用户名: 密码: 验证码:
地学G~4I系统中数据集成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪中后期,随着地学与计算机技术的飞速发展,地理信息系统(Geographic Information System,简称GIS)作为一种跨学科综合技术,被引进到国民经济的各个层面。地质学中引进GIS技术是在上世纪90年代,在地学数据集成与地学决策等方面取得了丰富的成果。由于地质学问题的复杂性与地质学研究的跨学科性,面对海量空间地学数据,在数据处理分析上急需提供一种集多源地学数据库为一体的地学分析平台。
     基于这一构想,吉林大学研制开发了“地学G~4I系统”。这是一种以4G(即Geology地质学、Geography地理学、Geochemistry地球化学、Geophysics地球物理学)数据库及其集成分析方法为内核,建立地学空间数据分析模型集合,为矿产资源精细化预测提供全过程服务的计算机系统。
     由于地质体乃至矿床形成过程的多期性与多源性,地球空间数据(简称地学数据)内容和形式日趋多元化,目标分析要求使用多种数据源。而多源数据在来源、内容、作用、格式转换及尺度上均不相同,因此需要进行数据集成。所谓数据集成是指通过使用各类数据转换工具,把不同来源、格式、特点性质的数据,有机地集中到本系统中来,成为本系统可以识别的数据形式,从而为企业提供全面的数据共享。
     本文通过地学G~4I系统研制过程中的一系列任务实现过程,包括理论研究、目标分析、系统设计、关键技术、特色设计及平台选择等六部分来阐述空间数据库集成问题。在大量文献材料阅读基础上,概括介绍数据集成的定义、类型、要求、目标,探讨数据集成的理论基础、对数据集成的研究现状与发展趋势做综合分析,对数据集成系统结构及数据集成的关键问题进行探讨。文中阐述了元数据的定义、类型、内容和作用,对元数据标准及研究现状进行了探讨,重点探讨地学G~4I系统中元数据的设计构架与设计内容,建立元数据管理系统,且针对元数据集成中的关键问题提出解决方案;接着又介绍了互操作定义和空间数据互操作方法,重点论述了地学G~4I系统中的4G地学数据库的设计,及4G地学数据库之间、空间数据之间的格式转换和互操作技术问题;并通过地理数据与地质数据的预处理,以及物探数据与化探数据的特征提取技术,分析研究空间数据的特征提取技术;最后介绍了地学G~4I系统空间数据的质量保障体系。
     空间数据集成技术的研究是地学G~4I系统的基础,为该系统在元数据、空间数据库互操作等诸项内容提供了技术保证。有关该系统的后续升级问题都涉及到数据集成问题,因此数据集成技术研究在该系统研究过程中具有举足轻重的作用。
In early 1980s, Geographic Information System as a multidisciplinary integrated technology is introduced to the domestic, and has made abundant technical achievements and innovation in geological spatial data integration and spatial decision etc. But because geological space position of the earth's crust, makes many geological problems "black box" features, and makes GIS application’s results compared with geography research and space remote sensing relatively lags behind, especially the model of geographical spatial does not apply to geological space model. To further develop GIS, it is necessary to research the evaluation system based on space digital database and mineral resources. At the same time, because of the complexity and interdisciplinary of geological research, the general method of geological Spatial Information Grid (SIG) data processing, ignores the necessary conditions in geological and mineral resources evaluation, that is the connection of the combination of the geological variables ,Spatial structure, and the adaptability measurement of regional comparative , to a certain extent with actual and theoretical defects, and geological space informative, processing trivial, data integration technology to become serious problems to be solved.
     In view of the above mentioned, the geological field need an information technology platform between the original geological data information and end results, to analysis and processing, fusion, and integration large geological data, construct the geological model, analysis digital features, and comprehensive decision-making, effective second develop geological information, and form hierarchic geological information map.
     Jilin University’s G~4I system is developed based on this idea. G~4I system is the computer system which integration analysis Geological data information such as 4G’s data (Geology, Geography, Geochemistry and Geophysics) as kernel, establish geological data analysis method and geological model set to provide services for predicting mineral resources exactly. This system is the digital geological information platform which is based on data integration, data mining and information fusion, and based on geological, geographical, geochemical, geophysics four spatial databases, service in deep crust, integrate spatial information mechanism and model analysis system.
