用户名: 密码: 验证码:
用于保偏光纤特性表征的白光干涉理论及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论和仪器系统两个方面研究了利用白光时域和频域干涉法来表征保偏光纤的保偏和色散特性,包括偏振模耦合、偏振消光比、拍长和模间色度色散差的测量。同时,基于该仪器进行了白光干涉纳米级位移传感和材料厚度的测量,实现了仪器的拓展应用。
     在课题组原有对保偏光纤偏振耦合测试仪的开发基础上,在理论上建立起了保偏光纤模间白光时域和频域干涉模型;基于几何光学原理建立了保偏光纤偏振耦合测试仪的仪器误差模型,定量分析了仪器光学系统的最优化装配角度和结构,并采用了数值色散补偿,实现了仪器对1.2km保偏光纤偏振耦合的高精度检测,为高精度光纤陀螺中光偏振的检测和控制提供了一个非常有用的工具。
     基于保偏光纤偏振耦合的特点提出了一种新的保偏光纤偏振消光比的测量方法,测量灵敏度达-55dB。基于频域干涉模型提出了一种新的保偏光纤模间色度色散差的测量方法,该方法测量时间极短(小于5s),信噪比高(大于80dB)。利用力致耦合频域干涉测量了保偏光纤的拍长。研究了光谱干涉位相奇异点处的光谱异动,并用该方法实现了纳米级位移传感。将该仪器开发成了一台能同时测量保偏光纤偏振耦合、拍长、偏振消光比、模间色度色散差和纳米级位移的多功能测试仪。
     工作中的主要创新点
     1.详细分析了白光干涉法保偏光纤偏振耦合测试仪的仪器误差。通过定量分析仪器光学系统装配角度和算法优化,使该测试仪能对1.2km保偏光纤偏振耦合进行测量,是目前有文献报道的国内利用白光干涉法能测量的光纤长度最长的仪器。利用偏振耦合原理提出了一种新的保偏光纤偏振消光比的测量方法,测量灵敏度达-55dB。
     2.在保偏光纤偏振耦合测试中,提出了一种耦合强度数值色散补偿的方法。该色散补偿算法具有很高的准确性,尤其对短光纤,绝对偏差小于0.63dB。
     3.建立了保偏光纤模间白光频域干涉的理论模型,揭示了光谱干涉条纹在位相奇异点处与光源中心波长、光源谱宽、两干涉光束间光程差的关系。提出了一种白光频域干涉保偏光纤模间色度色散差的测量方法,能为保偏光纤偏振耦合测量和基于保偏光纤模间干涉原理的光纤传感器提供数值色散补偿的准确数据。
White-light (WL) temporal-domain and spectral-domain interferometry methods have been used to measure the polarization holding and dispersion parameters of polarization-maintaining fibers (PMFs) using theory analysis and instrument fabrication. Those parameters are polarization mode coupling, polarization excitation ratio, beat length and chromatic dispersion difference of the two polarization modes of the PMFs. In addition, nano-displacement and thickness of transparent material employ white-light interferometric (WLI) technique have been measured also, which enlarges the application of this instrument.
     This dissertation’s research is based on the development of polarization mode coupling measurement instrument that fabricated by our research team. WL temporal-domain and spectral-domain intermodal interference modal have been analyzed in theory. The instrument error modal of the polarization mode coupling measurement instrument have been analyzed based on the priciple of geometrical optics. By analyzing the optimum mount angle of the optical mounted and adaptting the dispersion compensate algorithm, the instrument can test fiber with longer than 1.2km length. This instrument can provided a useful tool to measure and control the polarization problem in high sensitivity optical fiber gyro.
     A new polarization excitation ratio in PMFs measurement method was proposed based on the polarization mode coupling in PMFs, and the measurement sensitivity as high as -55dB. A spectral WLI technique to measure the chromatic dispersion difference of the two polarization eigenmodes in polarization-maintaining fibers (PMFs) is presented. The measurement time of the method is as fast as five seconds and the signal-to-noise ration can be achieved at least 80dB. A sepctral-domain interference beat length measurement method was also presented based on polarization mode coupling. Spectral anomalies at the spectral switch position have been analyzed by spectral-domain interference theory. Nano-displacement sensing was achieved in this instrument according to the spectral anomalies at the switch position. In all, this instrument can measure polarization mode coupling, beat length, polarization excitation ratio, intermodal chromatic dispersion difference in PMFs and nano-displacement.
