用户名: 密码: 验证码:
小麦多子房性状SSH文库的构建及其相关基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多子房小麦具有明显的穗粒数优势,如能应用到杂交小麦育种中将会是提高繁制种系数的一种有效途径,进而对杂交小麦的发展将会起到一个极大地促进作用。目前有关多子房小麦的研究多集中在花器官的发育过程、种子萌发过程中的生化研究、分子标记、基因定位和遗传分析,对小麦多子房性状形成的分子机制研究至今仍是空白。小麦多子房品系Ⅱ(简称多Ⅱ)近等基因系(near-isogenic line, NIL)是由西北农林科技大学专为研究多子房性状的分子遗传机理而创制的一种试验材料,其多子房、单子房性状遗传稳定,其它遗传背景和农艺性状与轮回亲本一致,是研究多子房性状分子机制的良好试材。为了深入揭示小麦多子房性状形成的分子机制,本研究利用上述材料,首次以SSH(Suppression Subtractive Hybridization, SSH)技术分别构建了多子房和单子房相关基因特异表达的抑制消减杂交cDNA文库,通过对两个cDNA文库的克隆测序、EST序列比对分析和功能分类,探讨了小麦多子房和单子房性状各自表达基因的种类和功能的异同,并从中选择了部分基因进行了表达分析和cDNA、DNA序列的克隆,获得如下重要结果:
     1.对小麦多ⅡNIL的外显率、多粒结实率、发芽率进行了调查与分析,同时在田间调查过程中发现了每朵小花具有4~6个雌蕊的新变异类型。不同株系间多子房性状外显率分布在77.2~95.3%之间,平均为88.6%;多粒种子平均结实率为79.9%;多子房株系主位种子与单子房株系种子发芽率基本一致,副位种子发芽率稍低;分析推测小麦多子房新突变现象是在原本遗传稳定的多子房性状基础上进一步发生了雄蕊心皮化的结果,第4~6个雌蕊未能成功受精结实。
     2.以小麦多ⅡNIL的多子房和单子房株系幼穗cDNA互为Tester和Driver,利用SSH技术成功构建了小麦多子房和单子房性状相关基因的cDNA文库(简称为Mu文库和Mo文库)。Mu文库共得到约2536个菌落,其中白斑2383个,重组率为93.97%;Mo文库共得到约4543个菌落,其中白斑4359个,重组率为95.95%。分别采用巢式引物和通用引物对随机挑取的克隆进行PCR检测,两个文库85%以上的克隆皆能扩增出目的片段,基本介于200~750bp之间,多数集中在400~500 bp之间。对部分阳性克隆提取质粒及酶切,插入片段大小主要集中在450bp左右,与菌液PCR检测结果一致。
     3.从Mu和Mo文库中,各随机选择100个阳性克隆进行测序。Mu文库中所获EST片段平均大小为378bp。去除低质量序列及重复序列后,共获得90条EST,其中65条功能已知,占全部EST的72.22%。参与蛋白合成的最多,占27.69%;其次为亚细胞定位相关的基因,占10.77%;与能量、转录相关的基因各为7.69%;与新陈代谢、生长发育、结合功能蛋白相关的基因各为6.15%;占比例较低的是与蛋白加工、细胞通信与信号转导、细胞防御等相关的基因。Mo文库中所获EST片段平均大小为339bp。去除重复序列后,共获得89条EST,其中60条功能已知,占全部EST的67.42%。在已知功能序列中,未分类功能蛋白的序列较多,占33.33%;与新陈代谢有关的基因占11.67%;亚细胞定位相关基因占10%;与能量、蛋白合成、蛋白加工、结合功能蛋白相关的基因各占6.67%。不同功能的蛋白在两个库中所占比例不一致,Mu文库以蛋白合成、转录和生长发育相关蛋白为主;而Mo文库以物质代谢、蛋白加工及细胞运输途径相关蛋白为主。
     4.利用半定量RT-PCR对两个文库中的12个相关基因进行了时空表达研究。Mu文库中所选的6个基因在多子房株系都有不同程度的上调表达,40S核糖体蛋白S6、核内小核糖核蛋白质G、核糖体蛋白L10A差异较为明显,其次为核糖体蛋白s15a、14-3-3蛋白、60s核糖体蛋白L21,而假定的脯氨酰4 -羟化酶、伴侣蛋白、CER1蜡质合成酶基因差异不明显;Mo文库中尿苷二磷酸葡糖醛酸脱羧酶、60S核糖体蛋白L17-1在单子房株系中上调表达,半胱氨酸蛋白酶抑制剂差异较小;多数基因1~12mm幼穗时期内表达量呈上升趋势,广泛存在于各种组织,在茎顶端表达量高于其他组织。研究推测,差异表达的基因可能参与了多子房性状的发生。
     5.以SSH文库中筛选出的小麦RPS15a和RPL21基因序列为信息探针,通过同源序列搜索、聚类拼接、RT-PCR和PCR克隆,获得了RPS15a、RPL21基因的cDNA和DNA序列。小麦RPS15a基因的cDNA序列(GenBank登录号:HM055513)长为413 bp,编码130个氨基酸;DNA序列(GenBank登录号:HM063421)长为642 bp,含有3个外显子和2个内含子。小麦RPL21基因cDNA序列(GenBank登录号:HM138480)长521bp,编码164个氨基酸,氨基酸序列在植物与动物间相似性较差;DNA序列(GenBank登录号:HM138481)长1600bp,含有2个外显子和1个内含子。在不同材料中,这两个核糖体蛋白基因在多子房株系2~4mm幼穗中表现不同程度的表达上调,可能与小麦多子房性状的发生有关,其具体功能作用尚需进一步验证。
     6.以SSH文库中筛选出的小麦Cab基因序列为信息探针,通过同源序列搜索、聚类拼接和RT-PCR,获得了小麦Cab基因的cDNA序列(GenBank登录号:HM362991)。序列长862bp,编码266个氨基酸,与之前EST序列拼接延伸后得到924bp的序列。在不同材料中,Cab基因在单子房株系2~3和3~4mm中表达量下调;在单子房株系1~6mm幼穗时期内,2~3mm幼穗中表达量较低;不同组织中差异明显,幼叶中表达量最高,幼根中无表达。
Due to the unique characteristics of the floral organ and with multiple ovaries, the multi-ovary wheat can enhance the propagation coefficient and play a important role in the development of hybrid wheat. Previous research has focused on the development of floral organs, biochemical analysis of seed germination and molecular markers, as well as gene localization and genetic analysis. About the molecular mechanism of the formation of multi-ovary trait is needed to study at present. The NIL of multi-ovay wheat DuoⅡshowed the same genetic background except for the ovary character. Therefore, it was an excellent material for studying the formation mechanism of multi-ovary trait in wheat. In this study, the materials mentioned earlier were initially employed to construct two cDNA libraries of multi-ovary and mono-ovary trait by suppression subtractive hybridization (SSH). Through sequencing, alignment analyses and functional annotation of the expressed sequence tags (ESTs), the types of expressed genes and gene functions have been compared with the 2 libraries. The expression analysis (different materials, different stages and different organs) and clone of partial gene was researched. We hope to give some explanations to the molecular mechanism of the formation of multi-ovary trait. The results were listed as follows:
     1. The penetrance, maturing rate and percentage germination of the NIL of the multi-ovary wheat DuoⅡwas investigated and analyzed. At the same time, the phenomenon of 4~6 pistil in one floret was found during the process of investigation in the field. The penetrance was 77.2~95.3% in different multi-ovary lines and the average was 88.6%. The average of maturing rate of multiple seeds was 79.9%. The percentage germination of the seeds on main location of multi-ovary line and the seeds of mono-ovary line was no difference. The percentage germination of the seeds on additional location of multi-ovary line was lower than the seeds of mono-ovary line. The new mutation phenomenon of multi-ovary wheat was a result of carpelloid stamens (the stamens changed into multi-pistils) though analysis. The 4~6 pistil cannot be fertilized.
