用户名: 密码: 验证码:
GIC-4117串列加速器系统及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括三个部分内容,第一部分介绍GIC4117串列加速器为主体的加速器系统,包括离子源、加速管、质量分析器、聚焦、扫描系统等的工作原理与实验技术,还描述了针对系统设备所做的一些升级改进工作,如沟道测试系统的自动化控制,串列加速器的加速管的拆卸与安装过程等,实验中遇到的一些问题和解决办法。
     第二部分是介绍离子注入和离子束分析,对包括卢瑟福背散射Rutherford Backscattering Spectrometry (RBS)分析、质子激发X射线荧光射线Proton Induced X-Ray Emission(PIXE)分析、弹性反冲分析、核反应分析和沟道分析在内的多种分析方法的原理、实验技术、相关分析软件,各种核探测器技术等都做了详细介绍。
     第三部分是加速器在制备和分析磁性半导体材料方面的应用,主要介绍离子注入形成的磁性半导体材料的离子束分析和其它表征结果,系统研究了注入剂量、退火条件等对材料结构和铁磁性的影响。
     主要工作内容和结论如下:
     1.加速器的运行、改造与升级,首次用标准安装程序来安装串列加速器的加速管,改进了RBS/C系统,使得沟道扫描自动化能正常运行。
     2.GaN薄膜用多种能量调制注入Co离子,钴原子均匀分布在GaN表面以下的200nm左右的注入层中,离子注入造成表面溅射和损伤,还导致晶体结构的变化。离子注入形成的损伤率在50%到70%左右,经过退火后,晶体结构得到了一定程度的恢复,850℃退火20分钟恢复了60%的损伤。退火的GaN:Co样品表现出室温下的铁磁性。
     3.硅锗薄膜的大剂量铁离子注入形成硅铁化合物,空气气氛下的高温退火引起的氧化极其严重,会使得在注入层之上形成较厚的氧化层,铁原子和Ge原子都有往深处扩散的趋势。
     4.Mn注入CdTe形成了CdTe:Mn,观测到阴极荧光峰随注入和退火条件的变化,为电滞回线提供了解释的依据。
This paper is intended to provide an introduction of our work about the accelerator lab which based on a GIC4117 tandem. A multifunction ion beam system has been established based on a tandem accelerator, which including low and high energy (10-30keV,50-200keV, and 500-5000keV) implantation, RBS, PIXE, ERD, and NRA, Channeling analysis.
     The paper is divided into three parts. In the first part, an introduction of our work on the equipments which is concerned with accelerators is given, which including the following part:installation of negative ion implantation chamber, assembling of new 1.7MV accelerate tube, a computerized controlled Rutherford backscattering/channeling system's installment, which main components are a PC equipped with a multichannel analyzer data acquisition board, motion control hardware including the stepping motor controller and integrated circuit modules, and a LabVIEW programmed operating system with associated electronics.
     The second part deals with the various kinds ion beam analysis techniques including the fundamentals and experimental technique. This part focus on the fundamental physics of the interaction between incident ions and individual atoms in the solid provides the underlying science for ion beam analysis, then, and gives some introduction about the experimental details such as the ion beam analysis instrumentation, the Computer Simulation Codes.
     The third part covers the accelerator's applications, giving several examples of research on multiferroics films synthesized by ion implantation and analysis by RBS/Channeling. Several semiconductor films including CdS, GeSi, and GaN are implanted with metal ions. The structural and ferromagnetic properties are studied. The virgin GaN films have an excellent crystal quantity and in the implanted samples 60% disorder induced by ion implantation was recovered after annealing.
引文
[1]L.P. Guo, C.S. Liu, M. Li, B. Song, M.S. Ye, D.J. Fu, X.J. Fan, Establishment of in situ TEM-implanter accelerator interface facility at WuHan University, Nucl. Instrum. Methods Phys. Res. A 586 (2008) 143.
    [2]刘传胜,黎明,何俊,加速器联机装置运行状况,核技术,33(12)(2010)891-897.
