用户名: 密码: 验证码:
大麦新矮源“华矮11”主要性状的遗传分析和大麦抽穗期性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大麦是我国的第四大粮食作物,对国民经济的发展和人民生活水平的提高有重要作用。社会的发展和人们物质文化生活水平的提高要求培育出产量更高、品质更优、抗性更强、适应性更广的大麦新品种,加强大麦种质资源和重要性状的遗传研究是满足这种需求的可行之道。
     矮杆抗倒是大麦育种的目标性状之一,矮杆种质或基因是开展大麦矮化育种成功与否的关键所在。在大麦中已经发现了约30多个不同类型的矮杆种质,然而真正能成功应用于育种的极少。大麦育种上矮源或矮杆基因的单一化,不仅使得产量和品质的进一步提高受到限制外,而且还使新品种的遗传基础变窄,多样性降低,增强了对病、虫害的脆弱性,筛选及创造新的矮杆种质,对大麦遗传改良具有重要的理论意义与实用价值。本试验所研究的新矮源“华矮11”是一源于青藏高原地方品种的特矮秆种质,株高只有40厘米,并具有早熟和一般配合力好等特性,它的发现将拓宽大麦矮化育种的遗传基础。对“华矮11”的矮秆性进行了多年、多组合的遗传分析和等位性测定,并构建了“华矮11×华大麦6号”的DH群体。以此DH群体为定位群体,对“华矮11”的矮秆基因和部分农艺、品质性状的QTL进行了定位。
     抽穗期是大麦区域和季节适应性的主要决定因素。在育种上,合适的抽穗期是大麦育种的重要目标。普遍认为种质的相互引进在相似的纬度较易成功。然而,原产于东南亚的大麦种质材料引入澳大利亚后,抽穗期提前,表现早熟,反之亦然。以Galleon×Haruna Nijo和Baudin×AC Metcalfe DH群体为定位群体,对其抽穗期基因进行定位,期望阐明在相似的纬度条件的澳大利亚和中国环境下抽穗期不同的主要原因。
     本研究主要结果如下:
     1.“华矮11”的矮秆性遗传:以“华矮11”为母本与9个高秆品种进行杂交,株高调查结果显示,其F1代均为高秆,而F2代则出现高秆矮秆性状分离,进一步对这9个F2分离群体的株高分离情况进行χ2检验,结果表明,所有组合的F2群体中高秆个体和矮秆个体的分离比例均符合3:1的分离规律。由此推定,华矮11的矮秆性状是受一对隐性基因控制,命名为btwd1。
     2.矮秆基因btwdl的遗传等位测验:以华矮11/Monker的F1代做母本与其它4个矮秆品种杂交,后代全为高秆。表明矮秆基因btwdl与已知的矮秆基因br,uzu,sdwl和denso明显不同。
     3.矮秆基因btwdl的定位:根据遗传分析结果,采用SSR标记与BSA分析方法相结合,对华矮11矮秆基因进行标记定位。结果表明来自于7H染色体的4个SSR标记(Bmac031, Bmac167, Bmag217和Bmag900)与目的基因btwdl构建成一个连锁群。该矮秆基因btwdl被定位于7H染色体长臂靠近着丝粒一侧,距离Bmac031为2.2 cM。
     4.农艺性状和品质性状的QTL定位:以DH群体华矮11×华大麦6号为研究材料,在全生育期调查了农艺性状如抽穗期、有效穗、主穗长、主穗小穗数、单株小穗数、单株实粒数、穗平实粒数、单株粒重、穗平粒重、千粒重、分蘖数和品质性状蛋白质含量。选用63对在两亲本间有多态性的引物构建遗传连锁图谱。采用复合区间作图法对12个性状进行QTL定位分析,共检测到47个相关QTL,其中29个为新的QTL。
     5.大麦抽穗期基因定位:以Galleon×Haruna Nijo DH群体作为研究材料,在中国(武汉,30°33'N)和澳大利亚(珀斯,31°56'S)设置3个不同的处理,3个处理包括正常大田秋播、大田晚播和温室18小时光照。通过对群体抽穗期的QTL定位分析结果表明,在中国环境下,探测到1个控制抽穗期的主效QTL(Qtl-5H)位于大麦染色体5H上,该QTL解释了抽穗期33%-50%的表型变异;在澳大利亚环境下,探测到2个控制抽穗期的主效QTL(Qtl-4H和Qtl5H),且Qtl-4H和Qtl-5H存在互作。它们的互作解释了抽穗期13%-36%的表型变异。Qtl-4H与Qtl-5H的互作可能是在澳大利亚环境下比在中国环境下群体株系更早抽穗的主要原因。
     6.大麦长光周期基因的定位:以Baudin×AC Metcalfe DH群体作为研究材料,在中国(武汉,30°33'N)设置3个不同的处理,3个处理包括正常大田秋播、大田晚播和温室18小时光照,在澳大利亚(珀斯,31°56'S)设置2个不同的处理,2个处理包括正常大田秋播和温室18小时光照。通过对群体株系的抽穗期QTL定位分析结果表明,1个长光周期主效QTL(Qtl4-13)被定位在4H染色体上引物Xp12m50A199-Xp13m47B399之间。该QTL在澳大利亚和中国环境下分别解释了77.48%和37.81%的表型变异,表明它为大麦的一个新的长光周期基因。同时还定位了2个抽穗期相关QTL。
Barley is the fourth food crop in China and plays a very important role in the development of economy. To meet further social and people's living standards, new barley varieties will require high yields, better quality, high resistance and wide adaptability. Genetic characterization of barley germplasm will be crucial for the development of new barley varieties.