     2. The multi-ovary line and mono-ovary line of the NIL were employed to construct two cDNA libraries related to multi-ovary (Mu) and mono-ovary (Mo) by SSH. About 2536 clones were obtained from Mu library and there were 2383 positive clones, the recombination frequency was 93.97%. About 4543 clones were obtained from Mo library and there were 4359 positive clones, the recombination frequency was 95.95%. Random differentially expressed cDNA clones were screened by PCR (Nest primer or M13 primer) amplification in the two subtraction libraries. More than 85% of the clones contained an insert and while most of the cDNA inserts were 400~500 bp, the range of clones extended from more than 250 bp to less than 750 bp. Though extraction of plasmid and Enzyme digested of some positive clones, the inserted fragment mainly concentrated approximately 450bp. This results was similar to PCR.
     3. One hundred positive clones were randomly selected and sequenced from the Mu library and Mo library respectively. The average size of EST in Mu library was 378bp. Ninety EST sequences were obtained after removal of low-quality and repeated sequences. Sixty-five ESTs (72.22% of the 90 ESTs) had translated sequences homologous to proteins with a known function. Among the sixty-five ESTs, 27.69% of them were categorized into protein synthesis, whereas, 10.77% of them were involved in subcellular localization, 7.69% of them were related to energy and transcription respectively, 6.15% of them were related to metabolism, development and protein with binding function respectively, and a small proportion of ESTs was related to protein fate, signal transduction mechanism and cell defense. The average size of EST in Mo library was 339bp. Eighty-nine EST sequences were obtained after the removal of the repeated sequences. Sixty ESTs, accounting for 67.42%, had sequence similarity with known function proteins. Among the sixty EST sequences, 33.33% were unclassified protein. 11.67% of the annotated ESTs were associated with metabolism, 10% of them were related to the subcellular localization, and 6.67% of them were in relation to the energy, protein synthesis, protein fate and protein with binding function respectively. The proportion of different functional proteins was inconsistent between the two libraries. Proteins related to protein synthesis, transcription and development were found frequently in the Mu library. Some proteins associated with metabolism, protein fate and cellular transport were found frequently in the Mo library.
     4. The expression patterns of 12 genes from two library were analyzed by RT-PCR. The results showed that six genes from Mu library were up-regulated by a different extent in multi-ovary wheat. The expression differences of 40S ribosomal protein S6, snRNP G and ribosomal protein L10A were more significant than those of ribosomal protein S15A , 14-3-3 protein and 60s ribosomal protein L21. Different expression of putative CER1, chaperonin and putative prolyl 4-hydroxylase were not significantly different. In contrast, expression analysis of genes from the Mo library showed that UDP-D-glucuronate decarboxylase and ribosomal protein L17-1 were up-regulated, while the expression level of cysteine proteinase inhibitor showed no significant difference. Most genes’expression presented an up-regulated tendency at the 1~12mm development stages of young ear. The examined genes were abundantly expressed in different tissues and the quantity of expression for most of them was highest in stem shoot meristem. Study speculated that differential expression genes may be involved in the occurrence of multi-ovary trait.
     5. The EST highly similar to RPS15a and RPL21 gene from the SSH library was used as a query probe to blast the Genbank databases. Based on the assembled homologous cDNA sequence, both cDNA and DNA sequences encoding RPS15a and RPL21 were isolated and characterized by RT-PCR and PCR. The cDNA sequence of RPS15a in wheat (GenBank accession No.HM055513) was 413 bp in length and the open reading frame encoded a peptide of 130 amino acids. The DNA sequence of RPS15a (GenBank accession No.HM063421) was 642 bp in length, which contained three extrons and two introns. The cDNA sequence of RPL21 (GenBank accession No.HM138480) was 521bp in length and the open reading frame encoded a peptide of 164 amino acids. The homology of amino acids of RPL21 was not conserved between the plants and animals. The DNA sequence of RPL21 (GenBank accession No.HM138481) was 1600bp in length, which contained two extrons and one intron. According to expression analysis, the expression quantity of the RPS15a and RPL21 gene in 2~4 mm ears of multi-ovary line was higher than that in mono-ovary line. They are may be related to the occurrence of multi-ovary trait. Their function was needed to more study.
     6. The EST highly similar to Cab gene from the SSH library was used as a query probe to blast the Genbank databases. Based on the assembled homologous cDNA sequence, the cDNA sequence encoding Cab were isolated and characterized by RT-PCR. The cDNA sequence of Cab (GenBank accession No.HM138480) was 862bp in length and the open reading frame encoded a peptide of 266 amino acids. The cDNA sequence of Cab and the EST highly similar to Cab gene from the SSH library was assembled and then the cDNA sequence of Cab became 924bp in length. The expression quantity of Cab gene in 2~3 and 3~4mm ears of mono-ovary line was lower than that in multi-ovary line. The expression of Cab gene in 2~3mm ears was lower than that in other stages in 1~6mm ears. The expression quantity of Cab gene was highest in young leaves and no detectable in young roots.