    [3]王广甫,王文勋,董平,用于溅射负离子源的透射表面电离器的研制,原子能科学技术,31(1997)499.
    [4]周俊思,邱长青,徐天冰,杨国梁,自制溅射负离子源电离器的材料、结构、制作及使用情况,核技术,15(1992)376.
    [5]北京市辐射中心,北京师范大学低能和物理研究所离子注入研究室,离子注入原理与技术,北京出版社,(1982).
    [6]徐建铭,加速器原理,科学出版社,(1981).
    [7]华中一,真空技术基础,上海科学出版社,(1958).
    [8]王欲知,陈旭,真空技术,北京航空航天大学出版社(2007).
    [9]R.Middleton, A survey of negative ion sources for tandem accelerators, Nucl. Instr. Meth.121(1974)35.
    [10]R.Middleton, A versttile high intensity negative ion source, Nucl. Instr. Meth. 214(1983)139.
    [11]R.Middleton, A Negative-Ion Cookbook(1990)
    [12]桂伟燮,洪忠娣,粒子加速器原理,原子能出版社(1984).
    [13]叶铭汉,静电加速器,科学出版社(1965).
    [14]R. Hellborg, Electrostatic accelerators:fundamentals and applications, Springer (2005).
    [15]侯德义,张桂莲,J-2.5MV静电加速器加速管的研制,原子能科学技术,34(2000)27.
    [16]苏胜勇,黄青华,包轶文,胡跃明,杨丙凡,张桂莲,杨保君,刘德息,杨涛,逯多清,300kV加速管研制及应用,原子能科学技术,42(2008)257.
    [17]http://www.highvolteng.com.
    [18]王祝翔,核物理探测器及其应用,科学出版社(1966).
    [19]王经瑾,范天民,钱永庚,核电子学,原子能出版社,(1985).
    [20]席德明,许廷宝,郭瑞琪,常用核电子学技术,科学出版社,(1982).
    [21]王广厚,粒子同固体相互作用物理学,科学出版社,(1988).
    [22]http://www.srim.org/SRIM/SRIMLEGL.htm.
    [23]H. Geiger and E. Marsden, The scattering of the a-Particles by Matter, R. Soc. Proc.32(1909)495.
    [24]H. Geiger and E. Marsden, Philos. Mag,25 (1913) 604.
    [25]D. Powers and W. Whaling, Range of heavy ions in solids, Phys. Rev.126 (1962) 61.
    [26]S. Rubin, Surface analysis by charged particle spectroscopy, Nucl. Instrum. Methods.5(1959) 177.
    [27]J.W. Mayer and B. Gossick, Rev. Sci. Instrum.26 (1956) 407.
    [28]J.W. Mayer, Performance of Germanium and Silicon Surface Barrier Diodes as Alpha-Particle Spectrometers, J. Appl. Phys.30 (1959) 1937.
    [29]M. Peisach and D.O. Poole, Analysis of Surfaces by Scattering of Accelerated Alpha Particles, Anal. Chem.38(1966) 1345.
    [30]O.U. Anders, Use of Charged Particles from a 2-Megavolt, Van de Graaff Accelerator for Elemental Surface Analysis, Anal. Chem.38(1966) 1442.
    [31]J.H. Patterson, A.L.Turchevich and E.J. Franzgrote, Z Geophys. Res.70 (1965) 1311.
    [32]A.L. Turkevich, Chemical Analysis of Surfaces by Use of Large-Angle Scattering of Heavy Charged Particles, Science,134 (1961) 672.
    [33]A.L. Turkevich et al. in Surveyor Project Final Report. Part Ⅱ, Scientific Results, NASA Tech. Rep.32-1265, California Institute of Technology, Pasadena, CA, 1968,303-387.
    [34]W.K. Chu, J.W. Mayer, M.-A. Nicolet, T.M. Buck, G. Amsel and F. Eisen, Principles and applications of ion beam techniques for the analysis of solids and thin films, Thin Solid Films,17 (1973) 1-41.