     Dwarfism is a valuable trait in crop breeding, successful use of a dwarfing gene or dwarf source is critical for developing dwarf cultivars. In barley, more than 30 types of dwarfs or semidwarfs have been found. However, only a few of them have successfully been used in barley breeding program. Dwarf source and dwarf genes are unitary in barley breeding, not only limited further increases in yield and quality, but also narrowed the genetic basis, reduced biodiversity and increased vulnerability of disease and pest for new varieties. Therefore, discovery of new dwarf genes or dwarf sources is important for barley breeding. New dwarf source "huaai 11" has early maturity and good general combining ability. Utilization of this dwarf resource can broaden the genetic basis of barley dwarf breeding. We mapped dwarfing gene btwdl in Huaai 11 using a doubled-haploid (DH) population from a cross between Huaai 11 and Huadamai 6. In order to efficiently use this excellent germplasm for breeding program, we also analyzed the QTL underlying agronomic traits and quality traits in this line.
     Heading date is a major determinant of the regional and seasonal adaptation of barley varieties. Appropriate heading date is an important goal of barley breeding. The dogma is that introduced germplasm is more likely to be adapted if it come from a similar latitude. However, barley germplasm introduced from similar latitudes of South-East Asia are extremely early heading in the Australian environments and vice versa. Therefore, we mapped heading date genes using Galleon×Haruna Nijo DH population and Baudin×AC Metcalfe DH population. The results will help us understand the main reason causing heading date difference in two similar latitude locations, Australia and China, The results of these researches are sumarized as follows:
     1. Inheritance of the dwarf gene btwdl:dwarf Huaai 11 was crossed with nine tall varieties. All the F1 plants were tall. Both the tall and dwarf plants appeared in all the F2 populations with a 3:1 segregation ratio. The x2 testshowed the segregation is not significantly different from the expected 3:1 ratio, indicating that the dwarf trait is controlled by single recessive gene in the Huaai 11. This gene is designated as btwdl.
     2. Allelic relationship between btwdl and other dwarfing genes:The F1 of Huaai 11 x Monker was crossed with other four dwarf varieties. All progeny in the four crosses are tall, suggesting that the gene btwdl controlling plant height in the Huaai 11 is nonallelic with br, uzu, sdwl and denso genes in these four dwarf varieties.
