用户名: 密码: 验证码:
芸薹属两个雄蕊心皮化雄性不育系的分子机理及AP3基因调控花瓣形成的关键位点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以芸薹属不结球白菜雄蕊心皮化雄性不育系HGMS和甘蓝型油菜无花瓣雄蕊心皮化雄性不育系AMS为试材,进行了遗传和分子生物学研究。同时,对AP3基因决定花瓣形成的关键位点进行了转基因研究,取得了以下主要研究结果:
     1不结球白菜雄蕊心皮化不育系HGMS雄蕊心皮化性状受2对隐性基因控制;甘蓝型油菜无花瓣雄蕊心皮化不育系AMS雄蕊心皮化性状受4对隐性基因控制;?
     2 2类AP3基因(BAP3和BAP3_(-24))共同调控芸苔属植物花瓣和雄蕊的发育。BAP3和BAP3_(-24)基因高度同源,仅有一处24bp插入/缺失明显差异,但两者的功能却显著不同,BAP3具有形成花瓣、雄蕊的双重功能,而BAP3_(-24)仅具有形成雄蕊的功能和促进萼片化花瓣发育的剂量效应。
     3不结球白菜含有BAP3和BAP3‐24两个基因,这两个基因功能缺失是引起HGMSa雄蕊心皮化突变的根本原因。
     4甘蓝型油菜含有2个BAP3和2个BAP3_(-24)。2个BAP3基因功能缺失,是引起甘蓝蓝型无花瓣油菜Apt花瓣缺失的主要原因。4个基因功能全部缺失,是引起AMSa雄蕊心皮化突变的根本原因。
     5转基因初步表明:24 bp特异序列是AP3基因决定花瓣形成的关键位点。
Using stamen carpelloid male sterile lines HGMS of Brassica chinensis and AMS of apetalous Brassica napus as materials, they were studied from genetics and molecular biology. Subsequently, transgenic researches were been done to discove the potential key locus of AP3 genes, which was probably related to petal formation. The main results as follows:
     1 Stamen carpelloid phenotype of HGMSa mutant wss controlled by two pairs of recessive genes, while stamen carpelloid phenotype of AMSa mutant was controlled by four pairs of recessive genes;
     2 There were two kinds of different AP3 genes, BAP3 and BAP3_(-24), specifying petal and stamen development in Brassica. BAP3 shared higher homology with BAP3_(-24) except one notable difference of 24 bp insertion at their C-terminus, but had a remarkable difference in their functions. BAP3 specified petal and stamen development, while BAP3_(-24) only specified stamen development and has little effect on petal formation, but had dose effect in sepaloid petals development;
     3 Brassica chinensis contained one BAP3 gene and one BAP3_(-24) gene. Loss-of-functions of the two AP3 genes thoroughly were the reason to stamen carpelloid mutant HGMSa;
     4 Brassica napus contained two BAP3 genes and two BAP3_(-24) genes. Loss-of-functions of the two BAP3 genes were the key reason to causing Apt petal loss deficient. While loss-of-functions of all the AP3 genes were the primary reason to stamen carpelloid mutant AMSa of apetalous B.napus;
     5 Transgenic results inferred preliminary that the special 24bp sequence between BAP3 and BAP3_(-24) was the key locus of AP3 gene to specify petal development.
引文
陈碧云,伍晓明,陆光远,等. 2006.两种油菜花瓣缺失突变体无花瓣性状的遗传分析.中国油料作物学报, 28(3): 263-267.
    傅寿仲,吕忠进,戚存扣,等. 1995.甘蓝型油菜无花瓣种质的选育及鉴定研究.作物品种资源, 3:6-8.
    黄飞,王道杰,黎斌,等. 2006.油菜雄性不育系及其等位可育系小孢子发育过程的比较研究. 西北植物学报, 26(6): 1159-1164 .
    胡能书,万贤国. 1985.同工酶技术及其应用.湖南:湖南科技出版社.
    龙欢,姚家玲,凃金星. 2005. 3种甘蓝型油菜雄性不育系花药发育的细胞学研究.华中农业大学学报, 24(6), 570-575.