    [35]W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry, Academic Press, New York, (1978).
    [36]A. van Wijngaarden, B. Miremadi and WE. Baylis, Can. Z Phys,49 (1971) 2440.
    [37]WC. Turkenburg, H.H. Kersten, B.G. Colenbrander, A.P. de Jongh and F.W. Saris, Nucl. Instrum. Methods.134 (1976) 271.
    [38]A.H. Smeenk, R.M. Tromp, H.H. Kersten, A.J.H. Rboom and F.W. Saris, Nucl. Instrum. Methods,195 (1982) 581.
    [39]K. Kimura, K. Ohshima, Y. Fujii, M. Mannami and H.J. Gossmann, Monolayer resolution in Rutherford backscattering spectroscopy, Nucl. Instrum. Methods. B 99 (1995)472.
    [40]A. Feuerstein, H. Grahmann, S. Kalbitzer, H.Oetzmann, G Linder, F. Kappeler, Ion Beam Surface Analysis, Plenum, New York, (1976) 471.
    [41]J.F. Ziegler, Hellum Stopping Powers and Ranges in All Elemental Matter, Pergamon Press, New York (1977)
    [42]J.F. Ziegler, W.K. Chu, At. Data. Nuc. Data. Tables 13,(1974)463.
    [43]http://www.srim.org.
    [44]王经瑾,范天民,钱永庚,核电子学,原子能出版社,(1985).
    [45]席德明,许廷宝,郭瑞琪,常用核电子学技术,科学出版社,(1982).
    [46]http://www-nds.iaea.org/ibandl/
    [47]W.Z. Li, A computer program for the analysis of RBS spectra. Nucl. Instrum. Methods 15 (1986) 241.
    [48]Roentgen, W.C. Sitzungsber. D. Wurgburgev, P.Medic, Gesenllsch, Jahrg.1895, Ann. Dev. Phys (1898)64.1
    [49]W. Brandet, G. Lapicki, L-shell Coulomb ionization by heavy charged particles, Phys. Rev. A20 (1979) 465
    [50]W. Brandet, G Lapicki, Energy-loss effect in inner-shell Coulomb ionization by heavy charged particles, Phys. Rev. A23 (1981)1717
    [51]赵国庆,任炽刚,杨福家,核分析技术,(1989).
    [52]S.A.E. Johansson, J.L. Campbell, PIXE:A Nevel Technique for Elemental Analysis (1988).
    [53]Y.Q. Wang, M. Nastasi, Handbook of Modern Ion Beam Materials Analysis (Second Edition) (2009).
    [54]任炽刚,承焕生,汤国魂,陈建新,姚惠英,质子X荧光分析和质子显微镜(1981).
    [55]B. Wakefield, I.M. Naqib, R.P. Harper, Interference between nuclear and Coulomb excitation of 114Cd by alpha particles, Phys. Lett. B31(1970)56.
    [56]L.C. Feldman, J.W.Mayer, Fundamentals of Surface and Thin Film Analysis, North-Holland, New York, (1986) Chapter12.
    [57]G. Amsel, W.A. Lanford, Annu. Rev. Nucl. Part. Sci 34(1984)435.
    [58]F.R. Birld, Nucl. Instrum. Methods 168(1980)85.
    [59]J.W. Mayer, E. Rimini, Ion Beam Handbook, Academic Press, New York (1977).
    [60]J.F. Ziegler, New Uses of Ion Accelerator, Plenum, New York (1975).
    [61]http://www.nndc.bnl.gov.
    [62]http://www.mfa.kfki.hu/sigmabase/programs/nrabase2.html.
    [63]http://www.tunl.duke.edu/nucldata.
    [64]http://www.nndc.bnl.gov/qcalc.
    [65]L.C. Feldman, J.W. Mayer, S.T. Picrax, Materials Analysis by Ion Channeling. Academic Press, New York, (1982).
    [66]J.W. Mayer, E. Rimini, Ion Beam Handbook for Material Analysis. Academic Press, New York, (1977).
