用户名: 密码: 验证码:
复杂化工过程的调控流图建模方法及故障诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化工过程中涉及多个变量、多种单元操作设备和传热、传质及化学反应等多种过程。变量之间关系复杂、过程机理复杂以及过程的多尺度都会为故障诊断带来一定的难度。为了适应化工生产过程信号的高噪声、维数高、强相关、非线性的特点,在复杂化工过程故障诊断方法的研究中,将复杂系统建模技术融入其中以及将定性模型与定量模型有机地结合都是必然的发展趋势。
     针对复杂化工过程故障监测与故障诊断问题,本文以实体语法系统为理论框架,建立了调控流图(RFG)、定性调控流图、调控流图定性仿真系统的形式化定义。
     针对复杂化工过程建模前所具备的数据基础,建立了调控流图的三种建模方法,分别为基于工艺流程图的建模、基于数学模型的建模和基于连续监测数据的建模。基于工艺流程图的建模方法可用以直接建立化工过程的定性调控流图模型,基于已有数学模型的建模方法可用以建立化工过程的定量调控流图模型,基于连续监测数据的建模方法可以结合粒子群等参数估计算法用以建立表达化工过程外在特征的定量调控流图模型。
     为了使定性、定量模型之间可以相互转换,本文推导了调控流图通用动力学方程,结合S-系统动力学方程,建立了两类模型互相转换的两套方法,为定性、定量相结合的复杂化工过程建模提供了基础。以CSTR系统为例,探讨了三种建模方法的具体应用。
     针对定性调控流图的分析问题,本文建立了调控流图的定性仿真、故障监测和故障诊断技术。并以CSTR过程、TE过程和原油蒸馏过程为例,研究了三种技术的可行性。
     定性仿真技术以调控流图定性仿真系统为基础,利用Datalog语言实现基于调控流图模型的自动推理。这一技术通过对变量取值空间的界定,有效解决了环的问题、多途径调节问题以及多重仿真问题,为基于调控流图的仿真奠定了基础。
     故障监测技术在定量调控流图模型的基础上,通过仿真数据与实际监测数据的差异进行故障监测。复杂化工过程传统数学模型由于模型复杂、计算量大,限制了这一思路的应用。本文基于连续监测数学的调控流图作为一类唯象模型,具有结构简单、计算速度快的特点,有效克服了这一瓶颈问题。
     故障诊断技术以定性调控流图为基础,通过调控流图的定性仿真获得每个故障的传播途径及对每个观测变量的影响,利用数据挖掘技术建立从监测变量推断故障的故障诊断模型。复杂化工过程的定性模型由于变量多、关系复杂,在反向推理过程中容易出现不确定性的结果,且计算量大,容易出现组合爆炸的问题,难以用到生产过程的实时故障诊断中。本文基于定性调控流图的故障诊断通过数据挖掘离线建立故障诊断模型,在生产过程中直接应用结构简单的故障诊断模型,具有速度快、判断直接的特点,在一定程度上解决了这一问题。
     在研究过程中,本文探讨了调控流图与系统动力学、SDG建模方法等相关理论与技术方法的关系,并探讨了化工过程故障诊断与复杂系统涌现性的关系。调控流图作为一种新的复杂化工过程建模方法,继承了实体语法系统的形式化特点,融合了多种方法的优点,并有效地集成了定性仿真技术、数据挖掘技术、参数估计方法,能够实现定性定量模型的相互转化,为复杂化工过程的故障监测与故障诊断提供了可行的技术方案。
The chemical processes involve a wide variety of variables, process equipments and chemical reactions. Fault diagnosis of chemical process has become a big chanllenge because of complex relationships between variables and complex process mechanism. Recent trends of the study of chemical process fault diagnosis are towards complex system modeling and the integration of qualitative and quantitative models.
     A novel modeling method called Regulating Flow Graph (RegFlow Graph, RFG) was proposed in this dissertation in attempt to solve the problem of fault detection and diagnosis in complex chemical processes. Formal definitions of RFG, quanlitative RFG and qualitative simulation system of RFG were presented, which were based on the framework of entity grammar system.