     1 The instrument error modal of the polarization mode coupling measurement instrument have been analyzed. The instrument can can test fiber with 1.2km long after analyzing the optimum mount angle of the optical mounted and adaptting the dispersion compensate algorithm. The measureable fiber length of this instrument is the longgest that domestic research teams can achieved. A new polarization excitation ratio in PMFs measurement method was proposed. The excitation ratio can be determined by calculate the sum of all polarization modes coupling point’s intensity and the measurement sensitivity as high as -55dB.
     2 A numerical dispersion compensation algorithm was presented to calculate the coupling strength for this instrument. The experimental results show that the algorithm has a high accuracy, and the absolute deviation is less than 0.63dB for short fibers.
     3 A theory modal of PMFs intermodal spectral-domain interference have been established. The effect of light source characteristics such as central wavelength and spectral bandwidth, and the optical path difference between the two beams on the spectral interference fringe shifts at the optical phase singularity point. Based on this theory modal, a new spectral-domain intermodal chromatic dispersion difference measurement method have been proposed. The results obtained by this method can provide usefull data for numerical dispersion compensation in polarization mode coupling measurement and polarization-maintaining fibers sensors based on intermodal interference.
引文
[1] Delisle C., Cielo P., Application de la modulation spectrale a la transmission de l’information, Can J Phys, 1975, 53: 1047~1053
    [2]马科思·波恩,埃米尓·沃耳夫,光学原理(第七版,杨葭荪译),北京:电子工业出版社,2009,459~523
    [3] Giovanini H R, Teddon D, Juard S J, et al. Detection scheme for white-light interferometric sensors, Opt. Lett., 1993, 18(23): 2074~2076
    [4] G Beheim, K Fritsch, Fiber-linked interferometric pressure sensor, Rev. Sci. Instrum., 1987, 58(9): 1655~1659
    [5] Grattan K T V, Meggitt B T, Optical fibre sensor technology, London: Chapman&Hall, 1995, 269~310
    [6] Yun Jiang Rao, David A Jackson, Recent progress in fibre optic low-coherence interferometry, Meas. Sci. Technol., 1996, 7: 981~999
    [7] Lefevre H C, White light interferometry in optical fibre sensors Proc. 7th Int. Conf. on Optical Fibre Sensors Sydney, 1990, 345~351
    [8] D. N. Wang, Y. N. Ning, K. T. V. Grattan, et al., Three-wavelength combination source for white-light interferometry, IEEE Photonics Technol. Lett., 1993, 5(11): 1350~1352
    [9] Y J Rao, D A Jackson, Improved synthesised source for white light interferometry, Electronics Lett., 1994, 30(17): 1440~1441
    [10] D. N. Wang, Y. N. Ning, K. T. V. Grattan, et al.,Characteristics of synthesized light sources for white light interferometric systems, Opt. Lett., 1993, 18(22):1884~1886
    [11] Qi Wang, Y N Ning, K T V Grattan, et al., Enhancement of the relative visibility of the central fringe in the output of a white light interferometric system with a synthetic source, Optics & Laser Technology; 1997, 29(8): 489~494
    [12] L Yuan, A simple way for improving the identification of the central fringe in a fiber-optic white-light interferometer, Optics & Laser Technology, 1997, 29(7): 365~369
    [13] D N Wang, Y N Ning, K T V Grattan, et al., Optimized multiwavelength combination sources for interferometric use, Appl. Opt., 1994, 33(31): 7326~7333
    [14] Raymond H Marshall, Ya Nong Ning, Xiangqian Jiang, A Novel Electronically Scanned White-Light Interferometer Using a Mach-Zehnder Approach, J. of Lightwave Technol., 1996, 14(3): 397~402
    [15] Erling Kolltveit, Kjell Blotekjaer, Acoustically scanned delay for white-light interferometry, IEEE 8th Optical fiber sensors conference, New York, 1991, P29:189~192
    [16] S Chen, A W Falmer, K T V Grattan, Study of electronically-scanned optical-fiber white-light Fizeau interferometer, Electronics Lett., 1991, 27(12): 1032~1034
    [17] D. N. Wang, Y. N. Ning, A. W. Palmer, et al., An optical scanning technique in a white light interferometric system, IEEE Photonics Technol. Lett., 1994, 6(7): 855~857
