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction[J]. Mycological research, 99:1483-1488.
    Lydia T, Jordi B, Carlos A. 1996. Hydrogen bond geometry in DNA-minor groove binding drug complexes[J]. Nucleic Acids Research,3458-3466.
    Makulu D R, Waalkes T P. 1975. Interation between aromatic diamines and nucleic acids: possible implications for chemotherapy[J]. J. Natl Cancer Inst., 54:305-309.
    Markoglou A N, Malandrakis A A, Vitoratos A G and Ziogas B N. 2006. Characterization of laboratory mutants of Botrytis cinerea resistant to QoI fungicides[J]. European Journal of Plant Pathology, 115:149-162.
    Mcclelland M, Mthieu-Daude F, Welsh J. 1995. RNA fingerprinting and differential display using arbitrarily primered PCR[J]. Trends in Genetics, 11:242-246.
    Miletti K E, Leibowitz M J. 2000. Pentamidine inhibition of group I intron splicing Candida albicans correlates with growth inhibition[J]. Antimicrob. Agents Chemother, 44: 958-966.
    Milling R J and Richardson C J. 1995. Mode of action of the anilinopyrimidine fungicide pyrimethanil-Effects on enzyme secretion in Botrytis cinerea[J]. Pesticide Sci., 45:43-48.
    Miura J, Kamakura T. 1994. Inhibition of enzyme secretion in plant pathogens by mepanipyrim a novel fungicide[J]. Pesticide Biochemistry and Physiology, 48:222-228.
    Molnar A, Hornok L, Miklo’s P. 1985. The high level of benomyl tolerance in Fusarium oxysporum is determined by the synergistic interaction of two genes[J]. Experimental Mycology,9:326-333.
    Money T, Reader S, Qu L J, Dunfourd R P, Moore G. 1996. AFLP-based mRNA fingerprinting[J]. Nucleic Acids Research, 24: 2616-2617.
    Montgomery A B, Luce J M, Turner J. 1987. Aerosolized pentamidine as sole therapy for pneumocystic carinii pneumonia in patients with acquired immunodeficiency syndrome[J]. Lancet., 2:480-483. Morgen W M.1984.The effect of night temperature and glasshouse ventilation on the incidence of Botrytis cinerea in a late plant tomato crop[J].Crop Protection, (3):243-251.
    Morgen W M.1985. Infuence of energy saving night temperature regines on Botrytis cinerea in an early season glasshouse tomato crop[J].Crop Protection, (4):99-110.
    Neal R A. 1987. Experimental chemotherapy: The leishmaniases in biology and medicine[J]. Clinical aspects and control, 2:793-845.
    Nunn C M, Jenkins T C, Neidle S. 1993. Crystal structure of d(CGCGAATTCGCG) complexed with propamidine, a short-chain homologue of the drug pentamidine[J]. Biochemistry, 32:13838-13843.
    O'Neill P M, Bishop L P, Sesrle N L. 1997. The biomimetic iron-mediated degradation of arteflene (Ro-42-1611),an endoperoxide antimalarial-implications for the mechanism of antimalarial activity [J]. Tetrahedron Lett, 38(24): 4263-4266.
    Oomen R J F J, Bergervoet M J E M, Bechem C W B, Visser G F, Vinchen J P. 2003. Exploring the use of cDNA-AFLP with leaf protoplasts as a tool to study primary cell wall biosynthesis in potato[J]. Plant Physiology and Biochemistry, 41:965-971.
    Oshima M, Banno S, Okada K. 2006. Survey of mutations of a histidine kinase gene BcOS1 in dicarboximide-resistant field isolates of Botrytis cinerea[J]. Gen Plant Pathol, 72:65-73.
    Oshima M, Fujimura M, Banno S. 2002. A point mutation in the two-component histidine kinase BcOS1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea[J]. Phytopathology, 92:75-80.
    Petters J, Gobel C, Scheel D. 2002. A pathogen-responsive cDNA from potato encodes a protein with homology to a phosphate starvation induced phosphatase[J]. Plant Cell Physiol, 43(9):1049-1053.
    Pike S T, Rajendra R, Artzt K, Appling D R.2010. Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos[J].Journal of Biological Chemistry,285:4612-4620.
    Polach F J. 1973. Genetic control of dodine tolerance in Venturia inaequalis[J]. Phytopathology, 63:1189-1190.
    Prins T W, Tudzynski P, Tiedemann A V. 2000. Infection strategies of Botrytis cinerea and related necrotrophic pathogens [C]// Kronstad J W. Fungal pathology. Dordrecht, the Netherlands: Kluwer Academic Publishers, 33–64.
    Rowland O, Ludwig A A, Merrick C J, Baillieul F, Tracy F E, Durrant W E, Fritz-Laylin L, Nekrasov V, Sjolander K, Yoshioka H, Jones J D G. 2005. Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase ,ACIKI, that is essential for full Cf-9-dependent disease resistance in tomato[J]. Plant Cell, 17:295-310.
    Sands M, Kron M A, Brown R B. 1985. Pentamidine: a review[J]. Rev. Infect. Dis., 7: 625-634.
    Shabi E, Katan T, Marton K. 1983. Inheritance of resistance to benomyl in isolates of Venturia inaequalis from Israel[J]. Plant Pathology, 32:207-211.