    [67]J.R. Tesmer, M. Nastasi, J.C. Barbour, C.J. Maggiore, J.W. Mayer, Handbook of Modern Ion Beam Materials Analysis. Materials Research Society, Pittsburgh, (1995).
    [68]X.M. Wang, K.B. Ma, D.N. Wijesundera, B. Liu, J.R. Liu, W.K. Chu. Azimuthal dependence and accurate determination of the half-angle in RBS channeling, Nucl. Instr. Meth. B.267 (2009) 3466.
    [69]D.N. Wijesundera, K.B. Ma, X.M. Wang, B. Liu, J.R. Liu, W.K. Chu. A geometric procedure for improved Rutherford backscattering channeling analysis of materials, Nucl. Instr. Meth. B.267 (2009) 1948.
    [70]D. Grambole, F. Herrmann, V. Heera, J. Meijer, Study of crystal damage by ion implantation using micro RBS/channeling, Nucl. Instr. Meth. B.260(2007)276.
    [71]M. Bianconi, E. Albertazzi, S. Balboni, G. Lulli, Analysis of ion implanted silicon by RBS-channeling:influence of the damage model, Nucl. Instr. Meth. B.219 (2004) 219.
    [72]M. Bianconi, E. Albertazzi, S. Balboni, G. Lulli, Channeling characterization of defects in silicon:an atomistic approach, Nucl. Instr. Meth. B.230 (2005) 185.
    [72]H. Niu, L.G. Yuana, W.T. Choua, J.H. Liang, S.C. Wu, A fast automatic RBS/w channeling system for damage depth profiling, Applied Radiation and Isotopes 56 (2002) 627.
    [73]S. Balboni,E. Albertazzi, M. Bianconi, G. Lulli,Atomistic modeling of ion channeling in Si with point defects:The role of lattice relaxation, Phys. Rev. B 66, (2002) 045202.
    [74]B. Weber, E. Wendler, K. Girtner, D.M. Stock, W. Wesch, Investigation of weakly damaged (110),(111) and (100) silicon by means of temperature dependent dechanneling measurements, Nucl. Instr. Meth. B.118 (1996) 113.
    [75]G Lulli, E. Albertazzi, M. Bianconi, S. Balboni, Computer simulation of ion channeling in Si containing structurally relaxed point defects, Nucl. Instr. Meth. B. 211(2003)50.
    [76]G Lulli, E. Albertazzi, M. Bianconi, S. Balboni, Determination of He electronic energy loss in crystalline Si by Monte-Carlo simulation of Rutherford backscattering channeling spectra, Nucl. Instr. Meth. B.170 (2000) 1.
    [77]E. Albertazzi, M. Bianconi, G Lulli, Different methods for the determination of damage profiles in Si from RBS-channeling spectra:a comparison, Nucl. Instr. Meth. B.118(1996)128.
    [77]K. Suresh, B. Sundaravel, B. K. Panigrahi, K. G M. Nair, B. Viswanathan, Virtual instrument automation of ion channeling set up for 1.7 MV tandetron accelerator, Rev.Sci.Instru.75(2004)4891.
    [78]B. Holl. H. Heer, M. Wagener, H. Halling S. Mantl, New high-precision 5-axes RBS/channeling goniometer for ion beam analysis of 150 mm φ wafers, Nucl. Instr. Meth. B.161(2000)227.
    [79]A. Rodriguez, T. Rodriguez, A. Kling, J.C. Soares, Determination of the strain depth profile in solid-phase epitaxially grown SiGe layers using RBS/channeling, Nucl. Instr. Meth. B.136(1998) 395.
    [80]J.C. Cheang-Wong, A. Crespo-Sosa, A. Oliver, RBS-channeling studies on damage production by MeV ion implantation in Si(111) wafers, Materials Science and Engineering B 84 (2001) 205.
    [81]H. Mankato, H. Ohno, S. von Molnar, A. Segmuller, L.L. Chang, L. Esaki, Diluted magnetic III-V semiconductors, Phys. Rev. Lett.63 (1989)1849.