     Along with the rapid development of scientific technology and informatization, the quantity of data which need collect, store and process also will increase. The content and form of geological spatial data (refer as geological data) is diversified, the problems to be solved is complex, involving numerous fields, using multiple data sources, and the storage formats of kinds of data acquisition and the measure of spatial data are also different. Data integration refers to use various automatic data conversion tool, to make data which has all kinds of sources, formats, characteristic properties organic ground on this system, which can be identified by this system, to provide comprehensive data sharing.
     Due to the development and popularization of Internet network technology, information sharing is becoming an inevitable trend. Data is the object of system program and the foundation of system construction. Along with the wide application of GIS, socially accumulated large amounts of data resources, each application departments always choose different GIS software platform according to their specific situation, this causes biggish difference in GIS data in structure, model and format, so that geographic data sharing is difficult. Therefore, data integration is an important question we faced. Only the data integration problems are properly resolved, information islands status would be changed, reduce unnecessary repetitive data collection, share data acquisition expenses, make full use of the existing data resources, improve economic efficiency, provide data base such as data sharing and data analysis.
     This paper according to domestic and foreign research situation, uses G~4I system’s metadata, integration technology, spatial data interpretable technology, spatial data feature extraction technology and G~4I system spatial data quality guarantees system, study geological G~4I system data integration of technical problems. The paper briefly specific arrangement and achievements of work are as follows:
     1.Geological G~4I system overview
     This paper briefly introduces geological G~4I system mainly from theory research contents, geological G~4I system’s research object, and geological G~4I system’s design content, geological G~4I system’s key problems, geological G~4I system’s features and geological G~4I system’s working platform six parts.
     2. Data integration technology research situation
     Based on the vast literature materials, this paper briefly introduces the definition, types requirements, and target of data integration, discusses the theoretical basis, research status and development trend of data integration, analysis the data integration system structure and data integration’s key issues.
     3. Geological G~4I system of metadata and its integration technology
     This paper overviews the definition, contents and functions of metadata, and analyze the standard and the present research status, and emphatically introduces the geological G~4I system metadata design architecture and design content, and establishes the metadata management system, provide solutions of key problems in data integration.
     4. Sharing and Interoperability Technology of Spatial Data
     This part mainly illustrate spatial data sharing from two parts, the introduction of data sharing and ways of implementing spatial data sharing .In addition ,this part briefly introduces the definition of interoperability, methods of spatial data interoperability. In addition, it focus on design of the 4G Geo database in Geo G~4I system and problem of data format conversion and interoperability Technology between the 4G Geo database and spatial data .
     5. The spatial data feature extraction technology
     This paper introduces the geographic data and geological data pretreatment and geophysical data, the focus of the research is data extraction technology with geochemical exploration.
     6. The quality guarantee system of Geological G~4I system spatial data
     This section first introduced the concept of spatial data quality, then puts forward the spatial data quality standards, and thereby evaluates the standard of spatial data quality, elaborates the source of spatial data quality problem according to its existence regularity, data quality control based on the error analysis of data source space.
     Through this paper G~4I system of geological data integration technology research, Integration and information sharing work will lay a foundation of geological G~4I paper in the future, Points out the geological G~4I system about metadata, spatial data and database interoperability between aspects of the development of further part direction, helps the expansion of the system upgrade. At the same time, also hope for similar system development met about data integration issues can have certain reference.
引文
[1]闫希.地学G~4I系统结构与组件接口技术研究[D].长春:吉林大学,2010.
    [2]张春明,孙豁然,李元辉等.设计模式在矿产资源评价专家系统中的应用[J].金属矿山, 2006(8):1-3.
    [3]蔡洪春,张春明,姜绍飞等.基于GIS技术的矿产资源信息系统[J].地质与资源, 2003,12(2):111-114.
    [4]张春明,孙豁然,王恩德等.矿产资源信息系统空间属性数据建模方法[J].金属矿山, 2005(6):33-35.
    [5]马晓霞.地理格网参照下的空间数据集成方法研究[D].西安:长安大学,2006.
    [6]李瑞霞,孙德文,苏珉.CIMS中的数据集成技术[J].微型电脑应用, 1999(6): 52-54.
    [7]陈述彭,何建邦,承继成.地理信息系统的基础研究——地球信息科学[J].地球信息——科学·技术·产业, 1997(3):11-20.