    [18] S. Chen, B. T. Meggitt, A. J. Rogers, Electronically-scanned white light interferometry with enhanced dynamic range, Electronics Lett., 1990, 26(20): 1663~1665
    [19] S. Chen, A. W. Palmer, K. T. V. Grattan, et al., Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry, Appl. Opt., 1992, 31(28): 6003~6010
    [20] S. Chen, A. J. Rogers, B. T. Meggitt, Electronically scanned optical-fiber Young’s white-light interferometer, Opt. Lett., 1991, 16(10): 781~783
    [21] Wojtek J. Bock, Waclaw Urbanczyk, Marie Fontaine, Characterization of highly birefringent optical fibers using interferometric techniques, IEEE Trans. Instrum. Meas., 1997, 46(4): 903~907
    [22] V. Nirmal Kumar, D. N arayana Rao, Two-beam interference experiments in the frequency-domain to measure the complex degree of spectral coherence, J Mod. Opt., 2001, 48(9): 1455~1465
    [23] U. Schnell, E. Zimmermann, R. Dandliker, Absolute distance measurement with synchronously sampled white-light channeled spectrum interferometry, Pure Appl. Opt., 1995, 4: 643~651
    [24] D. N. Wang, Y. N. Ning, A. W. Palmer, An alternative to white light interferometric sensing, J. Lightwave technol., 1995, 13(5): 961~966
    [25] Somervell A R D, Cheung D C L, Barnes T H, A heterodyne interferometer operating in white light, Conference on Lasers and Electro-Optics Europe, 2003: 506
    [26] D. A. Jackson, A. D. Kersey, M. Corke, et al., Pseudoheterodyne detection scheme for optical interferometers, Electronics. Lett., 1982, 18(25): 1081~1083
    [27] Michael Giacomelli, Yizheng Zhu, John Lee and Adam Wax. Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering, Opt. Express. 2010, 18(14): 14616~14626
    [28] Varghese B, Rajan V, Van Leeuwen TG, et al. Measurement of particle flux in a static matrix with suppressed influence of optical properties, using low coherence interferometry,Opt. Express, 2010, 18(3): 2849~2857
    [29] A.V. Khomenko, J. Tapia-Mercado, M.A. Garcia-Zarate, Fiber optic sensing of relative humidity using a twin low coherence interferometer, Rev. Mexicana Fisica, 2010, 56(3): 208~210
    [30] Muhammad K. Al-Qaisi, Hui Wang, Taner Akkin, Measurement of Faraday rotation
    using phase-sensitive low-coherence interferometry, Appl. Opt., 2010, 48(30): 5829~5833
    [31] S.Suja Helen, M.P.Kothiyal, R.S.Sirohi, Analysis of Spectrally Resolved White Light Interferograms: use of a Phase Shifting Technique, Opt. Eng., 2001, 40(7): 1329~1333
    [32] Jiri Lunacek, Petr Hlubina, Milena Lunackova, Simple method for determination of the thickness of a nonabsorbing thin film using spectral reflectance measurement, Appl. Opt., 2009, 48(5): 985~989
    [33] Verrier, C. Veillas, T. Lepine, Low coherence interferometry for central thickness measurement of rigid and soft contact lenses, Opt. Express, 2009, 17(11): 9157~9170
    [34] Seung Hwan Kim, Seoung Hun Lee, Jae In Lim, et al., Absolute refractive index measurement method over a broad wavelength region based on white-light interferometry, Appl. Opt., 2010, 49(5): 910~914
    [35] Dominic F. Murphy, Donal A. Flavin. Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry, Appl. Opt., 2000, 39(25): 4607~4615
    [36] Seokhan Kim, Jihoon Na, Myoung Jin Kim, et al., Simulataneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics, Opt. Express, 2008, 16(8): 5516~5526
    [37] J C Santos, K Hidaka, A L CBrtes, et al., Improved Optical Sensor for High Voltage Measurement Using White Light Interferometry, IEEE Proceedings of SBMO/IEEE MTT-S, 2003: 615~619
    [38] N. Cyr, Polarization-mode dispersion measurement: Generalization of the interferometric method to any coupling regime, J. Lightwave Technol., 2004, 22(3): 794~805
    [39] Wojtek J. Bock, Andrzej W. Domariski, Tomasz R. Woliriski, Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow tie fibers, Appl. Opt., 1990, 29(24): 3484~3488
    [40] B. T. Meggitt, C. J. Hall, K. Weir, An all fibre white light interferometric strain measurement system, Sens. Actuators, 2000, 79(1): 1~7
    [41] R. Cortes, A. V. Khomenko, A. N. Starodumov, et al., Interferometric fiber-optic temperature sensor with spiral polarization couplers, Opt. Commun., 1998, 154: 268~272