    [82]H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic, Science,281 (1988)951.
    [83]R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G.Schmidt, A. Waag, L.W. Molenkamp, Injection and detection of a spin-polarized current in a light-emitting diode, Nature 402 (1999) 787.
    [84]M. Csontos, G. Mihaly, B. Janko, T. Wojtowicz, X. Liu, J.K. Furdyna, Pressure-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor, Nat. Mater.4 (2005) 447.
    [85]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science 287 (2000) 1019.
    [86]F. Zhang, N. F. Chen, X. Liu, Z. Liu, S. Yang, and C. Chai, The magnetic and structure properties of room-temperature ferromagnetic semiconductor (Ga, Mn) N, J. Cryst. Growth 262, (2004) 287.
    [87]J. Wang, P. Chen, X. Guo, Z. Li, and W. Lu, Magnetic and optical properties of Cr+-implanted GaN, J. Cryst. Growth 275 (2005) 393.
    [88]J. S. Lee, J. D. Lim, Z. G.Khim, Y. D. Park, S. J. Pearton, and S. N. G. Chu, Magnetic and structural properties of Co, Cr, V ion-implanted GaN, J. Appl. Phys.93 (2003)4512.
    [89]G Talut, H. Reuther, S. Zhou, K. Potzger, F. Eichhorn, and F. Stromberg, Ferromagnetism in GaN induced by Fe ion implantation, J. Appl. Phys.102(2007) 083909.
    [90]W. Kim, H. J. Kang, S. K. Noh, J. Song, and C. S. Kim, Magnetic and structural properties of Fe ion implanted GaN, J. Magn, Magn. Mater.316 (2007) e199.
    [91]D.H. Kim, D.J. Lee, T.W. Kang and D.J. Fu, Ferroelectric and magnetic properties of CdMnS films prepared by coevaporation, J. Appl. Phys.101(2007) 094111.
    [92]J. He, M. Li, D.H. Kim, J.C. Lee, D.J. Lee, D.J. Fu and T.W. Kang, Magnetic Properties and Magneto resistance of CdMnS:Au Based Structures Prepared by Co-evaporation, Chin. Phys. Lett.27 (2010) 078501.
    [93]C.W. Zou, M. Li, H.J. Wang, M.L.Yin, C.S. Liu, L.P. Guo, D.J. Fu and T.W. Kang, Ferroelectricity in Li-implanted ZnO thin films, Nucl. Instru. Meth. B 267 (2009) 1067.
    [94]C.W. Zou, H.J. Wang, M.L. Tin, M. Li, C.S. Liu, L.P. Guo, D.J. Fu, T.W. Kang, Defects related room temperature ferromagnetism in p-type (Mn, Li) co-doped ZnO films deposited by reactive magnetron sputtering, App.Surf. Sci..256 (2010) 2453.
    [95]C.W. Zou, H.J. Wang, M.L. Tin, M. Li, C.S. Liu, L.P. Guo, D.J. Fu, T.W. Kang, Room temperature ferromagnetism and ferroelectricity behavior of (Cu, Li) co-doped ZnO films deposited by reactive magnetron sputtering, J. Cryst. Growth,312 (2010) 906.
    [96]M. Li, C.W. Zou, G.F. Wang, H.J. Wang, M.L. Yin, C.S. Liu, L.P. Guo, D.J. Fu, T.W. Kang, Room temperature ferroelectric and magnetic properties of (Co, Li) coimplanted ZnO films, J. Appl. Phys.107 (2010) 104117.
    [97]J.M.D. Coey, A. Douvalis, C. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett.84 (2004) 1332.
    [98]J.M.D. Coey, M. Venkatesan, C. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater.4 (2005)173.
    [99]S.J. Pearton, B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, J. Lin, S.N. Chu, GaN-based diodes and transistors for chemical, gas, biological and pressure sensing, J. Phys.:Condens. Matter 16 (2004) R961.
