用户名: 密码: 验证码:
仿生乌贼推进器及其流体动力仿真和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下生物经过亿万年的进化,具备了高超的游泳技巧及游动效率,乌贼便是其中的运动佼佼者。随着机械、材料、控制理论等学科的发展,模仿乌贼等水中生物游动研制仿生水下机器人成为可能。本文即以乌贼为主要研究对象,探讨其生物形态、生理结构及运动特征,并在此基础上研制形状记忆合金(Shape Memory Alloy,简称SMA)丝驱动的仿生乌贼推进器,通过测试实验和计算流体力学(Computational Fluid Dynamics,简称CFD)仿真等手段对其流体动力进行研究分析。一方面有助于理解乌贼的游动机理,另一方面为仿生乌贼机器人的研究提供部件和理论基础。
     涡环是一种常见的流体现象,在水下生物推进中起着重要的能量传输作用,本文分析了水下生物多种推进模式中的涡环形成机制及其对游动效率的影响。乌贼是采用水平鳍和喷水复合推进的水中生物,能根据不同的条件采取不同的游动模式,具有强大的涡环产生和控制能力,集快速性、机动性、有效性于一身。乌贼的流线型身体是其能够实现高速推进的重要原因,根据所解剖乌贼的身体参数,建立了乌贼的三维模型。分析了乌贼的游动策略,并用基本的流体力学理论对其受力情况进行分析。转弯控制是衡量运动机动性的重要指标,乌贼能采取多种转弯模式,着重对其基于阻力的柔性转弯控制面进行了分析,相比刚性舵有着更好的流体控制能力。
     形状记忆合金丝作为一种新型驱动材料开始得到广泛应用,为了验证SMA丝作为驱动材料模拟乌贼或鱼类肌肉的可行性,在所搭建的SMA丝测试平台上对其性能进行了初步测试,其应变(接近4%)和应力(800 Mpa)都足以满足设计需求。大幅度的柔性弯曲是乌贼腕、鳍和鱼鳍的基本动作,基于其肌肉动作原理,分别研制了SMA丝驱动的仿生尾鳍推进器和仿生三角鳍推进器。对这两种推进器进行的开环控制动作实验表明:柔性化程度高,摆动幅度大,动作流畅,仿生效果好,无噪声。在所研制的测试平台上对其动作中的非定常推进力进行了实验测量,其中,仿生尾鳍推进器的最大瞬时推进力可达15.8 mN,仿生三角鳍推进器的最大瞬时推进力可达102.5 mN。得出了非定常推进力随着弯曲动作的变化规律,并探讨了摆动角度,摆动频率以及形状尺寸对推进力的影响。
     同实验测试一样,CFD仿真也是研究生物游动机理的有效手段。首先利用CFD仿真建立静态模型分别对乌贼的身体形态及其柔性转弯控制面进行了分析;其次基于所拍摄的仿生尾鳍推进器和仿生三角鳍推进器的运动规律建立了近似运动模型,利用动网格技术分别对其柔性动作过程进行二维和三维仿真。仿真中得出了其动作过程中非定常力的变化情况,并探讨了摆动角度和摆动频率对推进力的影响,仿真结果与推进力测试实验吻合良好。其中,在对仿生尾鳍推进器摆动的二维CFD仿真中,得出了与真实鱼尾鳍摆动后同样的涡环现象,并对所产生涡环的涡动力进行了定量分析。斯特鲁哈尔数(Strouhal number简称St)是表征流体非定常效应的重要参数,对鱼类来说,0.2≤St≤0.3时可以实现最优推进,仿真中以背景流替代尾鳍的前进速度,模拟出了斯特鲁哈尔数对涡流尾迹的影响,发现0.2≤St≤0.3时的尾鳍摆动尾迹是一种介于阻力尾迹和推进涡环之间的中间状态。为了进一步验证数值模拟出的可视化流场,搭建了基于改性聚四氟乙烯微粉(PTFE)的液面流场显示系统。在该系统上对仿生尾鳍推进器摆动后的涡环形成过程进行了可视化研究,研究表明该系统能够较为准确的反映流场状态,为研究流场形态提供了实验平台。
     乌贼的快速推进的动力源泉还在于其强有力的喷水,为此研制了SMA丝驱动的仿生乌贼脉冲喷射推进器并对其推进性能进行了实验测试。实验探究了驱动参数以及喷口直径对推进力的影响。随后建立了类似的喷水模型并对其喷水过程进行了CFD仿真,仿真中着重显示了其喷水后的涡环形成过程,分析了涡环形成数(L/D)对喷水尾迹的影响,并对推进力的变化情况进行了探讨。实验和仿真的结果验证了乌贼喷射推进中的涡环利用机制及喷水策略。
     综上所述,本文基于仿生乌贼推进器所完成的仿真与测试,为仿生乌贼机器人的研究提供了理论和实验平台。
After millions years of evolution, aquatic animals possess superb swimming skills and incredible efficiency, squid is the outstanding kind. With the development of machinery, materials and control theory, development of bionic underwater robot imitating aquatic animals as squid becomes possible. Squid is the main research object, including their biological morphology, physiology structure and movement characteristics. Bionic squid underwater propulsors actuated by shape memory alloy (SMA) wires are investigated. Experimental testing and computational fluid dynamics simulations are use to study its hydrodynamic performance. The research not only helps to understand the mechanism of swimming squid, but also can provide components and theoretical basis for bionic squid underwater robots.