    [42] Sheng Liang, Chunxi Zhang, Wentai Lin, et al., Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring, Opt. Lett., 2009, 34(12): 1858~1860
    [43] Matjaz Linec, Denis Donlagic, Quasi-distributed long-gauge fiber optic sensor system, Opt. Express, 2009, 17(14): 11515~11529
    [44] Libo Yuan, Jun Yang, Two-loop-based low-coherence multiplexing fiber-optic sensor network with a Michelson optical path demodulator, Opt. Lett., 2005, 30(6): 601~603
    [45] Delisle C, Gielo P, Multiplexing in optical communications by interferometry with a large path-length difference in white light, Can. J. Phys, 1976, 54: 2322~2331
    [46] Bergh R, Lefevre H, Shaw H, An overview of fiber-optic gyroscopes, J. of Lightwave Technol., 1984, 2(2): 91~107
    [47] Nishihara H, Recent advancement on optical integrated circuits, IEEE Region 10 Conference on Computer and Communication Systems, 1990, 99~103
    [48] Juichi Noda, Katsunari Okamoto, Yutaka Sasaki, Polarization-maintaining fibers and their applications, J. of Lightwave Technol., 1986, 4(8): 1071~1089
    [49] Scott C. Rashleigh, Origins and control of polarization effects in single-mode fibers, J. Lightwave Technol., 1983, 1(2): 312~331
    [50] William K Burns, Chin-Lin Chen, R P Moeller, Fiber-optic Gyroscopes with Broad-Band Sources, J. Lightwave Technol., 1983, 1(1): 98~105
    [51] M. K. Davis, A. Echavarria, D. A. S. Loeber, Polarization extinction ratio impact on spectral stability of Bragg grating stabilized laser diodes, IEEE Photon. Technol. Lett., 2004, 16(9): 2003~2005
    [52] Frederick M. Sears, Polarization-maintenance limits in polarization-maintaining fibers and measurements, J. Lightwave Technol., 1990, 8(5): 684~690
    [53] Marcus W Shute, Charles S Brown, A study of the polarization propertyes of a rectangular polarization-maintaining fiber, J. of lightwave technol., 1989, 7(12): 2013~2017
    [54] Siao-Shan Jyu, Shiou-Fong Liu, Wei-Wei Hsiang, et al., Fiber dispersion measurement with a swept-wavelength pulse light source, IEEE Photonics Technol. Lett., 2010, 22(9): 598~600
    [55] J.Y.Lee, D.Y.Kim, Spectrum-sliced Fourier-domain low-coherence interferometry for measuring the chromatic dispersion of an optical fiber, Appl. Opt., 2007, 46(29): 7289~7296
    [56] N. Shibata, A. Nakazono, Y. Inoue, Interference between two orthogonally polarized modes traversing a highly birefringent air-silica microstructure fiber, J. Lightwave Technol., 2005, 23(3): 1244~1252
    [57] Xu T H, Jing W C, Zhang H X, et al., Influence of birefringence dispersion on a distributed stress sensor using birefringence optical fiber, Opt. Fiber Technol., 2009, 1: 83~89
    [58] Nori Shibata; Makoto Tsubokawa; Takashi Nakashima, et al., Temporal coherence properties of a dispersively propagating beam in a fiber-optics interferometer, J. Opt. Soc. Am. A, 1987, 4(3): 494~497
    [59] Kun-Hsieh Tsai, Kyung-Suk Kim, T F Morse, General Solutions for Stress-Induced Polarization in Optical Fibers, J. of Lightwave Technol., 1991, 9(1): 7~17
    [60]陈伟,李诗愈,成煜等,保偏光纤技术进展及发展趋势,光通信研究,2003,6:54~57
    [61] Michael J Messerly, James R Onstott, Raymond C Mikkelson, A Broad-Band Single Polarization Optical Fiber, J. of Lightwave Technol., 1991, 9(7): 817~820
    [62] Scott C Rashleigh, Michael J Marrone, Polarization Holding in Ellipitical-Core Birefringent Fibers, IEEE Transactions on Microwave Theory and Techniques, 1982, 30 (10): 1503~1511
    [63] Theis P Hansen, Jes Broeng, Stig E B Libori, et al., Highly Birefringent Index-Guiding Photonic Crystal Fibers, IEEE Photonics Technol. Lett., 2001, 13(6): 588~590
    [64] Suzuki K., High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3Db/km) polarization maintaining photonic crystal fibre, Electronic Lett., 2001, 37(23):1399-1402
    [65]王琳,偏振保持光子晶体光纤及其在光纤陀螺中的应用研究:[博士学位论文],北京;北京交通大学,2009
    [66] Chen Ming-yang, Yu Rong-jin, Zhao An-ping, Polarization properties of rectangular lattice photonic crystal fibers, Opt. Commun., 2004, 241:365-370
    [67]张亚妮,高双折射聚合物光子晶体保偏光纤设计及制备与表征的初步结果:[博士学位论文],陕西;西师范大学,2007
    [68] Kuang L B, Shi Z D, Zhu L., Holey fibers and the research of their birefringence, Laser Journal(激光杂志), 2004, 25(5):5-9.