引文
蔡炯亮,郭振飞. 2007.黄花苜蓿MfELIP和MfCAB的克隆、表达特性分析与功能研究. <<中国草学会牧草育种专业委员会2007年学术研讨会>>,会议记录ID: 7077596
    常青山. 2002.太谷核不育小麦育性相关基因的表达分析.北京:中国科学院研究生院
    陈济世,张岭华,吴秉礼. 1983.“三粒小麦”的发现及选育初报.作物学报, 9(1): 69~72
    陈万义. 1999,化学杂交剂的进展.农药, 38(1): 1~6.
    陈纬,刘维营,雷清,丁惠宾,王仑山. 1999.三粒小麦和普通小麦苗期过氢化物酶同工酶和蛋白质的比较研究.作物学报, 25(5): 650~653
    丁惠宾,王仑山. 1991.三粒小麦和普通小麦种胚萌发初期过氧化物酶及同工酶变化的比较.兰州大学学报(自然科学版). 27(4): 128~131
    丁惠宾,王耀芝,牛吉山. 1992.三粒小麦雄蕊的异常发育.兰州大学学报(自然科学版). 28(2): 157~162
    丁惠宾,王耀芝,张风琴. 1991.三粒小麦和普通小麦种胚萌发初期碳水化合物及核酸蛋白质合成动态的比较研究.兰州大学学报(自然科学版). 27(2): 140~144
    傅大雄,阮仁武. 1993. KM型核质互作小麦光温敏雄性不育的发现与两系杂交小麦的拓建.见:黄铁城,张爱民(主编).杂种小麦研究进展.北京:农业出版社:201~206
    高云,黄宇烽. 2002.真核表达系统研究进展.中华男科学, 8(4): 292~298
    高志民,李雪平,岳永德,彭镇华. 2007.绿竹cab-BO2基因的克隆及其表达载体的构建.分子植物育种, 5(3): 431~435
    高志民,刘颖丽,彭镇华,李雪平. 2009.毛竹PSⅡ捕光蛋白基因的分子特征及表达分析.第二届中国林业学术大会
    关荣霞,刘冬成,张爱民. 2001.小麦T型雄性不育恢复基因的遗传分析及RAPD标记.农业生物技术学报, 9(2): 159~162
    广东省农作物杂种优势利用研究协作组. 1977.水稻化学杀雄利用杂种优势的研究.中国农业科学, 10(2): 47~50
    郭新红,姜孝成,潘晓玲,戴玉池,姜维明,陈良碧. 2001.用抑制差减杂交法分离和克隆梭梭幼苗受渗透胁迫诱导相关基因的cDNA片段.植物生理学报, 27(5): 401~406
    杭州大学生物系遗传育种组. 1975.关于小麦化学去雄的几个问题.植物学杂志,(3): 33~35
    杭州大学生物系植物生理与遗传教研组. 1974.“乙烯利”对小麦化学去雄效应的初步研究.遗传学通讯, 5(3): 25~29
    何蓓茹. 1997.选育非1B/1R类型K型不育系的染色体转移方法.中国学术期刊文摘——科技快报, (4): 61
    侯文胜. 2004.小麦蓝色胚乳相关cDNA序列的分离鉴定.中国农业科学院博士后研究工作报告
    胡宝成,陈凤祥,李强生,张曼琳. 1994.白菜型油菜多雌蕊雄性不育材料的发现及其育种潜势.中国农业科学, 27(3): 90~91
    华南农学院农学系作物生态遗传研究室. 1978.杀雄剂一号诱导水稻雄性不育的细胞学观察.遗传学报, 5(3): 181~185
    黄寿松. 1990.小麦核型一蓝标型雄性不育,保持系的研究与利用.杂种小麦研究进展.北京:农业出版社
    黄铁城,张爱民. 1985.杂种小麦研究.北京农业大学学报, 11(4): 215~227
    黄铁城,张爱民主编. 1993.《杂种小麦研究进展》.北京:农业出版社
    静国忠. 2003.基因工程及其分子生物学基础.北京:北京大学出版社:253~255
    李红霞,张龙雨,张改生,牛娜,朱展望. 2008.黏类小麦育性相关基因SSH文库的构建.作物学报, 34(6): 965-971
    李雪平,高志民,彭镇华. 2008.绿竹光系统Ⅰ捕光叶绿素a/b结合蛋白基因的分离及序列研究. <<第八届中国林业青年学术年会>>,会议记录ID: 7139986
    李云,徐培洲,张红宇,彭海,张全芳,汪旭东,吴先军. 2007.一个新的水稻花器官数目突变体fon(t)的鉴定及分析.遗传学报, 34(8): 730~737
    李正德,王成社,杨天章,何培茹. 1987.小麦T型雄性不育系及其杂交种种子皱缩问题的研究.西北农业大学学报, 15(2): 1~9
    辽宁农业科学院. 1988.中国高粱栽培学.北京:中国农业出版社:44~46
    廖斌,邓冬梅,杨兵,束文圣,栾天罡,蓝崇钰. 2004.鸭跖草Commelina communis中差异地表达cDNA片断的克隆与分析.中山大学学报(自然科学版), 43(1): 75~78
    林明,贺俐,徐波,官德义,牟少亮,何水林. 2007.辣椒疫霉作用下叶绿素a/b结合蛋白的表达.亚热带农业研究, 4(4): 297~301
    刘秉华. 1996.我国杂交小麦研究的回顾与展望.国外农学—麦类作物,(1): 2~4
    刘光辉,董云麟. 1985.复果油菜材料的研究.中国油料, 3: 21~25
    刘光辉. 1980.油菜复果的探讨.中国袖料, 2: 46~48
    刘桂丰,侯英杰,王玉成,褚延广. 2005.干旱胁迫下刚毛柽柳消减文库的构建及分析.植物研究, 25(1): 69~73
    刘宏伟,张改生,王军卫,王小利,方振武. 2003.化学杂交剂SQ-1诱导小麦雄性不育及与不同小麦品种互作效应的研究.西北农林科技大学学报, 31(4): 43~46
    刘宏伟. 1998.化杀杂种小麦研究.陕西农业科学,(6): 3~5
    刘后利. 1988.油菜育种研究的进展.作物杂志, 3: 5~7
    刘后利主编. 1985.油菜的遗传和育种.上海:上海科技出版社:75~81
    刘军,袁自强,刘建东,钱晓茵,钱旻,杨金水. 2000.应用抑制差减杂交法分离水稻幼穗发育早期特异表达的基因.科学通报, 13: 1392~1397
    刘明慧,高秋侠. 1994.复粒小穗高粱的发现及初步观察.作物品种资源,(3): 23~24
    罗志勇,陆秋陌,刘水平,陈湘晖,罗建清,汤立军,胡维新. 2003.人参植物皂苷生物合成相关新基因的筛选与鉴定.化学与生物物理学报, 35(6): 554~567
    骆蒙,孔秀英,刘越,周荣华,贾继增. 2002.小麦抗病基因表达谱中的文库构建与筛选方法研究.遗传学报, 29(9): 814~819
    骆蒙. 2001.基于抑制差减杂交方法的小麦白粉病相关基因表达谱研究.[博士学位论文].北京:中国农业科学院研究生院
    马守才,张改生,李红茹, .赵常胜. 2006.小麦品系多Ⅱ多子房性状的遗传分析.麦类作物学报, 26(1): 35~37
    马守才,张改生,刘宏伟,王军卫,王小利. 2000.多子房性状应用于杂种小麦的研究I.多子房性状基因和细胞质效应.西北植物学报, 20(6): 949~953
    马守才,张改生,刘宏伟,王军卫. 2002.多子房性状应用于杂种小麦的研究Ⅱ.多子房小麦的杂种优势与利用.西北植物学报, 22(6): 1295~1299
    马守才,张改生,牛娜. 2007.小麦多子房性状近等基因系的选育及遗传背景的检测.核农学报, 21(6): 585~588
    孟存英,袁东红,王映梅,王燕,张欣,刘杰. 2007.人核糖体蛋白S15a在大肠癌组织中的表达及其意义.中国医药生物技术, 2(2): 101~104
    齐小强. 2003.野大麦盐胁迫诱导基因的克隆及功能分析.[硕士学位论文].北京:中国农业科学院研究生院
    山东农学院农学系植物与植物生理教研组. 1977.乙烯利诱导小麦(Triticum aestivum L.)雄性不育的细胞形态学观察.植物学报, 19(1): 28~33
    沈光华,童一中,沈革志. 1992.普通小麦多子房基因单体分析的染色体定位及双端体分析的染色体臂定位.遗传学报, 19(6): 513~516
    苏红英,张鹏飞. 2004.抑制性消减杂交技术研究进展.福建医科大学学报, 38(3): 354~357
    孙洪波,王国英,孙振元,古润泽,赵梁军. 2005.应用抑制差减杂交法分离粗枝大叶黄杨幼苗的冷诱导表达基因.中国农业科学, 38(1): 135~139
    孙钦秒,冷静,李良璧. 2000.高等植物光系统Ⅱ捕光色素蛋白复合体结构与功能研究的新进展. 植物学通报, 17(4): 289-301.
    唐文莉. 2008.毛竹Lhca基因的克隆和光照在转录水平对其表达的调控.[博士学位论文].北京:中国林业科学研究院
    天津市作物所. 1999.“津奥啉”杂交小麦研讨会会议纪要
    童一中,童普德. 1984.普通小麦多子房性状的研究,Ⅰ.多子房的形态发生及其基因定位.上海师范学院学报,(2): 48~53
    王波,陈梅红. 2004.反义技术研究进展.中国生物工程杂志, 24(12): 43~47