    [8]牛文元.理论地理学[M].北京:商务印书馆, 1992. 7-33.
    [9] Ruas A, Lagrange J P. Data and knowledge modelling for generalization[A]. In: Jean-Claude muller, Jean -Philippe lagrange, rebert Weibel (ED) GIS and Generalization methodology and practice: GisData 1[C]. Taylor &Francis, 1995:73-90.
    [10]Kraak M F, Ormeling F J. Cartography Visulization of Spatial Data[M]. Longman, 1996:47-50.
    [11]李军,庄大方.地学数据集成的理论基础与集成体系[J].地理科学进展, 2001(2): 137-145.
    [12]周成虎.地理信息系统透视[J].地理学报, 1995,50(增刊): 27-35.
    [13]马照亭,潘懋,林晨等.多源空间数据的共享与集成模式研究[J].计算机工程与应用,2002(24):31-34.
    [14]陈崇成,李军,冯冬鹭等.生态环境空间数据的多尺度集成方法[J].环境科学研究,2000,13(4):34-38.
    [15]陈传彬.面向WEB服务的地理空间数据集成与可视化[D].福州:福州大学, 2005.
    [16]孙雁.Internet环境下多源地理数据集成研究[D].武汉:武汉大学,2004.
    [17]贾焰,王志英,韩伟红等.分布式数据库技术[M].北京:国防工业出版社,2000: 107-117.
    [18]李军,费川云.地球空间数据集成研究概况[J].地理科学进展,2000(3):203-210.
    [19]王艳华.参于中间件技术的分布式数据集成研究与实现[D].武汉:武汉理工大学,2006.
    [20]开放数据库互连-百度百科. http://baike.baidu.com/view/41321.htm
    [21]xml-百度百科. http://baike.baidu.com/view/63.htm
    [22]李道奇,马志军,钟珞,等.数据仓库系统中元数据的研究与应用[J].武汉理工大学学报,2002,24(7):76-78.
    [23]http://nfgis.nsdi.gov.cn/nfgis/chinese/bz/mt0.htm
    [24]邬伦,刘瑜,张晶,等.地理信息系统——原理、方法和应用[M].北京:科学出版社,2001:114-121.
    [25]王国文,范存国,唐志高.对城镇地籍数据库建设中元数据制作的探讨[J].地矿测绘,2005,21(2):23-25.
    [26]李德仁.地理信息学的形成及带来的机遇和挑战[J].科技导报,1995(3):79.
    [27]Digital geographic information working group, January 1994, Digital geographic information exchange standard (Digest), version 1.2.
    [28]http://www.powergis.net/show_article.asp?id=643
    [29]张晓林.元数据开发应用的标准化框架[J].现代图书情报技术,2001(2):9-11.
    [30]刘峻明,朱德海,张晓东.分布式区域农业信息系统元数据设计研究[J].资源科学,2004,26(6):166-171.
    [31]彭静,高林,张展新.元数据互操作技术研究[J].信息技术与标准化, 2008(11): 50-53.
    [32]韩夏,李秉严.元数据的互操作研究[J].情报科学, 2004, 22(7): 812-814.
    [33]周新忠,余木良,陶亮,郭朋飞.关于地理空间元数据技术发展趋势的理论探讨[J].测绘科学,2007,32(1):172-175.
    [34]王卷乐,游松财,孙九林.地学数据共享网络中的元数据扩展和互操作技术[J].兰州大学学报,2006,42(5):22-25.
    [35]王卷乐,谢传节,游松财.数据共享中的元数据互操作技术探讨.全国地图学与GIS学术会议论文集[C].福州:[出版者不祥],2004:613-616.
    [36]包世泰,余应刚.地理数据共享与互操作技术[J].测绘工程,2000,9(4):32-36.
    [37]蒋红兵,蒙印.WebGIS的空间数据共享与互操作[J].四川测绘,2005(1):20-22.
    [38]互操作-百度百科. http://baike.baidu.com/view/555117.htm
    [39]胡诚,陈方林,刘俊亮.空间数据共享与互操作技术探讨[J].现代测绘, 2003, 26(6):31-33.
    [40]刘超.土地资源管理中的资源实体互操作方法研究[D].杭州:浙江大学,2008.