     Vortex ring is a common phenomenon which plays an important role in aquatic animal propulsion. Aquatic animals have several propulsive modes. Vortex formation mechanism and its effect on swimming efficiency are analyzed. Squid possess composite propulsive modes including level fin and jetting. It can adopt different swimming modes according to different conditions, with a strong ability to generate and control vortex ring. It has many merits: high speed, good maneuverability and high efficiency. One reason why squid can achieve high-speed is perfect streamlined body. Three-dimensional squid model was established according to the anatomy of the physical parameters of squid. Squid's swimming strategy and its hydrodynamics are comprehensively analyzed. Turning control is a important measure to scale mobility and squid possess several turning patterns. Its flexible turning control surface based drag is detailed analyzed, which has better performance comparing with rigid steering.
     As a new actuator material, SMA wires begin to be widely used. In order to verify the feasibility of using SMA wires to simulate squid or fish muscles, SMA wires is initially tested on a performance testing platform. The strain (close to 4%) and stress (800 Mpa) are sufficient to meet the design requirements. Flexible bending with large amplitude is basic movement for fins in fish or squid. Based on their muscle action principles, a caudal fin propulsor and a triangular pectoral fin actuated by SMA wires are investigated. The open-loop control experiments on these two propulsors show that they have merits: high degree of flexibility, smooth action with large amplitude and zero noise. Then the unsteady propulsive forces of the propulsors are measured. The maximum instantaneous thrust for caudal fin propulsor is up to 15.8 mN, and 102.5 mN for the pectoral fin. The unsteady thrust variation with bending angle is obtained, and the impact of bending angle, frequency, shape and size on propulsive performance is researched.
     As the experimental testing, CFD simulation is another effective mean to study the mechanism of biological swimming. Firstly, CFD simulations are used to verify the perfect body shape of squid and their ascendant flexible turning control surface. Secondly, approximate kinematics models are set up based on the action experiment on the caudal fin propulsor and trigonal fin propulsor. Dynamic mesh technique is used to simulate the movement of the propulsor in 2D and 3D respectively. Though the simulation, the change character of unsteady force and the impact of bending parameters on average thrust force are received. The simulation results accord with the experimental results well. The phenomenon of vortex ring is found in the 2D simulation of caudal fin, just similar with live fish. Quantitative analysis is carried out on the vortex ring. Strouhal number (St) characterizes the unsteady effect of fluid. Fish can achieve most effective propulsion when 0.2≤St≤0.3. In simulation, the background flow is used to replace the forward movement of the caudal fin. The effect of St on the vortex wake is simulated. The wake presents intermediate state between drag wake and thrust wake when 0.2≤St≤0.3. To further verify the the visual flow field generated by numerical simulation, a flow level visualization system is built based on modified PTFE powder. A visual research on vortex ring formation process generated by tail propulsor is carried out on the system, which can provide accurate flow field.
     The power source of rapid swimming squid is jetting water. A bionic squid pulse jet propulsor actuated by SMA wires is investigated and experimentally tested. The experiments explore the impact of the amplitude of bionic mantle, action speed and nozzle diameter on propulsive performance. .Then a similar jetting model is established and simulated by CFD. The simulation focuses on the formation process of vortex ring jet from the mantle. The impact of the vortex formation number (L/D) on jetting wake and the change character of thrust force are analyzed. The results verify vortex ring mechanism and jetting strategies in squid propulsion.
     In summary, the experimental testing and simulation on the bionic squid propulsor provide effective theoretical and experimental research platform.