    王军卫,刘宏伟,王小利,张改生. 2004,小麦显性多子房基因RAPD反应体系的研究.麦类作物学报, 24(4): 35~38
    王军卫,张改生,刘宏伟,宋亚珍,牛娜. 2005.小麦显性多子房基因的RAPD标记.农业生物技术学报, 13(5): 553~556
    王鹏科. 1993.小麦核型雄性不育杂种优势研究利用的现状与展望.国外农学—麦类作物(,2): 46~49
    王鹏科. 1998. VE型小麦雄性不育—保持系的遗传研究.第一届国际杂种小麦研讨会论文集.北京: 中国农业大学出版社: 241~243
    王瑞刚,王水平. 2003.外源蛋白表达系统及利用植物表达外源蛋白的特点与优势.生物学通报, 38(1): 10~11
    王艳. 1998.小麦护型细胞光敏性不育的研究进展.中国农学通报, 14(4):16~18
    王耀芝,陈济世,丁惠宾,王仑山. 1987.三粒小麦大孢子的发生和雌配子体的发育.西北植物学报, 7(3): 163~169
    王耀芝,丁惠宾,陈济世. 1990.三粒小麦额外雌蕊的分化.兰州大学学报(自然科学版), 26(1): 80~84
    王耀芝,丁惠宾,金芝兰. 1989.一种多雌蕊小麦花的发生和发育,西北植物学报, 9(3): 131~135
    王永胜,王景,李发强,刘筱斌,刘良式. 2001. SSH法获取水稻矮化突变体相关的cDNA片段.高技术通讯, 5: 20~24
    王转,贾晋平,景蕊莲. 2003.用抑制差减杂交法分离小麦幼苗水分胁迫诱导表达的cDNA.生物技术通报, 5: 36~39
    未丽,徐秉良,雷江丽,刘水,唐益雄,阴翠翠,吴燕民. 2008.胡杨叶绿素a/b结合蛋白基因的克隆及序列特性分析.中国农业科技导报, 10(4): 63~69
    文雯,李双成,王世全,何体宏,李平. 2007.一个水稻双子房突变体的表型鉴定和遗传分析.中国水稻科学, 21(3): 253~258
    吴江生,刘后利,舒征兵,石淑稳. 1995.甘蓝型油菜复果性状的再次发现与研究.华中农业大学学报, 14(3): 232~235
    吴江生. 1991.甘蓝型复果油菜的多雌蕊遗传变异与育种.华中农业大学油菜研究年报, 59
    吴金华,胡银岗,王新茹,张宏,王长有,王秋英,吉万全. 2008.小麦抗白粉病SSH-cDNA文库中差异基因的表达模式.作物学报, 34(12): 2121~2125
    吴乃虎. 1998.基因工程原理(第2版).北京:科学出版社:1~10
    武军,李邦琴,赵继新.三粒小麦多子房性状的遗传分析. 2000.西北农业大学学报, (6): 63~65
    向平, J.D.Soule. 2001.两个大麦多子房突变体的分离、图谱研究和性状鉴定.国外作物育种, 20(4): 13
    向太和,王利琳,庞基良. 2005.水稻(Oryza sativa L.)捕光叶绿素a/b结合蛋白基因全长cDNA的克隆和特性分析.作物学报, 31(9): 1227~1232
    肖洁凝,黄学林,黄霞,李筱菊.芒果生长素反应因子类蛋白的cDNA克隆和表达. 2004.生物工程学报, 20(1): 59~62
    辛志勇. 1997,发展生物技术促进作物育种科技革命.作物杂志, (5): 13~15
    杨春玲,郭瑞玲. 2002.我国小麦杂种优势利用现状及存在问题.河南农业科学,(9): 14~15
    杨天章. 1990.小麦新型不育系的研究与利用,杂种小麦研究——进展、问题与展望.北京:中国农业大学出版社:110~136
    于秀梅. 2006.条锈菌诱导的小麦抑制差减杂交文库构建(SSH)及其表达序列标签(ESTs)研究. [博士学位论文].杨陵:西北农林科技大学
    张爱民,黄铁城. 1997.小麦杂种优势利用途径与研究进展.作物杂志,(5): 16~20
    张爱民,黄铁城. 1998.正在走向生产的杂种小麦.北京:中国农业大学出版社
    张爱民,刘冬成,聂秀玲,郭小丽,黄铁城. 2002.杂种小麦育种的战略.中国农业科技导报, 4(5):42~48
    张改生,刘宏伟,王军伟. 2003.高产优质杂交小麦新品种西杂一号,西杂五号.农业新技术. 4(1): 25~26
    张改生,刘宏伟,王军卫,赵惠燕. 1997.我国杂种小麦走向生产的关键策略.科技导报,(10): 27~28
    张改生,刘宏伟,王军卫. 2002.我国杂种小麦研究进展与展望.今日科苑,(7): 59~62
    张改生,杨天章. 1989,偏、粘、易型小麦雄性不育系的初步研究.作物学报, 15(1): 1~10
    张改生,赵惠燕,吴兆苏,俞世蓉. 1994.偏、粘和易型非1B/1R小麦雄性不育系的研究初报.西北农业学报, 3(4): 7~12
    张改生,赵惠燕,吴兆苏,俞世蓉. 1995,偏、粘、易型非1B/1R小麦雄性不育系育成.中国农业科学, 28(7): 90
    张改生. 1992.粘、易型1B/1R小麦雄性不育系产生单倍体的遗传机理及育性恢复性能的研究.遗传学报, 19(3): 266~277
    张改生. 1997.陕西省杂种小麦产业现状与发展对策.陕西农业科学, (3): 7~14
    张国慧. 2008.小麦多子房性状的SSR分子标记及外显率影响因子的研究. [硕士学位论文].杨陵:西北农林科技大学
    张雷,杨志攀,刘一鸣,黄美娟,吴乃虎. 2002. cDNA文库的差异筛选与抑制性减数杂交结合分离胡萝卜体细胞胚根发育相关基因.自然科学进展, 12(3): 261~265
    张向前,邹金松,朱海涛,李晓燕,曾瑞珍. 2008.水稻早熟多子房突变体fon5的遗传分析和基因定位.遗传, 30(10): 1349~1355
    张晓科,张改生,王卫军. 1997.小麦细胞质雄性不育机理的研究进展.麦类作物,(2): 4~6
    赵凤梧,李慧敏,李爱国. 2001.冬小麦温敏型雄性不育LT-1-3A选育及育性转换与遗传研究.核农学报, 15(2): 65~69
    赵凤梧,李慧敏,李洪武. 1993.小麦光温敏雄性不育系9l-1的研究初报.见:黄铁城,张爱民(主编). 杂种小麦研究进展.北京:农业出版社:198~200
    赵国屏. 2002.生物信息学.北京:科学出版社:56~58
    赵寅槐. 1985.普通小麦T型细胞质雄性不育的恢复问题.北京农业大学学报, 11(4): 105~116
    浙江省农科院作物研究所原子能利用研究室. 1977.用“C14-乙烯利”进行小麦化学杀雄机理的研究(第一版).遗传学报, 4(4): 294~301
    浙江省杂交小麦协作组. 1978.小麦化学杀雄机理和技术的研究.中国农业科学, 11(1): 28~36
    智建奇,陈天佑,贾志森,武海丽,贾春花. 2002.三雌蕊小麦的形态及遗传初报.华北农学报, S1期: 85~87
    Aguilar F, Montandon P E, Stutz E. 1991. Two genes encoding the soybean translation elongation factor eEF-1a are transcribed in seedling leaves. Plant Molecular Biology, 17: 351~360
    Akiyama N, Matsuo Y, Sai H, Noda M, and Kizaka-kondoh S, 2000. Identification of a series of transforming growth factor beta responsive genes by retrovirus-mediated gene trap screening. Molecular and Cellular Biology, 20(9): 3266~3273
    Alexandrov N N, Troukhan M E, Brover V V, Tatarinova T, Flavell R B, Feldmann K A. 2006. Features of Arabidopsis genes and genome discovered using full-lengthcDNAs. Plant Molecular Biology, 60(1): 69~85
    Allan, R E. 1973. Yields of wheat hybrids of the Triticum timopheevi nucleo-cytoplasmic system. Proceedings of the Fourth. International Wheat Genetics Symposium, Columbia, 311~317
    Amsterdam A, Sadler K C, Lai K, Farrington S, Bronson R T, Lees J A, and Hopkins N. 2004. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biology, 2(5): E139