    [41]龚健雅.空间信息资源共享与互操作技术[J].国土资源信息化.2003(5):15-21.
    [42]张书亮,陶陶,闾国年.地理信息共享与互操作框架研究[J].测绘科学. 2004(6): 58-60.
    [43]梁济宇,范继璋.综合信息矿产资源评价数据库构建[J].吉林地质,2004,23(4): 132-136.
    [44]申胜利,冯文新,杜舰.国土资源空间数据集成共享探讨[J].2004(7):30-32.
    [45]惠军,王欢,徐晗.GIS互操作的实现及发展[J].新疆师范大学学报(自然科学版),2005,24(3):184-186.
    [46]骆成凤,吴国平,余倩.地理信息共享与互操作的实现初探[J].计算机应用研究,2001.
    [47]姚鹤岭.OGC与我国地理信息产业[J].测绘学院学报,2004,21(2).
    [48] Robert Laurini. Spatial multi-database topological continuity and indexing A step towards seamless GIS data interoperability .INT.J.GIS,1998,12(4):373~402.5.
    [49] Yaser Bishr. Overcoming the semantic and other barriers to GIS interoperability INTJGIS1998,12(4):299-314.
    [50]周铱鑫,程承旗.地理信息资源共享的关键技术[C].1999年GIS年会会刊.
    [51]李德仁.数字地球与“3S”技术[J].中国测绘,2003(2): 28-31.
    [52]闾国年,吴平生,周晓波.地理信息科学导论[M].北京:中国科学技术出版社, 1999.
    [53]缪宏钢.分布式环境下地理信息互操作技术研究[J].遥感技术与应用,2006, 21(4):376-379.
    [54]季斌,穆斌,王浩,徐勇.基于语义Web的GIS互操作技术[J].微机发展,2005, 15(11): 130-132.
    [55]唐桂芬,廖巍,陈荦,景宁.面向地理数据服务的空间数据集成关键技术研究[J].计算机科学,2007,34(9):99-102.
    [56]王方雄,侯英姿,杨俊.网格环境下空间数据共享与互操作技术研究[J].计算机科学,2009,36(1):96-100.
    [57]孔维娟,谢顺平,邓敏.基于网格的多源空间数据集成模型[J].河南科学,2008, 26(6):69-72.
    [58]庄玲,冯心恺等.XML在网络地理信息系统(WebGIS)中的应用[J].山东农业大学学报(自然科学版),2004,35(1):118-120.
    [59]张霞,李德仁,朱欣焰.基于GML构建WebGIS的研究[J].测绘通报, 2003, (10):4-7.
    [60]龚健雅,高文秀.地理信息共享与互操作技术及标准[J].地理信息世界, 2006(6): 18-27.
    [61]何芝.基于GIS的土地利用空间数据处理[D].成都:西南交通大学,2002.
    [62]刘南,刘仁义.地理信息系统[M].北京:高等教育出版社,2002.
    [63]蒋伟.基于GIS和KPCA的农业空间数据特征提取研究[D].重庆:西南大学,2009.
    [64]孙运生,李庆宣,许惠平.地球物理位场数据转换图像处理及编程[M].长春:吉林科学技术出版社,1995.
    [65]王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学出版社,2000.
    [66]周光亚.多元统计方法[M].长春:吉林大学出版社,1988.
    [67]周光亚,夏立显.非定量数据分析及其应用[M].北京:科学出版社,1993.
    [68]董文泉,周光亚,夏立显.数量化理论及其应用[M].长春:吉林人民出版社,1979.
    [69]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988.
    [70]曾衍伟.空间数据质量控制与评价技术体系研究[D].武汉:武汉大学,2004.
    [71]刘明德,林杰斌.地理信息系统GIS理论与实务[M].北京:清华大学出版社,2006.
    [72]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999.
    [73]吴芳华,张跃鹏,金澄. GIS空间数据质量的评价[J].测绘学院学报,2001(3): 63-66.
    [74]刘文宝,邓敏,夏宗国.矢量GIS中属性数据的不确定性分析[J].测绘学报, 2000(1).
    [75]遥感数据-百度百科. http://baike.baidu.com/view/908987.htm
    [76]图形数字化-百度百科. http://baike.baidu.com/view/1307403.htm
    [77]扫描数字化-百度百科. http://baike.baidu.com/view/285299.htm
    [78]孙枢.地球数据是地球科学创新的重要源泉—从地球科学谈科学数据共享[J].中国基础科学,2003(l):19-23.