引文
[1]孔庆福,吴家明,贾野,等.舰船喷水推进技术研究[J].舰船科学技术,2004,26(3):28-30.
    [2]李晓辉,朱玉泉,聂松林.喷水推进器的发展研究综述[J].液压与气动,2007,7:1-4.
    [3] Yoseph B C. Bionics:Biologically Inspired Technologies[M]. Florida, CRC Press,2006:2-3.
    [4] Gray J. Studies in Animal Locomotion. VI. The Propulsive Powers of the Dolphin[J]. Journal Of Experimental Biology,1936,13:192-199.
    [5] Taylor G I. Analysis of the Swimming of Microscopic Organisms[J]. Proceedings of the Royal Society of London. Series A,1951,209:447-461.
    [6] Taylor G I. The Action of Waving Cylindrical Tails in Propelling Microscopic Organisms[J]. Proceedings of the Royal Society of London. Series A,1952,211:225-239.
    [7] Taylor G I. Analysis of the Swimming of Long Narrow Animals[J]. Proceedings of the Royal Society of London. Series A,1952,214:158-183.
    [8] Lighthill M J. Note on the Swimming of Slender Fish[J]. Journal of Fluids Mechanics,1960,9:305-317.
    [9] Lighthill M J. Aquatic Animal Propulsion of High Hydromechanical Efficiency[J]. Journal of Fluids Mechanics,1970,44:265-301.
    [10] Lighthill M J. Large Amplitude Elongated-Body Theory of Fish Locomotion[J]. Proceedings of the Royal Society of London. Series B,1971,179:125-138
    [11] Wu T Y. Swimming of Waving Plate[J]. Journal of Fluids Mechanics,1961,10:321-344.
    [12] Fish F E. Biological Designs for Enhanced Maneuverability: Analysis of Marine Mammal Performance[R]. In Tenth International Symposium on Unmanned Untethered Submersible Technology,1997:109-117.
    [13] Fish F E. Performance Constraints on The Maneuverability of Flexible and Rigid Biological Systems[R]. In Eleventh International Symposium on Unmanned Untethered Submersible Technology,1999:394-406.
    [14]童炳刚,陆夕云.关于飞行和游动的生物力学研究[J].力学进展,2004,34(1):1-8.
    [15]陈政宏,李志扬.浅谈流体中生物的推进方式[R/OL]. SciScape专题文章,2000[2000-12-04]. http://www.sciscape.org/articles/fish_swim/.
    [16] Mohseni K. Pulsatile Vortex Generators for Low-Speed Maneuvering of Small Underwater Vehicles[J]. Ocean Engineering,2006,33:2209-2223.
    [17] Thomas A P, Milano M, Fischer K, et al. Synthetic Jet Propulsion for Small Underwater Vehicles[C]. International Conference on Robotics and Automation. Barcelona:Proceedings of the IEEE,2005:181-187.
    [18] Guo S X, Shi L W, Ye X F, et al. A New Jellyfish Type of Underwater Microrobot[C]. International Conference on Mechatronics and Automation. Harbin:Proceedings of the IEEE,2007:509 - 514.
    [19] Yang Y C, Ye X F, Guo S X. A New Type of Jellyfish-Like Microrobot[C]. International Conference on Integration Technology. Shenzhen:Proceedings of the IEEE,2007:509-514.
    [20]谢文祥,刘俊佑,彭千诚.三杆与五杆型仿生水母缩放推进机构之构造合成[J].技术学刊,2003,21(4):343-352.
    [21]李欣欣,方科,程光明,等.压电薄膜喷流泵研究[J].光学精密工程,2006,14(5):858-863.
    [22]杭观荣.基于肌肉性静水骨骼原理的机器乌贼原型关键技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:85-108.
    [23]杜威. SMA驱动的仿乌贼喷射推进器原型研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008:39-59.
    [24]吴清华.形状记忆合金丝驱动的仿乌贼外套膜和腕鳍研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:17-32.
    [25]吴清华,王振龙,杭观荣,等.形状记忆合金丝驱动的仿乌贼外套膜喷射推进器研究[J].微特电机,2009,12:1-5.
    [26] RoboTuna[EB/OL]. http://web.mit.edu/towtank/www/Tuna/tuna.html.
    [27] Ijspeert A J, Crespi A. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model[J]. Science,2007,315(5817):1416-1420.
    [28] Hu H, Liu J, Dukes I, et al. Design of 3D Swim Patterns for Autonomous Robotic Fish[C]. International Conference on Intelligent Robots and Systems. Beijing:Proceedings of the IEEE/RSJ,2006:2406-2411.