     3. Mapping of the dwarf gene btwdl:SSR marker and BSA analysis were used to map the dwarfing gene in the Huaaill. Linkage analysis found that four SSR markers from chromosome 7H (BmacO31, Bmacl67, Bmag217 and Bmag900) were linked with the target gene btwd1. The dwarfing gene btwdl is close to the Bmac031 with a genetic distance of 2.2 cM, which is close to the centromere of 7HL.
     4. QTL analysis of the agronomic and quality traits:This study using Huaai 11×Huadamai 6 DH population as research materials, Quality trait grain protein content and eleven gronomic traits such as heading date, spike numbers per plant, main spike length, spikelet number of main spike, spikelet number per plant, grain number per plant, grain number per spike, grain weight per plant, grain weight per spike,1000 grain weight, number of tillers were investigated. Sixty three pairs of SSR primers showed polymorphic between the two parents, and were used to construct a genetic linkage map. Composite interval mapping (CIM) analysis of 12 traits identifiedt a total of 47 QTL,29 of them were new QTL.
     5. Mapping of heading date gene in barley:The Galleon x Haruna Nijo DH population was used to map heading date gene at two location China (Wuhan,30°33'N) and Australia (Perth,31°56' S) with three different treatments including normal autumn sowing, late sowing and pot experiment with 18h photoperiod. QTL analysis detected one major QTL (Qtl-5H) in China, which was located on chromosome 5H, and explained 33%-50% of the phenotypic variation. In Australia, two major QTL (Qtl-4H and Qtl5H) were detected for heading dates on chromosomes 4H and 5H and Qtl-4H and Qtl5H interaction. The Qtl-4H/Qtl-5H interaction explained 13%-36% of phenotypic variation. The Qtl-4H/Qtl-5H interaction may be main reason that DH lines are earlier heading in Australia than China.
     6. Mapping of long photoperiod gene in barley:Bandin×AC Metcalfe DH population was used. In China (Wuhan,30°33'N), three different treatments including normal autumn sowing, late sowing and pot experiment with 18h photoperiod were conducted. In Australia (Perth,31°56' S), two different treatments including normal autumn sowing and pot experiment with 18h photoperiod were performed. QTL analysis detected a major QTL for photoperiod response and mapped onto the long arm of chromosome 4H in both Australian and Chinese locations. The QTL was flanked by the markers Xp12m50A199-Xp13m47B399 and accounted for 77.5% and 37.8% of phenotypic variation in Australia and China, respectively. Two QTL underlying heading date detected in this mapping population.
引文
1. 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001,50-58
    2. 马得泉.中国近缘野生大麦种质资源的搜集与性状鉴定.大麦科学,1997,1:1-4
    3. 马得泉.西藏近缘野生大麦遗传资源综合评价.西藏科技,1999,2:8-14
    4. 马得泉,徐廷文.西藏野生大麦种质资源品质评价.西南农业学报,2000,1:31-38
    5. 张京.中国大麦矮秆种质资源的基因分析.遗传学报,2001,28:56-63
    6. 张京.大麦矮秆基因uz的SSR标记.作物学报,2003,29:637-640
    7. 朱军.复杂数量性状基因定位的混合线性模型方法.王连铮,戴景瑞主编:全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998,11-20
    8. Ayoub M, Symons S J, Edney M J, Mather D E. QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theor Appl Genet,2002,105: 237-247
    9. Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of an RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet,1995,90: 294-302
    10. Baghizadeh A, Taleei A R, Naghavi M R. QTL analysis for some agronomic traits in barley (Hordeum vulgare L). Int J Agric Biol,2007,9:372-374
    11. Barua U M, Chalmers K J, Thomas W T B, Hackett C A, Lea V, Jack P, Forester B P, Waugh R, Powell W. Molecular mapping of genes determining height, time to heading, and growth habit in barley (Hordeum vulgare). Genome,1993,36: 1080-1087
    12. Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross'Arta'×H. spontaneum 41-1. Theor Appl Genet,2003,107: 1215-1225
    13. Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet,2007,115:721-733