    [100]S.J. Pearton, D.P. Norton, K. Ip, Recent progress in processing and properties of ZnO, Progress in Mater. Sci.50 (2005) 293.
    [101]http://www.rzg.mpg.de.
    [102]W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry, Academic Press, New York, (1978).
    [103]L.C. Feldman, J.W. Mayer, S.T. Picrax, Materials Analysis by Ion Channeling, Academic Press, New York, (1982).
    [104]M. Bianconi, E. Albertazzi, S. Balboni, G.Lulli, Analysis of ion implanted silicon by RBS-channeling:influence of the damage model, Nucl. Instr. Meth. B.219 (2004) 232.
    [105]M. Bianconi, E. Albertazzi, S. Balboni, L. Colombo, G. Lulli, A. Satta, Channeling characterization of defects in silicon:an atomistic approach, Nucl. Instr. Meth. B.230(2005)185.
    [106]D. Leong, M. Harry, K.J. Reeson, K.P. Homewood, A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5μm, Nature 387, (1997) 686.
    [107]Y. Makita, Materials availability for thin film solar cells, AIP Conf. Proc.404, (1997)3.
    [108]C. N. McKinty, K. J. Kirkby, K. P. Homewood, S. P. Edwards, G. Shao, R. Valizadeh, and J. S. Colligon, The properties of β-FeSi2 fabricated by iom beam assistied deposition as a function of annealing conditions for use in solar cell applications, Nucl. Instrum. Methods Phys. Res. B 188 (2002) 179.
    [109]M. Ito, H. Nagai, E. Oda, S. Katsuyama, and K. Majima, Effects of P doping on the thermoelectric properties of β-FeSi2, J. Appl. Phys.91 (2002)2138.
    [110]K. Matsubara, K. Kawamura, K. Nagao, Y. Kadonaga, T. Miki, Perspectives of new materials research for thermoelectric applications, Jpn. J. Appl. Phys.30, (1991)2569.
    [111]C.A. Dimitriadis, J.H. Wemer, S. Logothetidi, Electronic properties of semiconducting FeSi2 films, J. Appl. Phys.68, (1990)1726.
    [112]D. Leong, M. Harry, K.J. Reeson. Nature(London) 387 (1997) 686.
    [113]H. Katsumata et al., Luminescent FeSi2 Crystal Structures Induced by Heteroepitaxial Stress on Si (111), J. Appl. Phys.80, (1996) 5955.
    [114]C. Spinella, S. Coffa, C. Bongiorno, S. Pannitteri, and M. G. Grimaldi, Origin and perspectives of the 1.54 luminescence from ion-beam-synthesized β-FeSi precipitates in Si, Appl. Phys. Lett.76, (2000) 173.
    [115]L. Martinelli et al, Luminescence from β-FeSi2 precipitates in Si. II:Origin and nature of the photoluminescence, Phys. Rev. B 66, (2002) 085320.
    [116]L. Martinelli, E. Grilli, M. Guzzi, and M. G. Grimaldi, Room-temperature electroluminescence of ion-beam-synthesized β-FeSi2 precipitates in silicon, Appl. Phys. Lett.83 (2003) 794.
    [117]K. Hiroshi. M. Yunosuke. K. Naoto. S. Hajime, H.Masataka, Optical absorption and photoluminescence studies of β-FeSi2 prepared by heavy implantation of Fe+ ions into Si, J. Appl. Phys.80, (1996) 5955.
    [118]T. Suemasu, Y. Negishi, K. Takahara, and F. Hasegawa, Room Temperature 1.6 μm Electroluminescence from a Si-Based Light Emitting Diode with beta-FeSi2, Jpn. J. Appl. Phys., Part 239, (2000)L1013.
    [119]M. Miyao, K. Nakagawa, Y. Kimura, M. Hirao, Mechanisms and device applications of light emitting phenomena of Si/Si(1-x)Gex/Si quantum wells, J.Vac. Technol. B.16 (1998)1529.