    [29] Morgansen K A, Fond T M L, Zhang J. X. Agile Maneuvering for Fin-Actuated Underwater Vehicles[R]. In Proceedings of the SecondInternational Symposium on Communications, Control and Signal Processing,2006.
    [30] Takagi K, Nakabo Y. An Analysis of Increase of Bending Response in Ipmc Dynamics Given Uniform Input[J]. Proc. of SPIE,2006,6168(616814):1-12.
    [31] Aureli M, Kopman V, Porfiri M. Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites[J]. IEEE/ASME Transactions on Mechatronics,2010,15(4):603-614.
    [32] McGovern S T, Abbot M. Evaluation of thrust force generated for a robotic fish propelled with polypyrrole actuators[J]. Polymer International,2010,59:357-364
    [33]仿生机器鱼[EB/OL]. http://firobot.buaa.edu.cn/research/fishrobot.htm
    [34]梁建宏,邹丹,王松,等. SPC-II机器鱼平台及其自主航行实验[J].北京航空航天大学学报,2005,31(7):709-713.
    [35]文力,梁建宏,谢成荫,等. SPC-3 UUV仿生机器鱼及其长航时实验[J].机器人技术与应用,2007,4:33-36.
    [36]成巍.仿生水下机器人仿真与控制技术研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2004:21-22.
    [37] Yan Q, Han Z, Zhang S W, et al. Parametric Research of Experiments on a Carangiform Robotic Fish[J]. Journal of Bionic Engineering,2008,5(2): 95-101.
    [38] Ye X F, Su Y D, Guo S X, et al. ICPF Actuator-based Novel Type of 3D Swimming Microrobot[C]. International Conference on Mechatronics and Automation. Takamatsu:Proceedings of IEEE,2008:557-562.
    [39] Low K H, Prabu S. Design and Initial Testing of a Single-Motor-Driven Spatial Pectoral Fin Mechanism[C]. International Conference on Mechatronics and Automation. Harbin:Proceedings of IEEE,2007:503-508.
    [40] Sitorus1 P E, Nazaruddin Y Y. Design and Implementation of Paired Pectoral Fins Locomotion of Labriform Fish Applied to a Fish Robot[J]. Journal of Bionic Engineering,2009,6:37-45.
    [41] Tangorra J L, Davidson S N. A Biorobotic Pectoral Fin for Autonomous Undersea Vehicles[C]. the 28th IEEE EMBS Annual International Conference. New York:Proceedings of IEEE,2006:2726-2729.
    [42] Lauder G V. How Fishes Swim: Flexible Fin Thrusters as an EAP Platform[J]. Proc. of SPIE,2007,6524(652402):1-8.
    [43] Tangorra J L, Anquetil P. The Application of Conducting Polymers to a Biorobotic Fin Propulsor[J]. Bioinspiration and Bionics,2007,2:S6–S17.
    [44] Tangorra J L, Esposito C J, Lauder G V. Biorobotic Fins for Investigations of Fish Locomotion[C]. International Conference on Intelligent Robots and Systems. Saint Louis:Proceedings of IEEE/RSJ,2009:2120-2125.
    [45] Low K H, GeraldSeet G L, Zhou C L. Bionic Design and Workspace Study of Compact and Modular Undulating Fin Body Segments[C]. International Conference on Mechatronics and Automation. Harbin:Proceedings of IEEE,2007:129-134.
    [46] Zhou C L, Low K H, Chong C W. An Analytical Approach for Better Swimming Efficiency of Slender Fish Robots Based on Lighthill’s Model[C]. International Conference on Robotics and Bionics. Guilin:Proceedings of IEEE,2009:1651-1656.
    [47] Epstein M, Colgate J E, MacIver M A. Generating Thrust with a Biologically-Inspired Robotic Ribbon Fin[C]. International Conference on Intelligent Robots and Systems. Beijing:Proceedings of IEEE/RSJ,2006:2412-2417.
    [48] Gursel A, Geoffrey S. Establishment of a Bionic Device Based on Tri-Layer Polymer Actuators-Propulsion Fins[J]. Bioinspiration and Bionics,2007,2:S18–S30.
    [49] Punning A, Anton M, Kruusmaa M, et al. A Biologically Inspired Ray-Like Underwater Robot with Electroactive Polymer Pectoral Fins[C]. International Conference on Mechatronics and Robotics. Germany :Proceeding of the IEEE,2004:241-245.