    14. Becker J, Vos P, Kuiper M, Salamini F, Heun M. Combined mapping of AFLP and RFLP markers in barley. Mol Genet,1995,249:65-73
    15. Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M. Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breeding,1997,3:29-38
    16. Borner A, Korzun V. Genetical studies of two barley mutants differing in their GA response. Barley Genet Newslett,1996,25:27-29
    17. Borner A, Korzun V, Malyshev S, Ivandic V, Graner A. Molecular mapping of two dwarfing genes differing in their GA response on chromosome 2H of barley. Theor Appl Genet,1999,99:670-675
    18. Borner A, Buck-Sorlin G H, Hayes P M, Malyshev S, Korzun V. Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breeding,2002,121:129-132
    19. Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32:314-331
    20. Boyd W J R, Li C D, Grime C R, Cakir M, Potipibool S, Kaveeta L, Men S, Jalal Kamali M R, Barr A R, Moody D B, Lance R C M, Logue S J, Raman H, Read B J. Conventional and molecular genetic analysis of factors contributing to variation in the timing of heading among spring barley(Hordeum vulgare L.) genotypes grown over a mild winter growing season. Aust J Agri Res,2003,54:1277-1301
    21. Cakir M, Gupta S, Li C, Hayden M, Mather D E, Ablett G A, Platz G J, Broughton S, Chalmers K J, Loughman R, Jones M G K, Lance R C M. Genetic mapping and QTL analysis of disease resistance traits in the barley population Baudin×AC Metcalfe. Crop Pasture Sci,2011,62:152-161
    22. Cattivelli L, Baldi P, Crosatti C, Fonzo N D, Faccioli P, Grossi M, Mastrangelo A M, Pecchioni N, Stanca A M. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant mol Biol,2002,48:649-665
    23. Cuesta-Marcos A, Igartua E, Ciudad F J, Codesal P, Russell J R, Molina-Cano J L, Moralejo M, Sziics P, Gracia M P, Lasa J M, Casas A M. Heading date QTL in a springxwinter barley cross evaluated in Mediterranean environments. Mol Breeding, 2008a,21:455-471
    24. Cuesta-Marcos A, Casas A M, Yahiaoui S, Gracia M P, Lasa J M, Igartua E. Joint analysis for heading date QTL in small interconnected barley populations. Mol Breeding.2008b,21:383-399
    25. Danyluk J, Kane N A, Breton G, Limin A E, Fowler D B, Sarhan F. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol,2003,132:1849-1860
    26. Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics,1996,142:285-294
    27. Dubcovsky J, Chen C, Yan L. Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breeding,2005,15:395-407
    28. Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant mol Biol,2006,60:469-480
    29. Emebiri L C, Moody D B, Horsley R, Panozzo J, Read B J. The genetic control of grain protein content variation in a doubled haploid population derived from a cross between Australian and North American two-rowed barley lines. J Cereal Sci,2005, 41:107-114
    30. Emebiri L C, Moody D B, Panozzo J F, Chalmers K J, Kretschmer J M, Ablett G A. Identification of QTLs associated with variations in grain protein concentration in two-row barley. Aust J Agric Res,2003,54:1211-1221
    31. Falk D E. New dominant dwarfing gene (Dwf2) in barley. Barley Genet Newslett, 1994,24:87-89
    32. Faure S, Higgins J, Turner A S, Laurie D A. The flowering locus T-like gene family in barley (Hordeum vulgare). Genetics,2007,176:599-609
    33. Foster A E, Thompson A P. Effects of a semi dwarfing gene from Jotun on agronomic and quality traits of barley, in:S. Yasuda, T. Kanishi (Eds.),5th Proceedings of international barley genetics symposium. Sanyo Press Co., Okayama,1987, pp. 979-982
    34. Franckowiak J D, Konishi T. Early maturity 6, Eam6. Barley Genet Newslett,2002, 32:86-87
    35. Franckowiak J D, Pecio A. Coordinator's report:Semi-dwarf gene:A listing of genetic stocks. Barley Genet Newslett,1992,21:116-126
    36. Franckowiak J D. Coordinator's report on the semi-dwarf barley collection. Barley Genet Newslett,1987,17:114-115
    37. Fu D, Szucs P, Yan L, Helguera M, Skinner J S, von Zitzewitz J, Hayes P M, Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics,2005,273:54-65