    Shattock R C. 1988. Studies on the inheritance of resistance to metalaxyl in Phytophthora infestans[J]. Plant Pathol., 37:4-11.
    Sierotzki H, Parisi S, Steinfeld U. 2000. Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates[J]. Pest Manag. Sci.,56:833-841.
    Smith C M. 1988. History of benzimidazole use and resistance. in Fungicides Resistance in North America[J]. America Phytopathol.Soc., 23-25.
    Smith F D, Parker D M, K?ller W. 1991. Sensitivity distribution of Venturia inaequalis to the sterol demethylation inhibitor flusilazole[J]. Delp. C.J., 81:392-396. Song J M and Rabinowitz J C. 1993. Function of yeast cytoplasmic C1-tetrahydrofolate synthase[J].PNAS, 90(7):2636-2640.
    Stover R H. 1977. Extranuclear inherited tolerance to benomyl in Mycosphaerella fijiensis var. difformis[J]. Trans. Br. Mycol. Soc., 68:122.
    Taga M, Nakagawa H, Tsuda M. 1979. Identification of three different loci controlling kasugamycinresistance in Pyricularia oryzae[J]. Phytopathology, 69:463-466.
    Tidwell R R, Jones S K, Geratz J D. 1990. Development of pentamidine analogues as new agents for the treatment of Pneumocystis carinii pneumonia[J]. Ann. NY Acad. Sci., 616:421-441.
    Turner P R, Denny W A. 2004. The genome as a drug target: sequence specific minor groove binding ligands[J]. Current Drug Targets, 1:1-14.
    Van D, Biezen E A, Juwana H, Parker J E. 2000. cDNA-AFLP display for the isolation of Peronoapora-Parasitica genes expressed during infection in Arobdopsis thaliana[J]. Molecular Plant-Microbe Interactions,13(8):895-899.
    Vonderfecht S L, Miskuff R L, Wee S B, et al. 1988. Protease inhibitors suppress the in vitro and in vivo replication of rotavirus[J]. J. Clin. Invest, 82:2011-2016.
    Wang Z N. 1986. Dicarboximide resistance in Botrytis cinerea in protected lettuce[J]. Plant Pathol., 35:427-433.
    Xue C S, Xiao S Q, Wang G Y, Chen J, Zhang K. 2005. cDNA-AFLP reveals differential gene expression profiles of maize inbred line Huangzaosi induced by Sugarcane mosaic virus Beijing isolate[J]. Acta Phytopathologica Sinica, 35(3):229-234.
    Yarden O, Katan T. 1993. Mutations leading to substitutions at amino acids 198 and 200 of Betatubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea[J]. Phytopatholgy, 83:1478-1483.
    Yarden O, Katan T. 1994. Mutation in the beta-tublin gene of benomyl-resistant phenotypes of Botrytis cinerea. BCPC Monograph, No 60:fungicide resistance.
    Yuan S K, Liu X L, Si N G, et al. 2006. Sensitivity of Phytophthora infestans to flumorph: in vitro determination of baseline sensitivity and the risk of resistance[J]. Plant Pathology, 55:258-263.
    Zhang C Q, Yuan S K, Sun H Y, et al. 2007. Sensitivity of Botrytis cinerea from vegetable greenhouses to boscalid[J]. Plant Pathology, 56:646-653.
    Zhang L, Meakin H, Dickinson M. 2003. Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP[J]. Molecular Plant Pathology, 4:469-477.
    Zhang Y, Bell A, Perlman P S, et al. 2000. Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerecisiae[J]. RNA, 6:937-951.
    Zhang Y, Zhi J L, Daniel S P, et al. 2002. Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding[J]. Nucleic Acids Research, 30:2961-2971.
    Zheng D, K?ller W. 1997. Characterization of the mitochondrial cytochrome b gene from Venturia inaequalis[J]. Curr. Genet., 32:361-366.
    Zheng X, Chen X, Zhang X. 2004. Isolation and identification of a gene in response to rice blast disease in rice[J].Plant Mol. Biol.,54(1):99-109.
    Zimmer C, Whnert U. 1986. Non-intercalating DNA-binding ligands: Specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material[J]. Prog. Biophys. Mol. Biol.,31-112.
    Ziogas B N, Georgopoulos S G. 1984. Mitochondrial electron transport in a carboxin-resistant, antimycin A-sensitive mutant of Ustilago Maydis[J]. Pestic. Biochem. Physiol., 22(1):24-31.
    Ziogas B N, Girgis M, Georgopoulos S G.1993. Allelic mutations for benzimidazole resistance with andwithout change in sensitivity to N-phenylcarbamates in Ustilago maydis[A]. Lyr H, Polter C. Systemic Fungicides and Antifungal Compounds[C]. Stuttgart: Eugen Ulmer, 45-50.
    Ziogas B N, Markoglou A N, Malandrakis A A. 2003. Studies on the inherent resistance risk to fenhexamid in Botrytis cinerea[J].European Journal of Plant Pathology, 109:311-317.
    Ziogas B N, Markoglou A N, Tzima A. 2002. A non-Mendelian inheritance of resistance to strobilurin fungicides in Ustilago maydis[J]. Pest Management Science, 58:908-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700