     Three RFG modeling methods were developed, namely, process flow diagram-based approach (FDBA), mathematical model-based approach (MMBA) and continuous monitoring data-based approach (MDBA). FDBA can be used to build a qualitative RFG of chemical process. MMBA can be used to build a quantitative RFG. The combination of MDBA and partical swarm algorithm can be used to build a phenomenalogical model of chemical process.
     For the transformation between qualitative RFG and quantitative RFG, the general dynamical equation for RFG was deduced. Together with the S-system dynamics equation, two transformation methods were proposed. The applications of three RFG modeling methods in CSTR system were explored.
     The techniques on RFG qualitative simulation, RFG-based fault detection and RFG-based fault diagnosis were developed in the later charpters. To verify and illustrate these techniques, CSTR process, TE process and crude oil distillation process were tested as case studies.
     Based on the qualitative simulation systems of RFG, the automatic reasoning system of RFG was implemented using Datalog language. The problems of rings, multi-channel regulation and multiple simulation have been effectively solved.
     For RFG-based fault detection, faults can be identified by the difference between RFG simulated data and monitoring data. The complexity and large computional requirement of traditional mathematical models have limited their application in fault detection. The phenomenological model obtained using MDBA is simple and the caculation is fast, which can overcome the drawbacks of traditional fault detection methods.
     The fault disgnosis based on RFG can be accomplished using RFG qualitative simulation, which can shows the propagation path of each fault and the effect of faults on each observerd variable. The simulation results can be used to establish fault diagnosis model with data mining method. Because of the complexity of chemical processes, back-forward reasoning strategy in falut disgnosis often leads to uncertainty results and combinatorial explosion problem. The combination of RFG qualitative simulation and data ming can partly solve these problems.
     This dissertation has explored the relationships between RFG and the related theories and approaches, such as system dynamics and SDG modeling method. The relathionships between fault diagnosis in chemical processes and emergence in complex systems was also analysised. As a novel modeling method, RFG has the formal features of entity grammar system and contains the advantages of related modeling methods. It has overcome the limitions of traditional research methods. The integration of qualitative simulation technology, data mining technique and parameter estimation method in RFG has provided a feasible scheme for fault detection and fault diagnosis in complex chemical processes.
引文
[1]Linstone H A. Complexity science:Implications for forecasting[J]. Technological Forecasting and Social Change,1999,62(1-2):79-90
    [2]方美琪,张树人.复杂系统建模与仿真[M].北京:中国人民大学出版社,2005
    [3]陈森发.复杂系统建模理论与方法[M].南京:东南大学出版社,2005
    [4]Alla H, David R. A modelling and analysis tool for discrete events systems:continuous Petri net[J]. Performance Evaluation,1998,33(3):175-199
    [5]郑大钟,赵前川.离散事件动态系统[M].北京:清华大学出版社,2001
    [6]Gruer P, Koukam A, Mazigh B. Modeling and quantitative analysis of discrete event systems:A statecharts based approach[J]. Simulation Practice and Theory,1998,6(4): 397-411
    [7]Gruer P, Hilaire V, Koukam A, et al. A formal framework for multi-agent systems analysis and design[J]. Expert Systems with Applications,2002,23(4):349-355
    [8]Lee W B, Lau H C W. Multi-agent modeling of dispersed manufacturing networks[J]. Expert Systems with Applications,1999,16(3):297-306
    [9]ozbayrak M, Papadopoulou T C, Akgun M. Systems dynamics modelling of a manufacturing supply chain system[J]. Simulation Modelling Practice and Theory,2007, 15(10):1338-1355
    [10]Georgiadis P, Vlachos D, Iakovou E. A system dynamics modeling framework for the strategic supply chain management of food chains[J]. Journal of Food Engineering,2005, 70(3):351-364
    [11]Coyle G. The practice of system dynamics:milestones, lessons and ideas from 30 years experience[J]. System Dynamics Review,1998,14(4):343-365
    [12]Richardson G P. Reflections for the future of system dynamics[J]. The Journal of the Operational Research Society,1999,50(4):440-449
    [13]Forrester J W. Industrial Dynamics[M]. Cambridge,Mass:MIT Press,1961.
    [14]郭齐胜,董志明,李亮,等.系统建模与仿真[M].北京:国防工业出版社,2007
    [15]De Kleer J, Brown J S. A qualitative physics based on confluences[J]. Artificial Intelligence,1984,24(1-3):7-83
    [16]Forbus K D. Qualitative process theory[J]. Artificial Intelligence,1984,24(1-3):85-168
    [17]Kuipers B. Qualitative reasoning:Modeling and simulation with incomplete knowledge[M]. Cambridge, MA:MIT Press,1994.