    [69] P. Kaminow, Polarization in optical fibers, IEEE J. Quantum Electron., 1981, 17(1): 15~22
    [70] Masataka Nakazawa, Nori Shibata, Masamitsu Tokuda, et al., Measurement of Polarization Mode Coupling along Polarization-Maintaining Single-Mode Optical Fibers, J. Opt. Soc. Am. A, 1984, 1(3): 285~292
    [71] I Cokgor, V A Handerek, A J Rogers, Distributed optical-fiber sensor for spatial location of mode coupling by using the optical Kerr effect, Opt. Lett., 1993, 18(9): 705~707
    [72] K Takada, J Noda, K Okamoto, Measurement of Spatial Distribution of Mode Coupling in Birefringent Polarization-Maintaining Fiber with New Detection Scheme, Opt. Lett., 1986, 11(10): 680~682
    [73] Shinji Yamashita, Kazuo Hotate, Distributed pressure sensor with a mode-locked fiber-ring laser, Opt. Lett., 2001, 26(9): 590~592
    [74] Makoto Tsubokawa, Tsunehito Higashi, Yukiyasu Negish, Mode couplings due to external forces distributed along a polarization-maintaining fiber: an evaluation, Appl. Opt., 1988, 27(1): 166~173
    [75] Gang Zheng, Michael Campbell, Peter Wallace, Reflectometric frequency-modulation continuous-wave distributed fiber-optic stresss sensor with forward coupled beams, Appl. Opt., 1996, 35(28): 5722~5726
    [76] Zuyuan He, Kazuo Hotate, Distributed Fiber-Optic Stress-Location Measurement by Arbitrary Shaping of Optical Coherence Function, J. of Lightwave Technol., 2002, 20(9): 1715~1723
    [77] M Shlyagin, A Khomenko, D Tentori, Remote measurement of mode-coupling coefficients in briefringent fiber, Opt. Lett., 1994, 19(12): 913~915
    [78]唐锋,白光干涉法保偏光纤偏振耦合测试及其应用:[博士学位论文],天津;天津大学,2005
    [79] Denis Penninckx, Nicolas Beck, Definition meaning and measurement of the polarization extinction ratio of fiber-based devices, Appl. Opt., 2005 44(36), 7773~7779
    [80] X. Steve Yao, Xiaojun Chen, Tiegen Liu, High accuracy polarization measurements using binary polarization rotators, Opt. Express, 2010, 18(7), 6667~6685
    [81] Makoto Tsubokawa, Tsunehito Higashi, Yutaka Sasaki, Measurement of mode coupling and extinction ratios in polarization-maintaining fibers, J. Lightwave Technol., 1989, 7(1): 45~50
    [82] Kazumasa Takada, Katsunari Okamoto, Yutaka Sasaki, et al., Ultimate limit of polarization cross talk in birefringent polarization-maintaining fibers, J. Opt. Soc. Am. A, 1986, 3(10): 1594~1603
    [83]徐宏杰,秦秉坤,陈淑芬,光纤型偏振器消光比测试方法研究,光学技术,2002,28(5):419~426
    [84]王韩毅,任立勇,张亚妮等,基于波长扫描调制法测量保偏光纤的偏振特性,光电子·激光,2007,18(11):1336~1339
    [85] Zuo Liang, Li Yong Ren, Ya Ni Zhang, et al., Theoretical and experimental study of polarization characteristics of polarization maintaining fiber based on wavelength-sweeping modulation, Microwave and Opt. Tech. Lett., 2010, 52(7): 1466~1469
    [86] Nori Shibata, Masaharu Ohashi, Tomohiro Wakabayashi, et al., Polarization mode coupling and spatial power spectrum of fluctuations along highly birefringent hoely fiber, J. Lightwave Technol., 2009, 27(10): 1269~1278
    [87] Nor Shibata, Akimichi Nakazono, Polarization-mode coupling along a polarization-maintaining holey fiber, IEEE Photonics Technol. Lett., 2006, 18(4): 634~636
    [88] Rogers A J,Polarization Optical Time Domain Reflectometry, Electronics Lett., 1980, 16(13): 489~490