    李殿荣,夏永真,王保仁. 1995.利用酯酶同工酶谱鉴定秦油2号种子纯度的方法.杂交油菜的育种与利用,武汉:湖北科技出版社, 173-175.
    李贵生,孟征,孔宏智,等. 2003. ABC模型与花进化研究.科学通报, 48(23):2415-2421.
    蒋立希, Becker H C. 1999.甘蓝型油菜(Brassica napus L.)无花瓣突变体“Ap-Tengbe”花瓣性状的遗传规律.浙江农业学报, 11(4); 178-182.
    刘建武,孙成华,刘宁. 2004.花器官决定的ABC模型和四因子模型.植物学通报, 21 (3): 346-351.
    陆光远,伍晓明,陈碧云,等. 2005.油菜雄蕊同源异型缺失突变体的发现及形态特征.中国油料作物学报, 27(2): 28-31.
    聂明建,王国槐,朱卫平. 2007.甘蓝型油菜3种类型雄性不育系花药败育的细胞学研究.中国农业科学, 40(7): 1543-1549.
    危文亮,王汉中,刘贵华. 2005.甘蓝型油菜细胞质雄性不育系NCa花药发育的细胞学观察.中国农业科学, 38(6): 1232-1237.
    王宝山. 2003.植物生理学.北京:科技出版社: 242-243.
    王道杰. 2007.油菜单显性细胞核雄性不育分子机理研究[博士学位论文].杨凌:西北农林科技大学.
    俞咪娜,董媛媛,徐攀峰,等. 2008.油菜胞质不育类型相关基因研究进展.华北农学报, 23: 7-11.
    张文学,李殿荣,田建华,等. 2005.甘蓝型油菜无花瓣品系雄蕊雌化不育系的发现和遗传研究. 中国油料作物学报, 27(3):13-15.
    张彦锋,王学芳,张新,等. 2005.不结球白菜同源异型突变雄性不育系HGMS的发现和初步研究.西北农业学报, 14 (6) :164-168.
    张洁夫,戚存扣,栗根义,浦惠明,陈松,陈新军,高建芹,陈锋,顾慧,傅寿仲. 2007.甘蓝型油菜遗传图谱构建与无花瓣性状QTL定位.作物学报, 33(8): 1246-1254.
    周云涛. 2007.无花瓣油菜Apet33-10花器官形态发生及差异表达基因分析[博士学位论文].成都: 四川大学.
    周云涛. 2004.油菜APETALA3编码区cDNA的克隆及无花瓣油菜性蛋白分析[硕士学位论文]. 成都:四川大学.
    赵云,张义正,杜林方,等. 2000. Scu无花瓣油菜遗传及农艺性状的初步研究.四川大学学报(自然科学版), 37(增刊): 103-106.
    Aagaard J E, Olmstead R G, Willis J H, Phillips P C. 2005. Duplication of floral regulatory genes in the Lamiales. American Journal of Botany, 92: 1284-1293.
    Angenent G C, Franken J, Busscher M et al. 1995. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell, 7 (10):1569-1582.
    Ambrose B A, Lerner D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J. 2000. Molecular and genetic analy ses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell, 5: 569-579.
    Aoki S, Uehara K, Imafuku M, Hasebe M, Ito M. 2004. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. Journal of Plant Research 117: 229-244.
    Battey N H, Tooke F. 2002. Molecular control and variation in the floral transition. Curr Opin Plant Biol 5: 62-68.
    Baum D A, Whitlock B A. 1999. Plant development: Genetic clues to petal evolution. Current Biology, 9: 525-527.
    Baum D A, Doebley J, Irish V F, Kramer E M. 2002. Response: Missing links: the genetic architecture of flower and floral diversification. Trends in Plant Science 7: 31-34.
    Bowman J L, Smyth D R, Meyerowitz E M. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1: 37-52.
    Bowman J L, Smyth D R, Meyerowitz E M. 1991 a. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1-20.