    [18]Gorez R, De Neyer M, Barreto J. Building fuzzy-qualitative models for simulation and control[J]. Simulation Practice and Theory,1996,4(5):285-301
    [19]Wang X Z, Yang S A, Yang S H, et al. The application of fuzzy qualitative simulation in safety and operability assessment of process plants[J]. Computers & Chemical Engineering,1996,20(Supplement 1):671-676
    [20]Shen Q, Leitch R. Fuzzy qualitative simulation[J]. IEEE Transactions on Systems, Man and Cybernetics,1993,23(4):1038-1061
    [21]Wang X Z, Yang S A, Veloso E, et al. Qualitative process modelling-a fuzzy signed directed graph method[J]. Computers & Chemical Engineering,1995,19(Supplement 1): 735-740
    [22]吴重光,夏涛,张贝克.基于符号定向图(SDG)深层知识模型的定性仿真[J].系统仿真学报,2003,15(10):1351-1355
    [23]Bulitko V, Wilkins D C. Qualitative simulation of temporal concurrent processes using Time Interval Petri Nets[J]. Artificial Intelligence,2003,144(1-2):95-124
    [24]De Jong H, Geiselmann J, Thieffry D. Qualitative modelling and simulation of developmental regulatory networks[M]. London:Academic Press,2003.109-134
    [25]Schaich D, Becker R, King R. Qualitative modelling for automatic identification of mathematical models of chemical reaction systems[J]. Control Engineering Practice, 2001,9(12):1373-1381
    [26]Mcintosh B S. Qualitative modelling with imprecise ecological knowledge:a framework for simulation[J]. Environmental Modelling & Software,2003,18(4):295-307
    [27]李国华,耿锋,胡昌华,等.定性仿真和功能推理在系统故障诊断中应用[J].控制工程,2007,14(S1):135-137
    [28]Wolstenholme F E. Qualitative vs quantitative modelling:the evolving balance[J]. The Journal of the Operational Research Society,1999,50(4):422-428
    [29]Richardson G P. Problems with Causal-Loop Diagrams[J]. System Dynamics Review, 1986,2(2):158-170
    [30]Wolstenholme E F, Coyle R G. Development of system dynamics as a rigorous procedure for system description[J]. Journal of the Operational Research Society,1983, 34:885-898
    [31]Say A C C, Akin H L. Sound and complete qualitative simulation is impossible[J]. Artificial Intelligence,2003,149(2):251-266
    [32]石纯一,薛冬白.基于定性模型的定性仿真方法[J].软件学报,1996,7(2):106-110
    [33]郭慕孙.化学工程的多层次结构[J].化学工程,2007,35(10):75-78
    [34]李静海.浅谈21世纪的化学工程[J].化工学报,2008,59(8):1879-1883
    [35]李希.化工问题的建模与数学分析方法[M].北京:化学工业出版社,2006
    [36]许光.支持向量机在化工过程建模中的应用[D].杭州:浙江大学,2004
    [37]Meert K, Rijckaert M. Intelligent modelling in the chemical process industry with neural networks:a case study[J]. Computers & Chemical Engineering,1998,22(Supplement 1): 587-593
    [38]Wang H, Oh Y, Yoon E S. Strategies for modeling and control of nonlinear chemical processes using neural networks [J]. Computers & Chemical Engineering,1998, 22(Supplement 1):823-826
    [39]Nandi S, Badhe Y, Lonari J, et al. Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms:study of benzene isopropylation on Hbeta catalyst[J]. Chemical Engineering Journal,2004, 97(2-3):115-129
    [40]Yang H, Li J, Ding F. A neural network learning algorithm of chemical process modeling based on the extended Kalman filter[J]. Neurocomputing,2007,70(4-6):625-632
    [41]张运陶,高世博.微粒群算法优化化工建模训练集[J].化工学报,2008,59(4):964-969
    [42]Zhu Q, Li C. Dimensionality Reduction with Input Training Neural Network and Its Application in Chemical Process Modelling[J]. Chinese Journal of Chemical Engineering, 2006,14(5):597-603
    [43]李宏光,赵立雄.基于混合ANN-Petri网的过程控制建模[J1.系统仿真学报,2001,13(S1):4547
    [44]吴国庆,颜学峰.基于ART-SVR的过程建模及在干点软测量中的应用[J].化工学报,2008,59(4):927-933
    [45]Wang Y, Rong G, Wang S. Hybrid fuzzy modeling of chemical processes[J]. Fuzzy Sets and Systems,2002,130(2):265-275
    [46]Xiong Q, Jutan A. Grey-box modelling and control of chemical processes[J]. Chemical Engineering Science,2002,57(6):1027-1039
    [47]Braake H A B T, Van Can H J L, Verbruggen H B. Semi-mechanistic modeling of chemical processes with neural networks[J]. Engineering Applications of Artificial Intelligence,1998,11(4):507-515