    [89] M. Monerie, P.Lamouler, Birefringence measurement in twisted single-mode fiber,Electron. Lett., 1981, 17(7): 252~253
    [90] V. Sikka, S. Balasubramanian, A. Viswanath, et al., Correlation-based interferometric method of evaluating the beat length, Appl. Opt., 1998, 37(2): 350~351
    [91] Peng Gang Zhang, David Irvine Halliday, Measurement of the beat length in high-birefringent optical fiber by way of magnetooptic modulation, J. Lightwave Technol., 1994, 12(4): 597~602
    [92] Y. Ohtsuka, T. Ando, Y. Imai, et al., Modal birefringence measurement of polarization maintaining single mode fibers without and with stretching by optical heterodyne interferometry, J. Lightwave Technol., 1987, 5(4): 602~607
    [93] S. R. Norman, D. N. Payne, M. J. Adams, Fabrication of single-mode fibers exhibiting extremely low polarization birefringence, Electron. Lett., 1979, 15(11): 309~311
    [94] S. C. Rashleigh, Measurement of fiber birefringence by wavelength scanning: effect of dispersion, Opt. Lett., 1983, 8(6): 336~338
    [95] Jedrzejewski K. P., Martinez F., Minelly J. D., et al., Tapered-beam expander for single-mode optical-fiber gap devices, Electron. Lett., 1986, 22(2): 105~106
    [96] Papp, H. Harms, Polarization optics of index-gradient optical waveguide fibers, Appl. Opt., 1975, 14(10): 2406~2411
    [97] K. Kikuchi, T. Okoshi, Wavelength-sweeping technique for measuring the beat length of linearly birefringent optical fibers, Opt. Lett., 1983, 8(2): 122~123
    [98] Mark E. Froggatt, Dawn K. Gifford, Steven Kreger, et al., Characterization of polarization-Maintaining fiber using high-sensitivity optical-frequency-domain reflectometry, J. Lightwave Technol., 2006, 24(11): 4149~4154
    [99] Feng Tang, Xiang Zhao Wang, Yimo Zhang, et al., Characterization of birefringence dispersion in polarization-maintaining fibers by use of white-light interferometry, Appl. Opt., 2007, 46(19): 4073~4080
    [100] K. Okamoto, T Hosaka, Polarization-dependent chromatic dispersion in birefringent optical fibers, Opt. Lett., 1987, 12(4): 290~292
    [101] D. A. Flavin, R. McBride, J. D. C. Jones, Dispersion of birefringence and differential group delay in polarization-maintaining fiber, Opt. Lett., 2002, 27(12): 1010~1012
    [102] F. Tang, X.-Z. Wang, Y. Zhang, W. Jing, Distributed measurement of birefringence dispersion in polarization-maintaining fibers, Opt. Lett., 2006, 31(23): 3411~3413
    [103] P Hlubina; D Ciprian; M Kadulova, Measurement of chromatic dispersion of polarization modes inoptical fibres using white-light spectral interferometry, Mes Sci. Tech., 2010, 21: 1~7
    [104] Petr Hlubina, White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica, Opt.Commun., 2001, 193: 1~7
    [105] Bjornar Langli, Kjell Blotekjaer, Measurement of the differential dispersion coefficient in two-mode fibers, J. Lightwave Technol., 2000, 18(12): 2123~2126
    [106] P Hlubina, D Ciprian, M Kadulova, Wide spectral range measurement of modal birefringence in polarization-maintaining fibres, Meas. Sci. Technol., 2009, 20: 025301
    [107] P. Hlubina, M. Szpulak, D. Ciprian, Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry, Opt. Express, 2007, 15(18): 11073~11081