    Bowman J, Drews G, Meyerowitz E. 1991b. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. The Plant Cell Online 3: 749.
    Bowman J L. 1997. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences 22: 515-527.
    Buzgo M, Soltis P, Soltis D. 2004. Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int. J Plant Sci 165: 925-947.
    Buzza G C (1983).The inheritance of an apetalous flower character in canola (Brassica napus).Cruciferae Newsletter, 8:11-12.
    Chanderbali A S, Kim S, Buzgo M, Zheng Z, Oppenheimer DG, Soltis DE, Soltist PS. 2006. Genetic footprints of stamen ancestors guide perianth evolution in Persea (Lauraceae). International Journal of Plant Sciences 167: 1075-1089.
    Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B. 2005. Evolution in action: following function in duplicated floral homeotic genes. Current Biology 15: 1508-1512.
    Causier B, Schwarz-Sommer Z, Davies B. 2010. Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology, 21:73–79.
    Cocucci A E, Anton A M. The grass flower: suggestions on its origin and evolution. Flora, 1988, 181: 353-362.
    Coen E S, Meyerowitz E M. 1991. The war of the whorls: Genetic interactions controlling flower development. nature 353: 31-37.
    Coen E. 2001. Goethe and the ABC model of flower development. Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences 324: 523-530.
    Colombo L, Franken J, Koetje E, et al. 1995. The petunia MADS-box gene FBP11 determines ovule identity. Plant Cell, 7 (11): 1859-1868.
    Crane P R, Friis E M, Pedersen K R. 1995. The origin and early diversification of angiosperms. Nature, 374: 27-33.
    de Martino G, Pan I, Emmanuel E, Levy A, Irish F. 2007. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell, 2006, 18: 1833-1845.
    Dinneny J R, Yanofsky M F. 2004. Floral development: an ABC gene chips in downstream. Curr Biol 14: R840-841.
    Drea S, Hileman L C, Martino G, Irish V F. 2007. Functional analyses of genetic pathways controlling petal specification in poppy. Development, 134, 4157-4166.
    Duarte J M, Cui L, Wall P K, Zhang Q, Zhang X, Leebens-Mack J, Ma H, Altman N, dePamphilis C W. 2006. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol Biol Evol 23: 469-478.
    Edwards K, Johnstone C, Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acid Res 19: 1349.
    Egea-Cortines M, Saedler H, Sommer H. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 5370-5379.
    Egea-Cortines M, Davies B. 2000. Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci 5: 471–476.
    Elena K, Huei-Jiun S, Cheng-Chiang W, Jer-Ming H. 1994. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology 6.
    Endress P K. Floral structure and evolution of primitive angiosperms: Recent advances. 1994. Plant Systematics and Evolution, 192: 79-97.
    Favaro R, Pinyopich A, Bat taglia R, et al. 2003. MADS-box protein complexes control carpel and ovule development in Arabi dopsis. Plant Cell, 15(11): 2603-2611.
    Flanagan CA, Ma H. 1994. Spatially and Temporally Regulated Expression of the Mads-Box Gene Agl2 in Wild-Type and Mutant Arabidopsis Flowers. Plant Molecular Biology 26: 581-595.
    Goto K, Meyerowitz E M. 1994. Function and Regulation of the Arabidopsis Floral Homeotic Gene Pistillata. Genes & Development 8: 1548-1560.
    Goto K, Kyozuka J, Bowman J L. 2001. Turning floral organs into leaves, leaves into floral organs. Current Opinion in Genetics & Development 11: 449-456.
    Halfter U, Ali N, Stockhaus J, Ren L, Chua N H. 1994. Ectopic expression of a single homeotic gene, the Petunia gene green petal , is sufficient to convert sepals to petaloid organs. EMBO Journal, 13: 1443-1449.
    Hernandez-Hernandez T, Martinez-Castilla L, Alvarez-Buylla E. 2007. Functional diversification of B MADS-box homeotic regulators of flower development: adaptive evolution in protein-protein interactiondomains after major gene duplication events. Molecular Biology and Evolution 24: 465.