    [48]罗娜,李南,钱锋.支持向量机与机理模型相结合的混合建模方法及其在聚酯生产过程的应用[J].聚酯工业,2007,20(2):12-14
    [49]王庆超,岑小锋.一种基于模糊机理模型的混合建模方法[J].宇航学报,2001,22(6):45-49
    [50]李晓光.混合建模方法研究及其在化工过程中的应用[D].北京化工大学,2008
    [51]李洪钟.聚焦结构、界面与多尺度问题,开辟化学工程的新里程[J].过程工程学报,2006,6(6):991-996
    [52]Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems[M]. London:Springer,2001.
    [53]Gertler J J, Inc M D. Fault detection and diagnosis in engineering systems[M]. New York: 1998.
    [54]Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fault detection and diagnosis:Part Ⅰ:Quantitative model-based methods[J]. Computers & Chemical Engineering,2003,27(3):293-311
    [55]Yu D. Fault diagnosis for a hydraulic drive system using a parameter-estimation method[J]. Control Engineering Practice,1997,5(9):1283-1291
    [56]Gertler J. Fault detection and isolation using parity relations[J]. Control Engineering Practice,1997,5(5):653-661
    [57]Medvedev A. Fault detection and isolation by a continuous parity space method[J]. Automatica,1995,31(7):1039-1044
    [58]Sotomayor O A Z, Odloak D. Observer-based fault diagnosis in chemical plants[J]. Chemical Engineering Journal,2005,112(1-3):93-108
    [59]Patton R J, Chen J. Observer-based fault detection and isolation:Robustness and applications [J]. Control Engineering Practice,1997,5(5):671-682
    [60]Olivier-Maget N, Hetreux G, Lann J L, et al. Fault detection and isolation based on the model-based approach:Application on chemical processes[J]. Computer Aided Chemical Engineering,2008,25:411-416
    [61]Zhou Z, Hu C, Fan H, et al. Fault prediction of the nonlinear systems with uncertainty[J]. Simulation Modelling Practice and Theory,2008,16(6):690-703
    [62]Marseguerra M, Zio E. Monte Carlo simulation for model-based fault diagnosis in dynamic systems[J]. Reliability Engineering & System Safety,2009,94(2):180-186
    [63]Venkatasubramanian V, Rengaswamy R, Kavuri S N. A review of process fault detection and diagnosis:Part Ⅱ:Qualitative models and search strategies[J]. Computers & Chemical Engineering,2003,27(3):313-326
    [64]邵晨曦,张俊涛,白方周.TSDG:一种用于故障诊断的定性仿真方法[J].计算机工程,2006,32(9):225-227
    [65]Ram Maurya M, Rengaswamy R, Venkatasubramanian V. Application of signed digraphs-based analysis for fault diagnosis of chemical process flowsheets[J]. Engineering Applications of Artificial Intelligence,2004,17(5):501-518
    [66]Zhang Z, Wu C, Zhang B, et al. SDG multiple fault diagnosis by real-time inverse inference[J]. Reliability Engineering & System Safety,2005,87(2):173-189
    [67]L N, Wang X. SDG-Based HAZOP and Fault Diagnosis Analysis to the Inversion of Synthetic Ammonia[J]. Tsinghua Science & Technology,2007,12(1):30-37
    [68]Tarifa E E, Scenna N J. Fault diagnosis for MSF dynamic states using a SDG and fuzzy logic[J]. Desalination,2004,166:93-101
    [69]Grantham S D, Ungar L H. A first principles approach to automated troubleshooting of chemical plants[J]. Computers & Chemical Engineering,1990,14(7):783-798
    [70]Papadopoulos Y. Model-based system monitoring and diagnosis of failures using statecharts and fault trees[J]. Reliability Engineering & System Safety,2003,81(3): 325-341
    [71]Khan F I, Abbasi S A. Analytical simulation and PROF AT Ⅱ:a new methodology and a computer automated tool for fault tree analysis in chemical process industries [J]. Journal of Hazardous Materials,2000,75(1):1-27
    [72]Prasad P R, Davis J F, Jirapinyo Y, et al. Structuring diagnostic knowledge for large-scale process systems[J]. Computers & Chemical Engineering,1998,22(12): 1897-1905
    [73]Modarres M, Cheon S W. Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives[J]. Reliability Engineering & System Safety,1999,64(2):181-200
    [74]Rasmussen J. Information processing and human-machine interaction [M]. New York: North Holland,1986.