    [108]张红霞,张以谟,井文才等,偏振耦合测试仪中白光干涉包络的提取,光电子·激光,2007,18(4):450~453
    [109]张聪跃,张以谟,井文才等,偏振耦合测试系统中偏振棱镜的设计,光电子技术与信息,2004,17(3):17~20
    [110]骆飞,黄尚廉,高双折射光纤模式耦合空间分布的干涉测量法,光学学报,1993,13(11):1031~1035
    [111]王涛,周柯江,叶炜等,光纤偏振态模式分布的干涉测量方法,光学学报,1997,17(6):737~740
    [112] Wang xuefeng, Wang wei, Scanning interferometer for measurement of polarization cross-coupling in fiber-optic gyroscope, Proc. of SPIE, 2006, 6357: 635744
    [113]周晓军,杜东,龚俊杰,偏振模耦合分布式光纤传感器空间分辨率研究,物理学报,2005,54(5):2106~2110
    [114]黄锐,吕海宝,楚兴春等,FMCW传感测量中的半导体激光器调频特性分析,激光杂志,1998,19(1):22~26
    [115]林惠祖,姚琼,胡永明,全保偏结构的光纤偏振耦合测试系统,中国激光,2010,37(7):1794-1799
    [116]赵素英,王绪峦,张宁伟等,光纤通信中偏振消光比测量方法的研究,红外,2007,28(9):25~28
    [117]胡微微,钱景仁,压力法测量保偏光纤拍长参数的系统分析,中国科学技术大学学报,1996,26(2):250~256
    [118]杨洪远,李莉,蒋大钢等,高精度保偏光纤拍长测试,光学精密工程,2007,15(6):807~811
    [119]米剑,张春熹,李铮等,利用宽谱光源及偏光干涉测量保偏光纤拍长,光电子·激光,2006,17(9):1074~1077
    [120]徐春娇,杨远洪,段玮倩等,基于Sagnac干涉仪的保偏光纤拍长测试技术,北京航空航天大学学报,2010,36(6):753~756
    [121]李海峰,基于白光干涉的保偏光纤偏振耦合检测的研究:[博士学位论文],天津:天津大学,2004
    [122] V. Ramaswamy, W. G. Grench, R. D. Standley, Polarization characteristics ofnoncircular core single-mode fibers, Appl. Opt., 1982, 17(18): 3014~3017
    [123] K. Kitayama, S. Seikai, N. Uchida, et al., Polarization-maintaining single-mode fiber with azimuthally inhomogeneous index profile, Electron. Lett., 1981, 17(12): 419~420
    [124] Henry F. Taylor, Bending effects in optical fibers, J. Lightwave Technol., 1984, 2(5): 617~628
    [125] J. N. Blake, B. Y. Kim, H. E. Engan, et al., Analysis of intermodal coupling in a two-mode fiber with periodic microbends, Opt. Lett., 1987, 12(4): 281~283
    [126] Ueyn L. Block, Michel J. F. Digonnet, Martin M. Fejer, et al., Bending-induced birefringence of optical fiber cladding modes, J. Lightwave Technol., 2006, 24(6): 2336~2339
    [127] M. Monerie, L. Jeunhomme, Polarization mode coupling in long single-mode fibres, Opt. Quantum Electron., 1980, 12(6): 449~461
    [128] W. Eickhoff, Stress-induced single-polarization single-mode fiber, Opt. Lett., 1982, 7(12): 629~631
    [129] K. Okamoto, T. Hosaka, T. Edahiro, Stress analysis of single-polarization fibers, Rev. Electrical Commun., 1983, 31(3): 381~392
    [130] Y. Ejiri, Y. Namihira, K. Mochizuki, Stress difference in elliptically cladded fibers, Electron Lett., 1982, 18(14): 603~604
    [131] N. Shibata, M, Tateda, S. Seikai, et al., Birefringence and polarization-mode dispersion caused by thermal stress in single-mode fibers with various core ellipticities, IEEE J. Quantum Electron., 1983, 19(8): 1223~1227
    [132] M. P. Varnham, D. N. Payne, A. J. Barlow, et al., Analytical solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers, J. Lightwave Technol., 1983, 1(2): 332~339
    [133] S. C. Rashleigh, M. J. Marrone, Temperature dependence of stress birefringence in elliptically clad fiber, Opt. Lett., 1983, 8(2): 127~129
    [134] Hermann A Haus, Weiping Huang, Coupled-mode theory, Proceedings of the IEEE, 1991, 79(10): 1505~1518
    [135] Jun-Ichi Sakai, Tatsuya Kimura, Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations, IEEE J. Quantum Electron., 1981, 17(6): 1041~1051
    [136] Amnon Yariv, Coupled-mode theory for guided-wave optics, IEEE J. Quantum Electron., 1973, 9(9): 919~933