    [50] Yang S B, Qiu J, Han X Y. Kinematics Modeling and Experiments of Pectoral Oscillation Propulsion Robotic Fish[J]. Journal of Bionic Engineering,2009,6:174-179.
    [51] Hu T J, Lin L x, Zhang D B, et al. Effective Motion Control of the Bionic Undulating Fin via Iterative Learning[C]. International Conference on Robotics and Bionics. Guilin:Proceedings of IEEE,2009:627-632.
    [52] Xu H J, Lin L X, Zhang D B, et al. Experimental Study on the Bionic Undulate Thruster Driven by a Hydraulic System[C]. International Conference on Robotics and Bionics. Guilin:Proceedings of IEEE,2009:441-444.
    [53] Gao J, Bi S S, Xu Y C, et al. Development and Design of a Robotic Manta Ray Featuring Flexible Pectoral Fins[C]. International Conference onRobotics and Bionics. Sanya:Proceedings of IEEE,2007:519-523.
    [54] Gao J, Bi S S, Li J, et al. Design and Experiments of Robot Fish Propelled by Pectoral Fins[C]. International Conference on Robotics and Bionics. Guilin:Proceedings of IEEE,2009:445-450.
    [55] Cai Y R, Bi S S, Zhang L G, et al. Design of a Robotic Fish Propelled by Oscillating Flexible Pectoral Foils[C]. International Conference on Intelligent Robots and Systems. Saint Louis:Proceedings of IEEE/RSJ,2009:2138-2142.
    [56] Zhang Y H, Song Y, Yang J, et al. Numerical and Experimental Research on Modular Oscillating Fin[J]. Journal of Bionic Engineering,2008,5:13-23.
    [57] Yan Q, Wu W G, Zhang S W. Preliminary Study of Flexible Pectoral Fin Capable of 3D Motions Actuated by Shape Memory Alloy[C]. International Conference on Robotics and Bionics. Guilin:Proceedings of IEEE,2009:1814-1819.
    [58]王振龙,杭观荣,李健,等.面向水下无声推进的形状记忆合金丝驱动柔性鳍单元[J].机械工程学报,2009,45(2):126-131.
    [59]杭观荣,王振龙,李健,等.基于柔性鳍单元的尾鳍推进微型机器鱼设计研究[J].机器人,2008,30(2):171-181.
    [60]王扬威,王振龙,杭观荣,等.形状记忆合金驱动仿生蝠鲼机器鱼的设计研究[J].机器人,2010,32(2):256-261.
    [61]王扬威,王振龙,杭观荣,等.一种形状记忆合金丝驱动的仿乌贼水平鳍推进器[J].微特电机,2008,36(5):57-59.
    [62]杭观荣,王振龙,王扬威,等.肌肉性静水骨骼原理的仿乌贼鳍推进器[J].哈尔滨工业大学学报,2009,41(11):59-64.
    [63] Budick S A, O’malley D M. Locomotor Repertoire of the Larval Zebrafish: Swimming, Turning and Prey Capture[J]. The Journal of Experimental Biology,2000,203:2565-2579.
    [64] Bartol I K, Patterson M R, Mann R. Swimming Mechanics and Behavior of the Shallow-Water Brief Squid Lolliguncula Brevis[J]. The Journal of Experimental Biology,2001,204:3655-3682.
    [65] Hsieh S T. Three-Dimensional Hindlimb Kinematics of Water Running in the Plumed Basilisk Lizard (Basiliscus Plumifrons)[J]. The Journal of Experimental Biology,2003,06:4363-4377.
    [66] Yan H, Su Y M, Yang L. Experimentation of Fish Swimming Based on Tracking Locomotion Locus[J]. Journal of Bionic Engineering,2008,5:258-263.
    [67]胡天江,李非,沈林成.“尼罗河魔鬼”长背鳍波动包络线的提取算法[J].国防科技大学学报,2005,27(5):67-72.
    [68]王光明,胡天江,李非,等.长背鳍波动推进游动研究[J].机械工程学报,2006,42(3):88-92.
    [69]王光明.仿鱼柔性长鳍波动推进理论与实验研究[D].长沙:国防科学技术大学博士学位论文,2007:24-35.
    [70]章永华.柔性仿生波动鳍推进理论与实验研究[D].合肥:中国科学技术大学博士学位论文,2007,49-57.
    [71] Thompson J T, Kier W M. Ontogenetic Changes in Mantle Kinematics During Escape-Jet Locomotion in the Oval Squid, Sepioteuthis lessoniana Lesson, 1830[J]. The Biological Bulletin,2001,201:154-166.