    Hill J P, Lord E M. 1989. Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can. J. Bot. 67, 2922-2936.
    Hileman L C, Irish V F. 2009. More is better: the uses of developmental genetic data to reconstruct perianth evolution. American Journal of Botany, 96: 83-95.
    Hileman L C, Sundstrom J F, Litt A, Chen M, Shumba T, Irish VF. 2006. Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Molecular Biology and Evolution, 23: 2245-2258.
    Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001, 409 (6819): 525-529.
    Howell E C, Kearsey M J, Jones G H, et al. 2008. A and C genome distinction and chromosome identification in Brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics, 180: 1849–1857.
    Irish VF, Yamamoto Y T. 1995. Conservation of floral homeotic gene function between Arabidopsis and antirrhinum. Plant Cell 7: 1635-1644.
    Irish V F, Kramer EM. 1998. Genetic and molecular analysis of angiosperm flower development. Advances in Botanical Research, Vol 28 28: 197-230.
    Irish V F. 2000. Variations on a theme: flower development and evolution. Genome biology, 1: 1-4.
    Irish V. 2003. The evolution of floral homeotic gene function. BioEssays, 25: 637-646.
    Irish VF, Litt A. 2005. Flower development and evolution: gene duplication, diversification and redeployment. Current Opinion in Genetics & Development 15: 454-460.
    Irish V F. 2006. Duplication, diversification, and comparative genetics of angiosperm MADS-box genes. Advances in Botanical Research: Incorporating Advances in Plant Pathology, Vol 44 44: 129-161
    Irish V F. 2008. The Arabidopsis petal: a model for plant organogenesis. Trends in Plant Science 13: 430-436.
    Irish V F. 2009. Evolution of petal identity. Journal of Experimental Botany 60: 2517-2527.
    Irish V F. 2009. Petal development: Variations on a theme. Developmental Biology 331: 399-399.
    Irish V F. 2010. The flowering of Arabidopsis flower development. Plant Journal 61: 1014-1028.
    Jack T, Brockman L L, Meyerowitz E M. 1992. The Homeotic Gene Apetala3 of Arabidopsis thaliana Encodes a Mads Box and Is Expressed in Petals and Stamens. Cell 68: 683-697.
    Jack T, Fox G L, Meyerowitz E M. 1994. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76: 703-716.
    Jack T. 2001. Relearning our ABCs: new twists on an old model. Trends Plant Sci 6: 310-316.
    Jack T, Brockman L L, Meyerowitz E M. 1992. The Homeotic Gene Apetala3 of Arabidopsis Thaliana Encodes a Mads Box and Is Expressed in Petals and Stamens. Cell 68: 683-697.
    Jaramillo M A, Kramer E M. 2004. APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evolution & Development, 6: 449-458.
    Jenik P D, Irish V F. 2001. The Arabidopsis fl oral homeotic gene APETALA3 differentially regulates intercellular signaling required for petal and stamen development. Development, 128: 13-23.
    Jiang L X. 1998.Inheritance of a mutant with apetalous flowers in oilseed rape(Brassica napus)and its effect on yield physiology. Gottingen: Georg August University Gottingen,
    Jiang L X. 2001. A mutant apetalous flowers in oilseed rape (Brassica ndpus): mode of inheritance and influence on crop physiology and Sclerotinia infection. Gottingen: Georg August University Gottingen, 2001.
    Jiang L X, Becker H C. 2003. Inheritance of apetalous flowers in a mutant of oilseed rape. Crop Sci, 43:508–510.
    Kanno A, Nakada M, Akita Y, Hirai M. 2007. Class B gene expression and the modified ABC model in nongrass monocots. TheScientificWorldJOURNAL 7: 268-279.
    Kaufmann K, Melzer R , Theiβen G, et al. 2005. MIKC-type MADS domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347(2): 183-198.
    Kaufmann K, Wellmer F, Muino J, Ferrier T, Wuest S, Kumar V, Serrano-Mislata A, Madueno F,
    Krajewski P, Meyerowitz E. 2010. Orchestration of Floral Initiation by APETALA1. Science 328: 85-89.