    [75]Choi S W, Lee C, Lee J, et al. Fault detection and identification of nonlinear processes based on kernel PCA[J]. Chemometrics and Intelligent Laboratory Systems,2005,75(1): 55-67
    [76]Misra M, Yue H H, Qin S J, et al. Multivariate process monitoring and fault diagnosis by multi-scale PCA[J]. Computers & Chemical Engineering,2002,26(9):1281-1293
    [77]Yoon S, Macgregor J F. Fault diagnosis with multivariate statistical models part I:using steady state fault signatures[J]. Journal of Process Control,2001,11(4):387-400
    [78]Ralston P, Depuy G, Graham J H. Computer-based monitoring and fault diagnosis:a chemical process case study[J]. ISA Transactions,2001,40(1):85-98
    [79]Chiang L H, Russell E L, Braatz R D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems,2000,50(2):243-252
    [80]Kourti T, Nomikos P, Macgregor J F. Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS[J]. Journal of Process Control,1995,5(4): 277-284
    [81]Karpenko M, Sepehri N, Scuse D. Diagnosis of process valve actuator faults using a multilayer neural network[J]. Control Engineering Practice,2003,11(11):1289-1299
    [82]Tarifa E E, Humana D, Franco S, et al. Fault diagnosis for a MSF using neural networks[J]. Desalination,2003,152(1-3):215-222
    [83]Ruiz D, Nougues J, Calderon Z, et al. Neural network based framework for fault diagnosis in batch chemical plants[J]. Computers & Chemical Engineering,2000,24(2-7): 777-784
    [84]Neumann J, Deerberg G, Schluter S. Early detection and identification of dangerous states in chemical plants using neural networks[J]. Journal of Loss Prevention in the Process Industries,1999,12(6):451-453
    [85]Chiang L H, Kotanchek M E, Kordon A K. Fault diagnosis based on Fisher discriminant analysis and support vector machines[J]. Computers & Chemical Engineering,2004, 28(8):1389-1401
    [86]Yelamos I, Escudero G, Graells M, et al. Simultaneous fault diagnosis in chemical plants using support Vector Machines[J]. Computer Aided Chemical Engineering,2007,24: 1253-1258
    [87]Yelamos I, Escudero G, Graells M, et al. Fault diagnosis based on support vector machines and systematic comparison to existing approaches[J]. Computer Aided Chemical Engineering,2006,21(2):1209-1214
    [88]Maurya M R, Rengaswamy R, Venkatasubramanian V. Fault diagnosis using dynamic trend analysis:A review and recent developments[J]. Engineering Applications of Artificial Intelligence,2007,20(2):133-146
    [89]Maurya M R, Rengaswamy R, Venkatasubramanian V. Fault Diagnosis by Qualitative Trend Analysis of the Principal Components[J]. Chemical Engineering Research and Design,2005,83(9):1122-1132
    [90]Qian Y, Li X, Jiang Y, et al. An expert system for real-time fault diagnosis of complex chemical processes[J]. Expert Systems with Applications,2003,24(4):425-432
    [91]Nan C, Khan F, Iqbal M T. Real-time fault diagnosis using knowledge-based expert system[J]. Process Safety and Environmental Protection,2008,86(1):55-71
    [92]Leung D, Romagnoli J. Dynamic probabilistic model-based expert system for fault diagnosis[J]. Computers & Chemical Engineering,2000,24(11):2473-2492