    [72] Thompson J T, Kier W M. Ontogeny of Squid Mantle Function: Changes in the Mechanics of Escape-Jet Locomotion in the Oval Squid, Sepioteuthis lessoniana Lesson, 1830[J]. The Biological Bulletin,2002,203:14-16.
    [73] Nguyen Q S, Heo S, Park H C, et al. Performance Evaluation of an Improved Fish Robot Actuated by Piezoceramic Actuators[J]. Smart Materials and Structures,2010,19:1-8.
    [74] Nguyen Q S, Heo S, Park H C. A Fish Robot Driven by Piezoceramic Actuators and a Miniaturized Power Supply[J]. International Journal of Control, Automation, and Systems,2009,7(2):267-272.
    [75] Nguyen Q S, Heo S, Park H C, et al. Thrust Improvement of an Fish Robot Actuated by Compressed Unimorph Piezoelectric Composite Actuator[C]. International Conference on Robotics and Bionics. Guilin:Proceedings of IEEE,2009:1603-1608.
    [76] Nguyen Q S, Heo S, Park H C, et al. Cruise and Turning Performance of an Improved Fish Robot Actuated by Piezoceramic Actuators[J]. Proc. of SPIE,2009,7288(72880J):1-10.
    [77] Krueger P S, Moslemi A A, Nichols J T. Vortex Rings in Bio-inspired and Biological Jet Propulsion[J]. Advances in Science and Technology,2008,58:237-246.
    [78] Morgansen K A, Duindam V, Mason R J, et al. Nonlinear Control Methods for Planar Carangiform Robot Fish Locomotion[C]. International Conference on Robotics and Automation. Seoul:Proceedings of IEEE,2001:427-434
    [79] Willert C E, Gharib M. Digital Particle Image Velocimetry[J]. Experiments in Fluids,1991,10:181-193.
    [80]魏润杰,申功炘. DPIV系统研制及其应用[J].流体力学实验与测量,2003,17(2):88-92.
    [81]谢海波,傅新,杨华勇.微流场可视化测速技术及其应用[J].中国机械工程,2005,18(9):1100-1103.
    [82]黄湛,申功炘.槽道湍流近壁结构的DPIV观测实验[J].力学学报,2006,38(2):236-245.
    [83]许自舟,曾苇,邵秘华,等. DPIV技术测量流冰速度应用研究[J].海洋环境科学,2007,26(1):81~84.
    [84] Lauder G V, Drucker E G. Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces[J]. IEEE Journal of Oceanic Engineering,2004,29(3):556-571.
    [85] Lauder G V, Madden P G A. Locomotion with Flexible Propulsors: I. Experimental Analysis of Pectoral Fin Swimming in Sunfish[J]. Bioinspiration & Bionics,2006,1:S25–S34.
    [86] Liao J C. Swimming in Needlefish (Belonidae): Anguilliform Locomotion with Fins[J]. The Journal of Experimental Biology,2002,205:2875-2884.
    [87] Liao J C, Lauder G V. Function of the Heterocercal Tail in White Sturgeon: Flow Visualization During Steady Swimming and Vertical Maneuvering[J]. The Journal of Experimental Biology,2000,203:3585-3594.
    [88] McHenry M J, Lauder G V. The Mechanical Scaling of Coasting in Zebrafish (Danio Rerio)[J]. The Journal of Experimental Biology,2005,208:2289-2301.
    [89] Standen E M, Lauder G V. Hydrodynamic Function of Dorsal and Anal Fins in Brook Trout (Salvelinus Fontinalis)[J]. The Journal of Experimental Biology,2007,210:325-339.
    [90] Higham T E, Malas B. Constraints on Starting and Stopping: Behavior Compensates for Reduced Pectoral Fin Area During Braking of the Bluegill Sunfish Lepomis Macrochirus[J]. The Journal of Experimental Biology,2005,208:4735-4746.
    [91] Standen E M, Lauder G V. Dorsal and Anal Fin Function in Bluegill Sunfish Lepomis Macrochirus: Three-Dimensional Kinematics During Propulsion and Maneuvering[J]. The Journal of Experimental Biology,2005,208:2753-2763.
    [92] Nauen J C, Lauder G V. Locomotion in Scombrid Fishes: Morphology and Kinematics of the Finlets of the Chub Mackerel Scomber Japonicus[J]. The Journal of Experimental Biology,2000,203:2247-2259.