    Asiegbu F O, Nahalkova J, Li G. 2004. Pathogen-inducible cDNA from the interacton of the root rot fungus Heterobasidion annosum with Scots pine. Plant Science, 168: 365~372
    Axelos M, Bardet C, Liboz T, Le Van Thai A, Curie C, Lescure B. 1989. The gene family encoding the Arabidopsis thaliana translation elongation factor EF-1α: molecular cloning, characterization and expression. Molecular General Genetics, 219:106~l12
    Bahn S C, Bae M S, Park Y B. 2001. Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (Hordeum vulgare L.). Biochim BiophysActa, 1522 (2): 134~137
    Bakaldina N B, Alekseenko Z V, Plotnikov V K. 2001. The effect of hardening temperature on the stability of mRNA forα-subunit of translational elongation factor 1 in wheat and barley seedlings. Russian Journal of Plant Physiology, 48(6): 879~885
    Baraba’s Z,Sagi F and Kertez Z. 1973. Special ways for hybrid wheat breeding. Proceedings of the Fourth International Wheat Genetic Symposium. Columbia, 323~328
    Baraba's Z. 1976. The Problems of hybrid wheat and some steps to solve them. The reality of hybrid wheat. In: Heterosis in plant breeding, Proceedings of the Seventh Congress of EVCARPIA.Ed: Janossy, A. and Lupton, F. G. H. Pub: Lsevier. P: 257~258
    Barakat A, Szick-Miranda K, Chang I F, Guyot R, Blanc G, Cooke R, Delseny M, Bailey-Serres J . 2001. The organization of cytoplasmic ribosomal protein genes in the arabidopsis genome. Plant Physiol, 127: 398~415
    Berberich T, Uebeler M, Feierabend J. 2000. cDNA cloning of cytoplasmic ribosomal protein S7 of winter rye (Secale cereale) and its expression in low-temperature-treated leaves. Biochim Biophys Acta, 1492(1): 276~279
    Bernstein E,Caudy A A,Hammond S M. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409: 363~366
    Bonham-Smith P C, and Moloney M M. 1994. Nucleotide and protein sequences of a cytoplasmic ribosomal protein S15a gene from Arabidopsis thaliana. Plant physiology, 106: 401-402
    Bonham-Smith P C, Oancia T L, and Moloney MM. 1992. Cytoplasmic ribosomal protein S15a from Brassica napus: molecular cloning and developmental expression in mitotically active tissues. Plant Molecular Biology, 18(5): 909~919
    Brich P R J, Avrova A O, Duncan J M 1999. Isolation of potato genes that are induced during an early stage of hypersensitive response toPhytophthora infestans. Moecular Plant-Microbe Interactions, 12 (4): 356~361
    Brums R and Peterson C. 1998. Yield and stability factors associated with hybrid wheat. Euphytica, 100: 1~5
    Carneiro N P, Hughes P A, Larkins B A. 1999. The eEF1A gene family is differentially expressed in maize endosperm. Plant Molecular Biology, 41(6): 801~813
    Chen X, Yuan H, Chen R. 2002. Isolation and characterization of triacontanol-regulated genes in rice (Oryza sativa L.): possible role of triacontanol as a plant growth stimulator. Plant Cell Physiol, 43 (8): 869~876
    Chu H W, Qian Q, Liang W Q, Yin C S, Tan H E, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang D B. 2006. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol, 142(3): 1039~1052
    Clark S E, Running M P and Meyerowitz E M. 1995. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development, 121(7): 2057~2067.
    Clark S E, Running M P,Meyerowitz E M.1993. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, 119(2): 397~418
    Clark S E, Willlams, R W and Meyerowitz, E M. 1997. The CLVATA1 gene eneodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89: 575~585.
    Clemens M J. 2004. Targets and mechanisms for the regulation of translation in malignant transformation. Oncagene, 23: 3180~3188
    Cottem M, Birustiel M L. 1989. Ribozyme mediated destruction of RNA in vivo. EMBO, 8(12): 3861~3865
    Diatchenko L, Lau Y F, Campbell A P. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue specific cDNA probes and libraries. Proc Natl Acad SciUSA, 93(12): 6025~6030