    38. Gallagher L W, Soliman K M, Vivar H. Interactions among loci conferring photoperiod insensitivity for heading time in spring barley. Crop Sci,1991,31: 256-261
    39. Gonzalez-Schain N D, Suarez-Lopez P. CONSTANS delays flowering and affects tuber yield in potato. Biol Plantarum,2008,52:251-258
    40. Griffiths S, Dunford R P, Coupland G, Laurie D A. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol,2003,131:1855-1867
    41. Gymer P T:An attempt to locate the sdw gene for prostrate growth habit or the perils and pitfalls of classical genetics. Barley Genet Newslett,1992,22:19-22
    42. Hackett C A, Ellis R P, Forster B P, McNicol J W, Macaulay M. Statistical analysis of a linkage experiment in barley involving quantitative trait loci for height and ear-emergence time and two genetic markers on chromosome 4. Theor Appl Genet, 1992,85:120-126
    43. Hayes P M, Blake T, Chen T H H, Tragoonrung S, Chen F, Pan A, Liu B. Quantitative trait loci on barley(Hordeum vulgare L.) chromosome 7 associated with components of winter hardiness. Genome,1993a,36:66-71
    44. Hayes P M, Liu B H, Knapp S J, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich S E, Wesenberg D, Kleinhofs A. Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor Appl Genet,1993b,87:392-401
    45. Hay R K M, Ellis R P. The control of flowering in wheat and barley:what recent advances in molecular genetics can reveal. Ann Botany,1998,82:541-554
    46. Hellewell K B, Rasmusson D C, Meagher M G. Enhancing yield of semidwarf barley. Crop Sci,2000,40:352-358
    47. Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S. Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet,2003,107:806-813
    48. Horsley R D, Schmierer D, Maier C, Kudrna D, Urrea C A, Steffenson B J, Schwarz P B, Franckowiak J D, Green M J, Zhang B, Kleinhofs A. Identification of QTLs associated with fusarium head blight resistance in barley accession CIho 4196. Crop Sci,2006,46:145-156
    49. Hoskins P H, Poehlman J M. Pleiotropic effects of uzu and spike-density genes in a barley cross. J Hered,1971,62:153-156
    50. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol,2004,54: 533-547
    51. Ivandic V, Malyshev S, Korzun V, Graner A, Borner A. Comparative mapping of a gibberellic acid-insensitive dwarfing gene (Dwf2) on chromosome 4HS in barley. Theor Appl Genet,1999,98:728-731
    52. Ivandic V, Hackett C A, Nevo E, Keith R, Thomas W T B, Forster B P. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent:associations with ecology, geography and flowering time. Plant Mol Biol,2002,48:511-527
    53. Jia Q J, Zhang J J, Westcott S, Zhang X Q, Bellgard M, Lance R, Li C D. GA-20 oxidase as a candidate for the semidwarf gene sdwl/denso in barley. Funct Integr Genomics,2009,9:255-262
    54. Kane N A, Agharbaoui Z, Diallo A O, Adam H, Tominaga Y, Quellet F, Sarhan F. TaVRT2 represses transcription of the wheat vernalization gene TaVRNl. Plant J, 2007,51:670-680
    55. Kane N A, Danyluk J, Tardif G, Quellet F, Laliberte J F, Limin A E, Fowler D B, Sarhan F. TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol,2005,138: 2354-2363
    56. Karakousis A, Barr A R, Kretschmer J M, Manning S, Logue S J, Roumeliotis S, Collins H M, Chalmers K J, Li C D, Lance R C M, Langridge P. Mapping and QTL analysis of the barley population Galleon×Haruna Nijo. Aust J Agric Res,2003, 54:1131-1135
    57. Karsai I, Meszaros K, Hayes P M, Bedo Z. Effects of loci on chromosomes 2 (2H) and 7 (5H) on developmental patterns in barley(Hordeum vulgare L.) under different photoperiod regimes. Theor Appl Genet,1997,94:612-618
    58. Karsai I, Szucs P, Meszaros K, Filichkina T, Hayes P M, Skinner J S, Lang L, Bedo Z. The Vrn-H2 locus is a major determinant of flowering time in a facultative× winter growth habit barley(Hordeum vulgare L.) mapping population. Theor Appl Genet,2005,110:1458-1466.