    [93] Nauen J C, Lauder G V. Hydrodynamics of Caudal Fin Locomotion by Chub Mackerel, Scomber Japonicus (Scombridae)[J]. The Journal of Experimental Biology,2002,205:1709-1724.
    [94] Wilga C D, Lauder G V. Three-Dimensional Kinematics and Wake Structure of the Pectoral Fins during Locomotion in Leopard Sharks Triakis Semifasciata[J]. The Journal of Experimental Biology , 2000 , 203 :2261-2278.
    [95] Johansson L C, Lauder G V. Hydrodynamics of Surface Swimming in Leopard Frogs (Rana Pipiens)[J]. The Journal of Experimental Biology,2004,207:3945-3958.
    [96] Stamhuis E J, Nauwelaerts S. Propulsive Force Calculations in Swimming Frogs ii. Application of a Vortex Ring Model to DPIV Data[J]. The Journal of Experimental Biology,2005,208:1445-1451.
    [97] Hsieh S T, Lauder G V. Running on Water: Three-Dimensional Force Generation by Basilisk Lizards[J]. Proceedings of the National Academy of Sciences,2004,101(48):16784-16788.
    [98] Brackenbury J. Kinematics and Hydrodynamics of an Invertebrate Undulatory Swimmer: The Damsel-Fly Larva[J]. The Journal of Experimental Biology,2002,205:627-639.
    [99] Anderson E J, Grosenbaugh M A. Jet Flow in Steadily Swimming Adult Squid[J]. The Journal of Experimental Biology,2005,208:1125-1146.
    [100] Anderson E J, Demont M E. The Locomotory Function of The Fins in the Squid Loligo Pealei[J]. Marine and Freshwater Behaviour and Physiology,2005,38(3):169-189.
    [101] Bartol I K, Krueger P S. Pulsed Jet Dynamics of Squid Hatchlings at Intermediate Reynolds Numbers[J]. The Journal of Experimental Biology,2009,212:506-1518.
    [102] Bartol I K, Krueger P S. Hydrodynamics of Pulsed Jetting in Juvenile and Adult Brief Squid Lolliguncula Brevis: Evidence of Multiple Jet‘Modes’and Their Implications for Propulsive Efficiency[J]. The Journal of Experimental Biology,2009,212:1889-1903.
    [103] Read D A, Hover F S, Triantafyllou M S. Forces on Oscillating Foils forPropulsion and Maneuvering[J]. Journal of Fluids and Structures,2003,17:163-183.
    [104] Triantafyllou M S, Techet A H, Hover F S. Review of Experimental Work in Bionic Foils[J]. IEEE Journal of Oceanic Engineering,2004,29 (3): 585-594.
    [105] Triantafyllou M S, Hover F S, Techet A H, et al. Review of Hydrodynamic Scaling Laws in Aquatic Locomotion and Fishlike Swimming[J]. Transactions of the ASME,2005,58:226-237.
    [106] Kodati P, Deng X Y. Experimental Studies on the Hydrodynamics of a Robotic Ostraciiform Tail Fin[C]. International Conference on Intelligent Robots and Systems. Beijing:Proceedings of IEEE/RSJ,2006:5418-5423.
    [107]敬军,吴燕峰,尹协振. C形起动时鱼尾模型的流场结构[J].中国科学技术大学学报,2007,37(10):1237-1241.
    [108] Wang Z L, Su Y M, Wang X F, et al. Experimental Study on the Hydrodynamics of a Pectoralfin Propulsive System[C]. International Conference on Mechatronics and Automation. Changchun:Proceedings of IEEE,2009:3336-3341.
    [109]杨义红,尹协振,陆夕云.二维波动板流动显示方法研究[J].实验流体力学,2005,19(2):84-90.
    [110] Gharib M, Rambod E, Shariff K. A Universal Time Scale for Vortex Ring Formation[J]. The Journal of Fluid Mechanics,1998,360:121-140.
    [111] Pawlaka G, Cruzb C M, Bazánb C M, et al. Experimental Characterization of Starting Jet Dynamics[J]. Fluid Dynamics Research,2007,39:711-730.
    [112]王振东.大风起兮云飞扬-漫话流动显示及纳斯方程[J].自然杂志,2006, 28(05):292-295.
    [113] Vortex Ring Using Hydrogen Bubble Visualization Technique[EB/OL]. http://www.colorado.edu/MCEN/flowvis/galleries/2006/assignment6/Group4.pdf.