    Kim S, Koh J, Yoo M J, Kong H Z, Hu Y, Ma H, Soltis P S, Soltis D E. 2005a. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant Journal 43: 724-744.
    Kim S, Koh J, Ma H, Hu Y, Endress PK, Hauser BA, Buzgo M, Soltis PS, Soltis DE. 2005b. Sequence and expression studies of A-, B-, and E-class MADS-box homologues in Eupomatia (Eupomatiaceae): Support for the bracteate origin of the calyptra. International Journal of Plant Sciences 166: 185-198.
    Kim S T, Yoo M J, Albert V A, Farris J S, Soltis P S, Soltis D E. 2004. Phylogeny and diversification of B-function MADS-box genes in angiosperms: Evolutionary and functional implications of a 260-million-year-old duplication. American Journal of Botany 91: 2102-2118.
    Kramer E M, Dorit R L, Irish V F. 1998. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765-783.
    Kramer E M, Irish V F. 1999. Evolution of genetic mechanisms controlling petal development. Nature 399: 144-148.
    Kramer E M, Irish V F. 2000. Evolution of the petal and stamen developmental programs: Evidence from comparative studies of the lower eudicots and basal angiosperms. International Journal of Plant Sciences 161: S29-S40.
    Kramer E M, Di Stilio V S, Schluter P M. 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. International Journal of Plant Sciences 164: 1-11
    Kramer E M and Hall J C. 2005. Evolutionary dynamics of genes controlling flower development. Curr Opin Plant Biol, 8:13–18.
    Kramer E M, Su H J, Wu C C, Hu J M. 2006. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. Bmc Evolutionary Biology 6: 30.
    Kramer E M. 2007a. Understanding the genetic basis of floral diversity. Bioscience 57: 479-487.
    Kramer E M, Holappa L, Gould B, Jaramillo M A, Setnikov D, Santiago P M. 2007b. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. Plant Cell 19: 750-766.
    Kelly A, Fray M, Arthur E A, Lydiate D J. 1995. The genetic control of petalless flowers and uprightpods. In Proc. the 9th International Rapeseed Congress. Dorchester: The Dorset Press, 732-734.
    Lagercrantz U, Lydiate D J. 1996. Comparative genome mapping in Brassica. Genetics, 4:1903–1910.
    Lamb R S, Hill T A, Tan Q K, Irish V F. 2002. Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129: 2079-2086.
    Lamb R S, Irish V F. 2003. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proceedings of the National Academy of Sciences of the United States of America 100: 6558-6563.
    Leino M, Teixeira R, Landgren M. 2003. Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. Theoretical and Applied Genetics, 106:1156-1163.
    Linke B, Nothnagel T,B?rner T. 2003. Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. The Plant Journal, 34, 27-37.
    Litt A. 2007. An evaluation of A-function: Evidence from the APETALA1 and APETALA2 gene lineages. International Journal of Plant Sciences 168: 73-91.
    Litt A, Irish V F. 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: Implications for the evolution of floral development. Genetics 165: 821-833.
    Liu Y, Nakayama N, Schiff M, Litt A, Irish VF, Dinesh-Kumar SP. 2004. Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Molecular Biology 54: 701-711.
    Ma H, Yanofsky M F, Meyerowitz E M. 1991. AGL1-AGL6, anArabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev, 5, 484-495.
    Ma H, dePamphilis C. 2000. The ABCs of floral evolution. Cell, 101: 5-8.
    Magallón S, Crane P, Herendeen P S. 1999. Phylogenetic pattern, diversity and diversification of eudicots. Ann Mo Bot Gard 86: 297-372.
    Malik M, Vyas P, Rangaswamy N S. 1999. Development of two new cytoplasmic male-sterile lines in Brassica juncea through wide hybridization. Plant breeding, 118:75-78.
    Mandel M A, Gustafson-Brown C, Savidge B, Yanofsky MF. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277
    Mandel M, Yanofsky M. 1998. The Arabidopsis AGL 9 MADS box gene is expressed in young flower primordia. Sexual Plant Reproduction 11: 22-28.