    59. Kicherer S, Backes G, Walther U, Jahoor A. Localising QTLs for leaf rust resistance and agronomic traits in barley(Hordeum vulgare L.). Theor Appl Genet,2000,100: 881-888
    60. Kjaer B, Jenson J, Giese H. Quantitative trait loci for heading date and straw characters in barley. Genome,1995,38:1098-1104
    61. Kleinhofs A, Kilian A, Saghai-Maroof M A, Biyashev R M, Hayes P, Chen F Q, Lapitan N, Fenwick A, Blake T K, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp S J, Liu B, Sorrells M, Heun M, Franckowiak J D, Hoffman D, Skadsen R, Steffenson B J. A molecular, isozyme and morphological map of the barley(Hordeum vulgare) genome. Theor Appl Genet,1993,86:705-712
    62. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen,1944,12:172-175
    63. Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    64. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A. Mapmaker:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181
    65. Laurie D A, Pratchett N, Romero C, Simpson E, Snape J W. Assignment of the denso dwarfing gene to the long arm of chromosome 3 (3H) of barley by use of RFLP markers. Plant Breeding,1993,111:198-203
    66. Laurie D A, Pratchett N, Bezant J H, Snape J W. Genetic analysis of a photoperiod response gene on the short arm of chromosome 2 (2H) of Hordeum vulgare (barley). Heredity,1994,72:619-627
    67. Laurie D A, Pratchett N, Bezant J H, Snape J W. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter×spring barley (Hordeum vulgare L.) cross. Genome,1995,38:575-585
    68. Laurie D A. Comparative genetics of flowering time. Plant mol Biol,1997,35: 167-177
    69. Li M, Pan Y, Li A S, Kudrna D, Kleinhofs A. Fine mapping of a semi-dwarf gene brachytic 1 in barley. Acta Genet Sin,2002,29:565-570
    70. Li J Z, Huang X Q, Heinrichs F, Ganal M W, Roder M S. Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet,2005,110:356-363
    71. Liang C Z, Gu M H, Pan X B, Liang G H, Zhu L H. RFLP tagging of a new semidwarfing gene in rice. Theor Appl Genet,1994,88:898-900
    72. Liu R H, Meng J L. MapDraw:A microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas,2003,25:317-321
    73. Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J. Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol,2005, 138:2364-2373
    74. Manly K F. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm Genome,1993,4,303-31
    75. Marquez-Cedillo L A, Hayes P M, Jones B L, Kleinhofs A, Legge W G, Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M. QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet,2000,101:173-184
    76. Marquez-Cedillo L A, Hayes P M, Kleinhofs A, Legge W G, Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet,2001,103:625-637
    77. Mesfin A, Smith K P, Dill-Macky R, Evans C K, Waugh R, Gustus C D, Muehlbauer G J. Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population. Crop Sci,2003,43:307-318
    78. Michelmore R W, Paran I, Kesseli V. Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832
    79. Mickelson H R, Rasmusson D C. Genes for short stature in barley. Crop Sci.1994, 34:1180-1183
    80. Mohan M, Nair S, Bentur J S, Rao U P, Bennett J. RFLP and RAPD mapping of the rice Gm2 gene that confers resistance to biotype 1 of gall midge (Orseolia oryzae). Thero Appl Genet,1994,87:782-788
    81. Moralejo M, Swanston J S, Munoz P, Prada D, Elia M, Russell J R, Ramsay L, Cistue L, Codesal P, Casas A M, Romagosa I, Powell W, Molina-Cano J L. Use of new EST markers to elucidate the genetic differences in grain protein content between European and North American two-rowed malting barleys. Theor Appl Genet,2004,110:116-125
    82. Murai K, Miyamae M, Kato H, Takumi S, Ogihara Y. WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol,2003,44:1255-1265
    83. Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T. The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. Plant Cell Physiol,2005,46:609-619