    [79]蔡晓兵.数据共享和互操作的新思路[J].地理信息世界,2003,01(2):4-6.
    [80]冯琰,施一民.开放式地理信息系统(OpenGIS)与互操作技术分析[J].测绘工程,2002,11(4):22-24.
    [81]黄裕霞,Kottman C.可互操作的GIS研究[J].中国图像图形学报,2001, 6(9): 925-931.
    [82]Berners-LeeT,Hendler J,Lassila O.The Semantic Web[J].Scentific American,2001, 284(5):34-43.
    [83]崔巍.用地理本体实现地理信息系统互操作[J].测绘信息与工程,2004, 29(1):20-22.
    [84]周枫,康东舟.基于XML的可互操作空间对象的探讨[J].东北测绘,2001, 24(1):10-12.
    [85]杨德婷,阎保平.元数据互操作技术探讨[J].计算机应用研究,2004,21(1):44-47.
    [86]杨雪,魏艳旭,杨丽君.多源空间数据的集成与共享探讨[J].科协论坛, 2007(11): 69-70.
    [87]潘军.多元地学空间数据融合及可视化研究[D].长春:吉林大学地探学院,2005.
    [88]滕菲,路来君,孟庆龙.地学G~4I系统的开发研究[J].吉林地质,2006, 25(4):50-54.
    [89]韩聪,路来君.基于地学G~4I系统的元数据分类方法[J].吉林大学学报(地球科学版),2006(36): 224-227.
    [90]吴信才.地理信息系统设计与实现[M].北京:电子工业出版社, 2002.
    [91]叶水盛,王世称,刘万崧等.GIS基本原理与应用开发[M].长春:吉林大学出版社, 2004.
    [92]陈世桢,张竹如.地理信息系统的发展及前沿问题[J].贵州工学院报,1994, 23(3):122-128.
    [93]张新长,马林兵,张青年.地理信息系统数据库[M].北京:科学出版社, 2005.
    [94]崔铁军.地理空间数据库原理[M].北京:科学出版社, 2007.
    [95]樊红.ARC/INFO应用与开发技术[M].武汉:武汉测绘大学出版社, 1999.
    [96]梁济宇,范继璋.综合信息矿产资源评价数据库构建[J].吉林地质,2004,23(4): 132-136.
    [97]董钧祥,李光祥,郑毅.实用地理信息系统教程[M].北京:中国科学技术出版社,2007.
    [98]刘耀林.地理信息系统[M].北京:中国农业出版社, 2004.
    [99]程雄,王红.GIS软件应用——ARC/INFO软件操作与应用[M].武汉:武汉大学出版社, 2004.
    [100]Laxton L, Becken K.The design and implementation of A spatial data base for the production of geological maps[J].Computers &Geosciences,1996, 22(7): 723-733.
    [101]李连营,李清泉,李汉武等.基于Map X的GIS应用开发[M].武昌:武汉大学出版社,2003.
    [102]王远志,葛小三,薛华柱.组件式GIS简介[J].地理空间信息,2003,1(4):45-46.
    [103]EMMANUEL John M. CARRANZA. Weights of Evidence Modeling of Mineral Potential: A Case Study Using Small Number of Prospects, Abra, Philippines[J]. Natural Resources Research. 2004,13(3):173-187.
    [104]王磊,周云轩.21世纪GIS发展趋势及误区分析[J].计算机工程与应用, 2002,38(14):54-57.
    [105]赵永军,傅晓宁,杨雯雯.地理信息系统在地质领域中的应用[J].西南石油大学学报(自然科学版),2008,30(3):68-71.
    [106]肖克炎,张晓华,王四龙等.矿产资源GIS评价系统[M].北京:地质出版社,2000.
    [107]Noy N F,Musen M A.Ontology Versioning as an Element of an Ontology- Management Framework[J].Intelligent Systems,2004,19(7-8):6-13.
    [108]地矿部河北地质矿产勘查开发局.河北地勘局多元地学信息系统研制项目综合报告[R].河北,1999.
    [109]辽宁省国土资源厅.辽宁省矿产资源信息系统[R].辽宁,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700