    [120]T. Irisawa, S. Koh, K. Nakagawa, Y. Shiraki, Growth of SiGe/Ge/SiGe heterostructures with ultrahigh hole mobility and their device application, J. Cryst. Growth.251 (2003) 670.
    [121]T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, A. Toriumi, Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction, IEEE Electron Device Lett.21(2000)230.
    [122]M. Miyao, M. Tanaka, I. Tsunoda, T. Sadoh, T. Enokida, H. Hagino, M. Ninomiya, M. Nakamae, Highly strain-relaxed ultrathin SiGe-on-insulator structure by Ge condensation process combined with H irradiation and postannealing, Appl. Phys. Lett.88 (2006) 142105.
    [123]Y. H. Kwon, T. W. Kang,Y.Shon et al. Magnetic properties of Mn+-implanted and annealed SiGe thin films grown on p-Si (100) substrates, Solid State Common. 147(2008)161.
    [124]I. T. Yoon, S. W. Lee, T. W. Kang et al. Ferromagnetic Properties of Mn-Implanted Ge/Si Quantum Dots, Journal of the electrochemical society (2008)155.
    [125]I. T. Yoon, C. J. Park, S. W. Lee, et al. Magnetic and transport properties of Mn-implanted Ge/Si quantum dots, Solid state Communications 140, (2006) 185.
    [126]K. Lefki, P. Muret, E. Bustarret, Infracred and Raman characterization of beta iron silicide, Solid State Common.80 (1991) 791.
    [127]G. Guizzetti, F. Marabelli, M. Patrini, P. Pellegrino, Measurement and simulation of anisotropy in the infrared and Raman spectra of P-FeSi2 single crystalsPhys. Rev. B.55 (1997) 14290.
    [128]A.G Birdwell, R. Glosser, D.N. Leong, K.P. Homewood, Raman investigation of ion beam synthesized β-FeSi2, J. Appl. Phys.89, (2001) 965.
    [129]Y. Maeda, K. Umezawa,Y. Hayshi, et al. Raman spectroscopic study of ion-beam synthesized poly crystalline β-FeSi2 on Si (100), Thin solid films 381, (2001) 219.
    [130]张通和,吴瑜光,离子束材料改性科学与应用,科学出版社,(1999).
    [131]O. Auciello, J.F Scott, R. Ramesh. The physics of ferroelectric memories, Phys. Today,51(1998) 22.
    [132]K. Amanuma, T. Hase, Y. Miyasaka. A proposal of epitaxial oxide thin film structures for future oxide electronics, Appl. Phys. Lett,66(1995) 221.
    [133]B.H. Park, Kang B S, S.D. Bu, Lanthanum-substituted bismuth titanate for use in non-volatile memories, Nature,401(1999) 682.
    [134]R.Weil, E. Muranevich, Ferroelectricity in zinc cadmium telluride, Phys Rev Lett,62(1990)2744.
    [135]Y. Hotta, E. Rokuta, H. Tabata, Optimization of electronic-band alignments at ferroelectric (ZnCd) S/Si (100) interfaces, Appl. Phys. Lett,78(2001) 3283.
    [136]Y. Hotta, E. Rokuta, J.H. Jhoi. Determination of the optimal cation composition of ferroelectric (ZnCd) S thin films for applications to silicon-based nonvolatile memories, Appl. Phys. Lett,80(2002) 3180.
    [137]M. Joseph, H. Tabata, T. Kawai. Ferroelectric behavior of Li-doped ZnO thin films on Si (100) by pulsed laser deposition, Appl. Phys. Lett,74(1999) 2534.
    [138]A. Onodera, N. Tamaki, Y.Kawamura, Li-substitution effect and ferroelectric properties in piezoelectric semiconductor ZnO, Jpn. J. Appl. Phys. Part I,35(1996) 5160.
    [139]D.J. Fu, J.C. Lee, Choi S W, Study of ferroelectricity and current-voltage characteristics of CdZnTe, Appl. Phys. Lett,81(2002)5207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700