    84. Nelson J C. QGENE:software for marker-based genomic analysis and breeding. Mol Breeding,1997,3:239-245
    85. Pakniyat H, Handley L L, Thomas W T B, Connolly T, Macaulay M, Caligari P D S, Forster B P. Comparison of shoot dry weight, Na+ content and δ13 C values of ari-e and other semi-dwarf barley mutants under salt-stress. Euphytica,1997,94:7-14
    86. Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988,335:721-726
    87. Pillen K, Zacharias A, Leon J. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet,2003,107:340-352
    88. Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell,1995,80:847-857
    89. Rasmusson D C. A plant breeder's experience with ideotype breeding. Field Crops Res.1991,26:191-200
    90. Rasmusson D C, Phillips R L. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci,1997,37:303-310
    91. Ren X F, Sun D F, Guan W W, Sun G L, Li C D. Inheritance and identification of molecular markers associated with a novel dwarfing gene in barley. BMC Genetics, 2010a,11:1-7
    92. Ren X F, Li C D, Boyd W J R, Westcott S, Grime C R, Sun D F, Lance R. QTLs and their interaction determining different heading dates of barley in Australia and China. Crop Pasture Sci,2010b,61,145-152
    93. Roberts E H, Summerfield R J, Cooper J P, Ellis R H. Environmental control of flowering in barley (Hordeum vulgare L.). Ⅰ. Photoperiod limits to long-day responses, photoperiod-insensitive phases and effects of low-temperature and short-day vernalization. Ann Botany,1988,62,127-144
    94. Saisho D, Tanno K, Chono M, Honda I, Kitano H, Takeda K. Spontaneous brassinolide-insensitive barley mutants 'uzu' adapted to east Asia. Breeding Sci. 2004,54:409-416
    95. Sameri M, Komatsuda T. Identification of quantitative trait loci (QTLs) controlling heading time in the population generated from a cross between oriental and occidental barley cultivars (Hordeum vulgare L.). Breeding Sci,2004,54:327-332
    96. Sameri M, Takeda K, Komatsuda T. Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross between oriental- and occidental-type barley cultivars. Breeding Sci,2006,56:243-252
    97. Sears R G, Kronstad W E, Metzger R J. Inheritance of dwarf and semidwarf plant height in barley. Crop Sci,1981,21:828-833
    98. Stein N, Herren G, Keller B. A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breeding, 2001,120:354-356
    99. Szucs P, Karsai I, von Zitzewitz J, Meszaros K, Cooper L L D, Gu Y Q, Chen T H H, Hayes P M, Skinner J S. Positional relationships between photoperiod response QTL and photo receptor and vernalization genes in barley. Theor Appl Genet,2006,112: 1277-1285
    100. Szucs P, Skinner J S, Karsai I, Cuesta-Marcos A, Haggard K G, Corey A E, Chen T H, Hayes P M. Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-HI may account for a continuum of vernalization sensitivity. Mol Genet Genomics,2007,277:249-261
    101.Takahashi R, Yasuda S. Genetics of earliness and growth habit in barley. In:Nilan RA (ed.), Barley Genetics Ⅱ. Washington:1971.388-408
    102. Thomas W T B, Powell W, Wood W. The chromosomal location of the dwarfing gene present in the spring barley variety Golden Promise. Heredity,1984,53:177-183
    103.Thomas W T B, Powell W, Swanston J S. The effects of major genes on quantitatively varying characters in barley.4. The GPert and denso loci and quality characters. Heredity,1991,66:381-389
    104. Thomas W T B, Powell W, Waugh R, Chalmers K J, Barua U M, Jack P, Lea V, Forster B P, Swanston J S, Ellis R P, Hanson P R, Lance R C M. Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley(Hordeum vulgare L.). Theor Appl Genet,1995,91:1037-1047
    105.Teulat B, Merah O, Souyris I, This D. QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet, 2001,103,774-787
    106.Tsuchiya T. Allelism testing in barley. II. Allelic relationships of three uzu genes. Crop Sci,1976a,16:496-499
    107. Tsuchiya T. Allelism testing of genes between brachytic and eractoides mutants. Barley Genet Newslett,1976b,6:79-81.