    [114] Lim T T, Nickels T B. Instability and Reconnection in the Head-on Collision of Two Vortex Rings[J]. Nature,1992,357:225-227.
    [115] Afanasyev Y D, Korabel V N. Wakes and Vortex Streets Generated by Translating Force and Force Doublet: Laboratory Experiment[J]. Journal of Fluid Mechanics,2006,553:119-41.
    [116] Lentink D, Muijres F T, Frits J, et al. Vortex-Wake Interactions of a Flapping Foil That Models Animal Swimming and Flight[J]. The Journal ofExperimental Biology,2008,211:267-273.
    [117]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2002:1-6.
    [118]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:1-22.
    [119] Jiang H S, Grosenbaugh M A. Numerical Simulation of Vortex Ring Formation in the Presence of Background Flow with Implications for Squid Propulsion[J]. Theoretical and Computational Fluid Dynamics,2006,20(2):103-123.
    [120] Zhu Q, Wolfgang M J, Yue D K P, et al. Three-Dimensional Flow Structures And Vorticity Control In Fish-Like Swimming[J]. Journal of Fluid Mechanics,2002,468:1-28.
    [121] Carling J, Williams T L, Bowtell G. Self-Propelled Anguilliform Swimming: Simultaneous Solution of the Two-Dimensional Navier–Stokes Equations and Newton’S Laws of Motion[J]. The Journal of Experimental Biology,1998,201:3143-3166.
    [122] Wojciech K, Antonio D. Simulation of Fluid Flow in a Channel Induced by Three Types of Fin-Like Motion[J]. Journal of Bionic Engineering,2007,4:165-176.
    [123] Ramamurti R, Sandberg W C. The influence of fin rigidity and gusts on force production in fishes and insects: a computational study[R]. 42nd AIAA Aerospace Sciences Meeting,2004.
    [124] Zhang Y H, Jia L B, He J H, et al. A Numerical Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy. International Conference on Robotics and Bionics. Kunming:Proceedings of IEEE,2006:73-78.
    [125]枪乌贼[EB/OL]. http://baike.baidu.com/view/134182.htm.
    [126] Norbury J. A Steady Vortex Ring Close to Hill’S Spherical Vortex[J]. Proceedings of the Cambridge Philosophical Society,1972,72:253-270.
    [127] Linden P F, Turner J S.‘Optimal’Vortex Rings and Aquatic Propulsion Mechanisms[J]. The Royal Society,2004,271:647-653.
    [128] Dabiri J O, Colin S P, Costello J H, et al. Flow Patterns Generated by Oblate Medusan Jellyfish: Field Measurements and Laboratory Analyses[J]. The Journal of Experimental Biology,2005,208:1257-1265.
    [129]王振龙,杭观荣,王扬威,等.乌贼游动机理及其在仿生水下机器人上的应用[J].机械工程学报,2008,44(6):1-9.
    [130] Bartol I K, Patterson M R, Mann R. Swimming Mechanics and Behavior of the Shallow-Water Brief Squid Lolliguncula Brevis[J]. The Journal ofExperimental Biology,2001,204:36-55.
    [131] Jeffrey A. W. Kinematics and Performance of Maneuvering Control Surfaces in Teleost Fishes[J]. IEEE Journal of Oceanic Engineering,2004,29(3): 572-584.
    [132] Fish F E, Nicastro A J. Aquatic Turning Performance by the Whirligig Beetle: Constraints on Maneuverability by a Rigid Biological System[J]. The Journal of Experimental Biology,2003,206:1649-1656.
    [133]杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科学技术大学出版社,1993:1-109.
    [134] Shinjo N, Swain G W. Use of a Shape Memory Alloy for the Design of an Oscillatory Propulsion System[J]. IEEE Journal of Oceanic Engineering,2004,29(3):750-755.
    [135]王宏,姚熊亮,戴邵仕.基于SMA的关节驱动器的力学分析及控制[J].传感器与微系统,2007,26(2):28-30.
    [136]王斌锐,周唯逸,许宏.形状记忆合金编织网气动肌肉的驱动特性[J].中国机械工程,2009,20(4):467-471.
    [137]程晓敏,胡胜,吴兴文,等.热-机械训练对Fe-20Mn-5Si-5Cr-3Ni形状记忆合金性能的影响[J].材料热处理技术,2008,37(4):52-54.
    [138] Dabiri J O, Gharib M. The Role of Optimal Vortex Formation in Biological Fluid Transport[J]. Proceedings of the Royal Society of London. Series B,2005,272:1557-1560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700