    Driscoll C J. 1972. XYZ system of producing hybrid wheat. Crops Science, 12: 516~517
    Driscoll C J. 1985. Modified XYZ system of producing hybrid Wheat. Crops Science, 25: 1115~1116
    Durfee T, Roe J, Sessions R, Inouye C, Serikawa K, Feldmann K, Weigel D, Zambryski P. 2003. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. Proc Natl Acad Sci USA, 100: 8571~8576
    Ewing B, Hillier L, Wendl M C, Green P. 1998. Base-calling of automated sequencer traces using phred: I. Accuracy assessment. Genome Res, 8: 175~185
    Fan Z and B R Stefansson. 1986. Maintainers and restores for three male sterility inducing cytoplasm in rape (Brassicanapus L.). Can. J. Plant. Sci, 66 (2):221~227
    Fire A, Xu A Q, Montgomer Y M K. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391: 806~811
    Fischer J E. 1972. The transformation of stamens and of ovaries to inflorescences in T. aestivum L. under short day treatment. Bot Gaz, 133: 78~85
    Galau G A, Wilikins T A. 1989. Alloplasmic male sterility in AD alloteraploid Gossypium hirsutum upon replacement of its residents, A cytoplasm with that of D Species G. Harknessii. Theor Appl Genet, 78: 23~30
    Gao J W, Kim S R, Chung Y Y, Lee J M, An G. 1994. Developmental and environmental regulation of two ribosomal protein genes in tobacco. Plant Molecular Biology, 25(5): 761~770
    Gao P, Wang G Y and Zhao H J.2003. Isolation and identification of submergence-induced genes in maize (Zea mays) seedlings by suppression subtractive hybridization. Acta Botanica Sinica, 45(4): 479~483
    Ghiasi H, Luchen K A. 1982. Agronomic and male-fertility restoration characteristics of wheat restorer lines with Aegilops speltoides and Triticum timopheevi. Cytop Sci, 22: 527~530
    Gurskaya N G, Diatchenko L, Chenchik A. 1996. Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate13-acetate. Anal Biochem, 240(1): 90~97
    Hein I, Campbell E I, Woodhead M. 2004. Characterisation of early transcriptional changes involving multiple signaling pathways in the Mla13 barley interaction with powdery mildew. Planta, 218(5): 803~813
    Ito T, Kim G T, Shinozaki K. 2000. Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development, The Plant Journal, 22(3): 257~264
    Jang C S, Lee M S, Kim J Y. 2003. Molecular characterization of a cDNA encoding putative calcium binding protein, HvCaBP1, induced during kernel development in barley (Hordeum vulgare L.). Plant Cell Rep, 22 (1): 64~70
    Jeong S, Trotochaud A E, Clark S E. 1999. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell, 11(10): 1925~1934
    Jiang L, Zhang W L, Xia Z H, Jiang G H, Qian Q, Li A L, Cheng Z K, Zhu L H, Mao L, Zhai W X. 2007. A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L. Mol Genet Genomics, 277(3): 263~272
    Jin Y, Tashpulatov A S, Katholnigg H. 2006. Isolation and characterisation of two wheatβ-expansin genesexpressed during male gametophyte development. Protoplasma, 228(1): 13~19
    Joanin P, Gigot C, Phillips G. 1993. cDNA nucleotide sequence and expression of a maize cytoplasmic ribosomal protein S13 gene . Plant Molecular Biology, 21: 701~704
    Jost M, Milohnic J. 1974. Influence of T.timopheevi cytoplasm on characters of male sterile common wheat. Cereal Res Comm, 2: 53~64
    Kang H G, Foley R C, Onate-Sanchez L. 2003. Target genes for OBP3, a Dof transcription factor, include novel basic helix-loop-helix domain proteins inducible by salicylic acid. Plant J, 35 (3): 362~372
    Kawahara R, Sunabori S, Fukuda H, Komamine A. 1992. A gene expressed preferentially in the globular stage of somatic embryogenesis encodes elongation-factor 1 alpha in carrot. European Journal of Biochemistry, 209(1): 157~162
    Kayes J M and Clark S E. 1998. CLAVATA2,a regulator of meristem and organ development in Arabidopsis. Development, 125: 3843~3851