    Meyerowitz E M, Bowman J L, Brockman L L, Drews G, Jack T, et al. 1991. A genetic and molecular model for floral development in Arabidopsis thaliana. Development 1: 157-168.
    Meyerowitz E M. 1998. Genetic and Molecular Mechanisms of pattern formation in Arabidopsis flower development. J. Plant Res, 111: 233-242.
    Mizukami Y, Ma H. 1992. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71: 119-131.
    Mouradov A, Hamdorf B, Teasdale R D, Kim J, Winter K U, Theissen G. 1999. A DEF/GLO like MADS box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Dev Genet, 25: 245-252.
    Nagasawa N, Moyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato. 2003. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 130, 705-718.
    Ng M, Yanofsky M F. 2000. Three ways to learn the ABCs. Curr Opin Plant Biol 3: 47-52.
    Ng M, Yanofsky M F. 2001a. Activation of the Arabidopsis B class homeotic genes by APETALA1. Plant Cell, 13: 739-753.
    Ng M, Yanofsky M F. 2001b. Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2: 186-195.
    Park J H, Ishikawa Y, Yoshida R, Kanno A, Kameya T. 2003. Expression of AODEF , a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus offi cinalis L. Plant Molecular Biology, 51: 867-875.
    Parkin I A, Sharpe A G, Keith D J, Lydiate D J. 1995. Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris ) and B. oleracea in their amphidiploid B. napus Genome, 38: 1122-1131.
    Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
    Pelaz S, Tapia-Lopez R, Alvarez-Buylla E R, Yanofsky M F. 2001. Conversion of leaves into petals in Arabidopsis. Current Biology 11: 182-184.
    Piwarzyk E, Yang Y Z, Jack T. 2007. Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function. Plant Physiology 145: 1495-1505.
    Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, Lifshitz E. 1991. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1: 2255–266.
    Purugganan M D and Suddith J I. 1999. Molecular population genetics of floral homeotic loci: departures from the equilibrium neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics 151: 839–848.
    Pylatuik J D, Lindsay D L, Davis A R, Bonham Smith P C. 2003. Isolation and characterization of a Brassica napus cDNA corresponding to a B-class floral development gene. Journal of Experimental Botany, 54, 391, 2385-2387.
    Purugganan M D, Rounsley S D, Schmidt R J, Yanofsky M F. 1995. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345-356.
    Rasmussen D A, Kramer E M, Zimmer E A. 2009. One Size Fits All? Molecular Evidence for a Commonly Inherited Petal Identity Program in Ranunculales. American Journal of Botany 96: 96-109.
    Riechmann J L, Meyerowitz E M. 1997. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell 8: 1243-1259
    Rijpkema A S, Royaert S, Zethof J, der Weerden G R, Gerats T, Vandenbussche M. 2006. Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell, 18: 1819-1832.
    Robles P, Pelaz S. 2005. Flower and fruit development in Arabidopsis thaliana. International Journal of Developmental Biology 49: 633.
    Ronse De Craene L P. 2007. Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Annals of Botany, 100: 621-630.
    Ronse De Craene L P. 2008. Homology and Evolution of Petals in the Core Eudicots. Systematic Botany, 33: 301-325.
    Saedler H, Huijser P. 1993. Molecular biology of flower development in Antirrhinum majus (snapdragon). Gene 135: 239-243.
    Savidge B, Rounsley S D, Yanofsky M F. 1995. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721-733.
    Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 250: 931- 936.
    Shore P, Sharrocks AD. 1995. The MADS-box family of transcription factors. Eur J Biochem 229: 1-13.
    Snowdon, R J, Friedrich T, Friedt W, et al. 2002. Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor. Appl. Genet., 104: 533–538.
    Soltis P S, Soltis D E, Kim S, Chanderbali A, Buzgo M. 2006. Expression of floral regulators in basal angiosperms and the origin and evolution of ABC-function. Advances in Botanical Research: Incorporating Advances in Plant Pathology, 4444: 483-506.