    [93]Qian Y, Jiang Y, Wen Y, et al. Novel hybrid representation of knowledge in the expert system for real-time faults diagnosis[J]. Computer Aided Chemical Engineering,2003, 15(2):996-1001
    [94]Vedam H, Venkatasubramanian V. PCA-SDG based process monitoring and fault diagnosis[J]. Control Engineering Practice,1999,7(7):903-917
    [95]Lee G, Yoon E S. Multiple-fault diagnosis using dynamic PLS built on qualitative relations[J]. Computer Aided Chemical Engineering,2003,14:443-448
    [96]张晓刚,王亮,宋存义.层次SDG方法在脱硫系统故障诊断中的应用[J].化工自动化及仪表,2007,34(2):29-31
    [97]ozyurt B, Kandel A. A hybrid hierarchical neural network-fuzzy expert system approach to chemical process fault diagnosis[J]. Fuzzy Sets and Systems,1996,83(1):11-25
    [98]Wu J, Liu C. Investigation of engine fault diagnosis using discrete wavelet transform and neural network[J]. Expert Systems with Applications,2008,35(3):1200-1213
    [99]Xu X, Xiao F, Wang S. Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal component analysis methods[J]. Applied Thermal Engineering,2008,28(2-3):226-237
    [100]Widodo A, Yang B. Wavelet support vector machine for induction machine fault diagnosis based on transient current signal[J]. Expert Systems with Applications,2008, 35(1-2):307-316
    [101]Yang J, Zhang Y, Zhu Y. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J]. Mechanical Systems and Signal Processing,2007,21(5): 2012-2024
    [102]田文德,张军.化工安全分析中的过程故障诊断[M].北京:冶金工业出版社,2008
    [103]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000
    [104]杜宁,黄道.基于本体论的化工过程故障诊断研究[J].计算机集成制造系统-CIMS,2005,11(4):587-591
    [105]钟碧良,李春香.化工过程故障诊断的模糊概率Petri-net的研究[J].计算机工程与科学,2002,24(5):99-102
    [106]孙京诰,侍洪波,黄道.基于MAS的化工过程故障诊断研究(Ⅰ)[J].华东理工大学学报(自然科学版),2006,32(3):336-340
    [107]WangY. Entity grammar systems:a grammatical tool for studying the hierarchal structures of biological systems [J]. Bulletin of Mathematical Biology,2004,66(3): 447-471
    [108]Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers Chem. Eng.,1993,17(3):245-255
    [109]Lyman P R. Georgakis C. Plant-wide control of the tennessee eastman problem[J]. Computers Chem. Eng.,1995,19(3):321-331
    [110]王弘轼.化工过程系统工程[M].北京:清华大学出版社,2006
    [111]陈予恕,唐云.非线性动力学中的现代分析方法[M].北京:科学出版社,1991:295-302
    [112]胡斌,肖人彬.复杂系统的定性仿真[J].系统仿真技术,2006,2(1):1-11
    [113]王云明,施伯乐DATALOG程序的组及其应用[J].软件学报,1997,8(9):641-646
    [114]Kubik A. Toward a fomalization of emergence[J]. Artificial life,2003,9:41-65
    [115]Vilela M, Chou I-C, Vinga S, Vasconcelos ATR, Voit EO, Almeida JS. Parameter optimization in s-system models[J]. BMC Systems Biology,2008,2:35-47
    [116]Mendes P, Hoops S, Sahle S, Gauges R, Dada J, Kummer U. Computational modeling of biochemical networks using COPASI[J]. Methods in Molecular Biology,2009,500:17-59
    [117]金一粟,周永华,梁逸增.改进粒子群优化算法对反应动力学参数的估计[J].中南大学学报,2008,39(4):694-699
    [118]谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134
    [119]侯凯锋,李有润.原油蒸馏装置的在线模拟,修正与优化[J].石油炼制与化工,1999,30(10):28-34
    [120]吴重光,沈承林.石油化工仿真培训系统的研制[J].系统仿真学报,1993,5(1):31-39
    [121]Quinlan J R. Induction of decision trees[J]. Machine Learning,1986,1(1):81-106]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700