    Kidou S, Ejiri S. 1998. Isolation, characterization and mRNA expression of four cDNAs encoding translation elongation factor 1A from rice (Oryza sativa L). Plant Molecular Biology, 36(1): 137~148
    Kihara H. 1951. Substitution of nucleus and its effects on genome manifestations. Crtologia,76: 177~193
    Kihara H. 1973. Charateristic of Ageilops Squarrosa cytoplasm. proc.4th Inter Wheat Genet Symp, 351~353
    Kim J Y, Chung Y S, Paek K H. 1999. Isolation and characterization of a cDNA encoding the cysteine proteinase inhibitor, induced upon flower maturation in carnation using suppression subtractive hybridization. Mol Cells, 9(4): 392~397
    Kim K Y, Park S W, Chung Y S, Chung C H, Kim J I, Lee J H. 2004. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. Gene Note, 1153~1155.
    Kim M, Kim S. 2001. Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization. Mol Cell, 11(2): 213~219
    Kloos D U, Oltmanns H, Dock C. 2002. Isolation and molecular analysis of six taproot expressed genes from sugar beet. J Exp Bot, 373(53): 1533~1534
    Lavoie C, Tam R, Clark M, Lee H, Sonenberg N, and Lasko P. 1994. Suppression of a temperature-sensitive cdc33 mutation of yeast by a multicopy plasmid expressing a Drosophila ribosomal protein. The Journal of Biological Chemistry, 269(20): 14625~14630
    Lian Z, Liu J, Li L, Li X, Tufan N L, Wu M C, Wang H Y, Arbuthnot P, Kew M, and Feitelson M A. 2004. Human S15a expression is upregulated by hepatitis B virus X protein. Molecular Carcinogenesis, 40(1): 34~46
    Liao H, Wong F L, Phang T H. 2003. GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene, 318:103~111
    Librojo A L, Khush G S. 1986. Chromosomal location of some mutant genes through the use of primary trisomics in rice. Rice Genetics International Rice Research Institute, Manila
    Lijsebettens M V, Vanderhaeghen R, Block M D, Bauw G, Villarroel R, Montagu M V. 1994. An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J, 13: 3378~3388
    Low E T L, Alias H, Boon S H, Shariff E M, Tan C Y A, Ooi L C L, Cheah S C, Raha A R, Wan K L, Singh R. 2008. Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: Identifying genes associated with callogenesis and embryogenesis. BMC Plant Biology, 8: 62
    Mager W H. 1988. Control of ribosomal protein gene expression. Biochim Biophys Acta, 949:1-15
    Meyer V G. 1966 Flower abnormalities. Botan Rev, 32: 165~218
    Moore R C,Durso N A,Cyr R J. 1998. Elongation factor-1alpha stabilizes microtubules in a calcium/calmodulin-dependent manner. Cell Motil Cytoskeleton, 41(2): 168
    Mulder N J, Apweiler R, Attwood T K, Bairoch A, Barrell D, Bateman A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley R R, Courcelle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard S E, Pagni M, Peyruc D, Ponting C P, Selengut J D, Servant F, Sigrist C J, Vaughan R, Zdobnov E M. 2003. The InterPro Database: 2003 brings increased coverage and new features. Nucl Acids Res, 31: 315~318
    Murai K, Tsunewaki K. 1993. Photoperiod-sensitive cytoplasm male sterility in wheat with Aegilops ctassa cytoplasm. Euphytica, 67: 41~48
    Nagasawa N, Miyoshi M, Sano Y. 1996. DL regulates both leaf and pistil development in rice. Rice Genetics Newsletter, 13: 102~105
    Nagasawa N, Miyoshi M, SanoY, Satoh H, Hirano H Y, Sakai H, NagatoY. 2003. SUPERWOMAN 1 and DROOPING LEAF genes control floral organ identity in rice. Development, 130(4): 705~718
    Nielsen P S, Kleinhofs A, Olsen O A. 1997. Barley elongation factor 1alpha: genomic organization, DNA sequence, and phylogenetic implications. Genome, 40(4): 559~565
    Panayotov I. 1980. New cytoplasmic male sterility sources in common wheat. Their genetical and breeding consideration. Theor Appl Genet, 56: 153~160
    Pandian R, Thiyagarajan K. 2004. Inheritance of floral traits in spontaneous mutant in rice(Oryza sativa L.). Curr Sci, 87(8): 1051~1052
    Pickeet A A. 1993. Hybrid wheat results and problems. Berlin and Hamburg: Pawl Parey Scientific Publishers.