    Soltis D E, Chanderbali A S, Kim S, Buzgo M, Soltis P S. 2007. The ABC model and its applicability to basal angiosperms. Annals of Botany 100: 155-163.
    Soltis P S, Brockington S F, Yoo M J, Piedrahita A, Latvis M, Moore M J, Chanderbali AS, Soltis DE. 2009. Floral Variation and Floral Genetics in Basal Angiosperms. American Journal of Botany 96: 110-128.
    Sridhar V V, Surendrarao A, Liu Z. 2006. APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133: 3159–3166.
    Stellari G M, Jaramillo M A, Kramer E M. 2004. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Molecular Biology and Evolution 21: 506-519
    Su K, Zhao S, Shan H, Kong H, Lu W, Theissen G, Chen Z, Meng Z. 2008. The MIK region rather than the C-terminal domain of AP3-like class B floral homeotic proteins determines functional specificity in the development and evolution of petals. New Phytol 178: 544-558.
    Theissen G, Becker A, Di Rosa A, Kanno A, Kim J, Münster T, Winter K, Saedler H. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology 42: 115-149.
    Theissen G, Saedler H. 2001. Floral quartets. Nature 409: 469-471.
    Theissen G. 2001. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75-85.
    Trobner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig WE, Saedler H, Sommer H, Schwarz-Sommer Z. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11: 4693-4704.
    Vandenbussche M, Theissen G, Van de Peer Y, Gerats T. 2003. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Research, 31: 4401-4409.
    Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T. 2004. The duplicated B-classheterodimer model: Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell, 16: 741-754.
    Weigel D, Meyerowitz E. 1994. The ABCS of floral homeotic genes: Review. Cell 78: 203-209
    Whipple C J, Ciceri P, Padilla C M, Ambrose B A, Bandong S L, Schmidt R J. 2004. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131: 6083-6091.
    Whipple C J, Zanis M J, Kellogg E A, Schmidt R J. 2007. Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. PNAS, 104: 1081-1086.
    Whipple C J, Ciceri P, Padilla C M, Ambrose B A, Bandong S L, Schmidt R J. 2004. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development .131:6083–6091.
    Winter K U, Becker A, Munster T, Kim J T, Saedler H, Theissen G. 1999. MADS box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. PNAS, 96: 7342-7347.
    Winter K U, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G. 2002a. Evolution of class B floral homeotic proteins: Obligate heterodimerization originated from homodimerization. Molecular Biology and Evolution, 19: 587-596.
    Winter K, Saedler H, Thei en G. 2002b. On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. The Plant Journal 31: 457-475.
    Xiao H, Wang Y, Liu D, Wang W, Li X, Zhao X, Xu J, Zhai W, Zhu L. 2003. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol 52: 957-966.
    Yanofsky M, Ma H, Bowman J, Drews G, Feldmann K, Meyerowitz E. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346: 35-39.
    Yang Y, Fanning L, Jack T. 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins APETALA3 and PISTILLATA. Plant J 33:47–59.
    Yang Y and Jack T. 2004. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Mol Biol 55:45–49.
    Zahn L M, Leebens-Mack J H, Arrington J M, et al. 2005. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 169 (4): 2209-2223.
    Zahn L M, Leebens-Mack J, dePamphilis C W, Ma H, Theissen G. 2005. To B or not to B a flower: The role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Journal of Heredity, 96: 225-240.
    Zanis M J, Soltis P S, Qiu Y L, Zimmer E, Soltis DE. 2003. Phylogenetic analyses and perianth evolution in basal angiosperms. Annals of the Missouri Botanical Garden 90: 129-150.
    Zhou Y T, Wang H Y, Zhou L, Wang M P, Li H P, Wang ML, Zhao Y. 2008. Analyses of the floral organ morphogenesis and the differentially expressed genes of an apetalous flower mutant in Brassica napus. Plant Cell Reports, 27: 9-20.
    Zhang P, Hugh T W, Tan K H, Kumar P P. 2004. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperm to angiosperms. The Plant Journal, 37: 566–577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700