    108. Turner A, Beales J, Faure S, Dunford R P, Laurie D A. The pseudo-response regulator Ppd-Hl provides adaptation to photoperiod in barley. Science,2005,310: 1031-1034
    109.Varshney R K, Marcel T C, Ramsay L, Russell J, Roder M S, Stein N, Waugh R, Langridge P, Niks R E, Graner A. A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet,2007,114:1090-1103
    110. Von Korff M, Wang H, Leon J, Pillen K. AB-QTL analysis in spring barley:Ⅱ. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley. Theor Appl Genet,2006,112:1221-1231
    111. von Zitzewitz J, Szucs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen T H H, Hayes P M, Skinner J S. Molecular and structural characterization of barley vernalization genes. Plant Mol Biol,2005,59:449-467
    112. Wang J M, Yang J M, McNeil D L, Zhou M X. Identification and molecular mapping of a dwarfing gene in barley(Hordeum vulgare L.) and its correlation with other agronomic traits. Euphytica,2010,175:331-342
    113. Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA,2007, http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
    114. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Nati Acad Sci USA,2003,100: 6263-6268
    115. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science,2004,303:1640-1644
    116. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Nati Acad Sci USA,2006,103:19581-19586
    117. Yang J, Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet,2005,110:1268-1274
    118. Yasuda S, Hayashi J, Moriya I. Genetic constitution for spring growth habit and some other characters in barley cultivars in the Mediterranean coastal regions. Euphytica,1993,70:77-83
    119. Young N D, Zamir D, Canal M W, Tanksley S D. Use of isogenic lines and simultaneous probing to identify DNA markers tightly lined to the Tm-2a gene in tomato. Genetics,1988,120:579-585
    120. Yu G T, Horsley R D, Zhang B X, Franckowiak J D. A new semi-dwarfing gene identified by molecular mapping of quantitative trait loci in barley. Theor Appl Genet, 2010,120:853-861
    121. Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA,1993,90:10972-10976.
    122. Zeng Z B. Precision mapping of quantitative trait loci. Gentics,1994 136:1457-1468
    123. Zhang J. Changes in plant height of varieties and analysis of dwarf sources with progress in barley breeding in China. Barley Sci.1994,4:11-13
    124. Zhang J. Allelism tests for the dwarfing genes in the three main dwarf sources of barley. Acta Agronom Sin,1998,24:42-46
    125. Zhang J. Inheritance of agronomic traits from the Chinese barley dwarfing gene donors Xiaoshan Lixiahuang and Cangzhou Luodamai. Plant Breeding,2000,119: 523-524
    126. Zhang J. Inheritance of plant height and allelism tests of the dwarfing genes in Chinese barley. Plant Breeding,2003,122:112-115
    127. Zhang J, Li Z, Zhang C H. Analysis on the dwarfing genes in Zhepi 1 and Aizao 3: two dwarfing gene donors in barley breeding in China. Agric Sci China,2006,5: 643-647
    128. Zhang J, Zhang W X. Tracing sources of dwarfing genes in barley breeding in China. Euphytica,2003,131:285-292
    129. Zhao S H, Lin F. The comparisons among the methods of extracting and purifying plant DNA. Foreign Agron Grain Crops,1998,18:35-38
    130. Zhu J, Weir B S. Mixed model approaches for genetic analysis of quantitative traits. In:Chen L S, Ruan S G, and Zhu J (eds) Advanced Topics in Biomathematics: Proceedings of International Conference on Mathematical Biology. Singapore, World Scientific Publishing Co,1998,321-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700