    Pokalsky A R, Hiat W R, Ridge N, Rasmussen R, Houck C M, Shewmaker C K. 1989. Structure and expression of elongation factor 1αtomato. Nucleic Acids Research, 17(12): 4661~467
    Popescu S C, Tumer N E. 2004. Silencing of ribosomal protein L3 genes in N.tabacum reveals coordinate expression and significant alterations in plant growth, development and ribosome biogenesis. Plant Journal, 39 : 29~44
    Porter K B, Lahr KA, Atkins I M. 1965. Cross-pollination of male-sterile winter wheat (Triticum aestivum L.) having Aegelops caudate L. and Aegelops ovata L. Cytoplasm. Crop Sci J, 5: 161~163
    Qi Y H, Kawano N, Yamauchi Y. 2005. Identification and cloning of a submergence-induced gene OsGGT (glycogenin glucosyltransferase) from rice (Oryza sativa L.) by suppression subtractive hybridization. Planta, 221(3): 437~445
    Rai R K. 1978. Influence of the male-sterility(Triticum timopheevi Zhuk.cytoplasm)on F1 seed in common wheat. Proc. 5th Wheat Genet Symp, 231~260
    Riis B,Rattan S I,Clark B F,Merrick W C . 1990. Eukaryotic protein elongation factors. Trends Biochem Sci, 15:420~424
    Rosendahl G, Andreasen P H, Kristiansen K. 1991. Structure and evolution of the Tetrahymena thermophila gene encoding ribosomal protein L21. Gene, 98(2): 161~167
    Samach A, Klenz J, Kohalmi S, Risseeuw E, Haughn G, Crosby W. 1999. The unusual floral organs gene ofArabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J, 20: 433~445
    Stevens R, Goble C, Baker P, Brass A. 2001. A classification of tasks in bioinformatics. Bioinformatics, 17: 180~188
    Stoneley M, Willis A E. 2003. Aberrant regulation of translation initiation in tumorigenesis. Current Molecular Medicine, 3(7):597~603
    Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H Y. 2004. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 131(22): 5649~5657
    Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano H Y. 2006. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol, 47(12): 1591~1602
    Tian Z D, Liu J, Xie C H. 2003. Isolation of resistance related-genes to Phytophthora infestans with suppression subtractive hybridization in the R-gene-free potato. Acta Genetica Sinica, 30 (7): 597~605
    Ursin V M, lrvine J M, Hiatt W R, Shewmaker C K. 1991. Developmental analysis of elongation factor-1a expression in transgenic tobacco. Plant Cel1, 3: 583~591
    Vijaykumar D, Ramachander T V N, Mahishi L H, Kaul R, Pyati P, Paul B, Rawal S K. 2002. Molecular cloning, characterization and tissue specific expression of an elongation factor 1A gene in Saccharum officinarum L. Plant Science, 162: 315~321
    Wang A Q, Qin Y Z, Ye X Z, Fan Y G, He L F, Yang L T, Li Y R. 2008. Molecular cloning and tissue specific expression of an elongation factor 1A gene in sugar-cane stalks. Sugar Tech, 10(2): 19~123
    Wang X, Wu P, Xia M. 2002. dentification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-root treatment. Gene, 297(1-2): 93~102
    Wang X L, Weng Q M, You A Q. 2003. Cloning and characterization of rice RH3 gene induced by brown planthopper. Chinese Science Bulletin, 48 (18): 1976~1981
    Wang Y N, Liu M Y, Li X. 2005. Multidimensional nature of glyceraldehyde-3-phosphate dehydrogenase in Plants. Acta Bot Boreal-Occident Sin, 25(03): 607-614
    Wang W M, Zhu L H, Xie R. 2000. Morphological and anatomical analyses of a floral organ mutant in rice. Acta Botanica Sinica, 42(4): 379~382
    Watillon B, Kettmann R, Boxus P, Burny A. 1998. Elongation factor 1α(EF-1α)transcript levels are developmentally and environmentally regulated in apple plants. Physiologia Plantarum, 104:1~9
    Watt D A. 2003. Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J Exp Bot, 54 (385): 1163~1174
    Wilson J A , Ross W M. 1962. Cross breeding in wheat (Triticum aestivum) Hybrid seed set on a cytoplasmic male-sterile winter wheat composite subjected to cross-pollination. Crop Science, 2: 415~417
    Wool I G. 1996. Extraribosomal functions ribosomal proteins. Trends in Biochemical Sciences, 21: 164~165
    Wu Y R, Wang Q Y, Ma Y M. 2004. Isolation and expressin analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant science, 168: 847~853
    Wu Y W. 1995. Breeding of wheat male sterile line with Aegilops crassa (6 xs) cytoplasm and research of its characters. Chinese Science Bulletin, 40(3): 243~247
    Wu Z D, Khairy M, Soliman, James J, Bolton, Sukumar Saha, Johnie N, Jenkins. 2008. Identification of differentially expressed genes associated with cotton fiber development in a chromosomal substitution line (CS-B22sh). Funct Integr Genomics, 8: 165~174
    Xia M, Wang S F, Wang X B. 2003. Identification of phosphorus starvation induction genes in rice by suppression subtractive hybridization. Acta Botanica Sinica, 45(6): 736~741
    Xu W L, Wang X L, Wang H, Li X B. 2007. Molecular characterization and expression analysis of nine cotton GhEF1A genes encoding translation elongation factor 1A. Gene, 389(1): 27~35
    Yao Y Y, Ni Z F, Du J K, Wang X L, Wu H Y, Sun Q X. 2006. Isolation and characterization of 15 genes encoding ribosomal proteins in wheat (Triticum aestivum L.). Plant Science, 170: 579~586
    Yao Y Y, Ni Z F, Zhang Y H, Chen Y, Ding Y H, Han Z F, Liu Z Y, Sun Q X. 2005. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Molecular Biology, 58: 367~384
    Yue C F, Kang G Z, Liu C, Guo T C, Zhu Y J, Shen B Q. 2008. Cloning and sequencing of GAPDH gene in common wheat (Tritucum aestivum L.). Chinese Agricultural Science Bulletin, 24(4): 94~98
    Zhu J K, Damsz B, Kononowicz A K, Bressan R A, Bressan R A, Hasegawa P M. 1994. A higher plant extracellular vitronectin-like adhesion protein is related to thetranslational elongation factor-1 alpha. The Plant Cell, 6(3): 393~404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700