    [137] Jun-Ichi Sakai, Tatsuya Kimura, Polarization behavior in multiply perturbed single-mode fibers, IEEE J. Quantum Electron., 1982, 18(1): 59~65
    [138] K. Okamoto, Yutaka Sataka, Noriyoshi Shibata, Mode coupling effects instress-applied single polarization fibers, IEEE J. Quantum Electron., 1982, 18(11): 1890~1899
    [139] Dietrich Marcuse, Theory of dielectric optical waveguides, New York and London: Academic Press, 1974
    [140] Tian Feng, Wu Yizun, Ye Peida, Random coupling theory of single-mode optical fibers, J. Lightwave Technol., 1990, 8(8): 1235~1242
    [141] Makoto Tsubokawa, Tsunehito Higashi, Yukiyasu Negish, Mode couplings due to external forces distributed along a polarization-maintaining fiber: an evaluation, Appl. Opt., 1988, 27(1): 166~173
    [142] Jian Zhang, Vincent A Handerek, Ilkan Cokgor, et al., Distributed sensing of polarization mode coupling in high birefringence optical fibers using intense arbitrarily polarized coherent light, J. Lightwave Technol., 1997, 15(5): 794~802
    [143] T H Chua, Chin-Lin Chen, Fiber polarimetric stress sensors, Appl. Opt., 1989, 28 (15): 3158~3165
    [144] Rongfeng Guan, Fulong Zhu, Zhiyin Gan, et al., Stress birefringence analysis of polarization maintaining optical fibers, Opt. Fiber Technol., 2005, 11: 240~254
    [145] Rongfeng Guan, Xueli Wang, Xuefang Wang, et al., Finite element analysis on stress-induced birefringence of polarization-maintaining optical fiber, Chinese Opt. Lett., 2005, 3(1): 42~44
    [146] K. Okamoto, T. Hosaka, T. Edahiro, Stress analysis of optical fibers by a finite element, IEEE J. Quantum Electron., 1982, 17(10): 2123~2129
    [147] W. Parker Alford, Albert Gold, Laboratory measurement of the velocity of light, Am. J. Phys., 1958, 26(7): 481
    [148] E. Wolf, Non-cosmological redshifts of spectral lines, Nature, 326, 363~365
    [149] E. Wolf, Red shifts and blue shifts of spectral lines emitted by two correlated sources, Phys. Rev. Lett., 1987, 58(25): 2646~2648
    [150] Mark F. Bocko, David H. Duglass,Robert S. Knox, Observation of frequency shifts of spectral lines due to source correlations, Phys. Rev. Lett., 1987, 58(25): 2649~2651
    [151] E. Wolf, New theory of partial coherence in the space-frequency domain. Part I: Spectra and cross spectra of steady state sources, J. Opt. Soc. Am., 1982, 72(3): 343~351
    [152] D. F. V. James, E. Wolf, Some new aspects of Young’s interference experiment, Phys. Lett. A, 1991, 157(1), 6~10
    [153] M. Santarsiero, F. Gori, Spectral changes in a Young’s interference pattern, Phys. Lett. A, 1992, 167(2), 123~128
    [154] X. Y. Zou, T. P. Grayson, L. Mandel, Observation of quantum interference effects in the frequency domain, Phys. Rev. Lett., 1992, 69(21), 3041~3044
    [155] G. S. Agarwal, Interference in complimentary spaces, Found. Phys., 1995, 25, 219
    [156] E. Wolf, Daniel F V Janes, Correlation-induced spectral changes, Rep. Prog. Phys., 1996, 59: 771~818
    [157] V. Nirmal Kumar, D. Narayana Rao, Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials, J. Opt. Soc. Am. B, 1995, 12(9): 1559~1563
    [158] C. Sainz, J. Calatroni, G. Tribillon, Refractometry of liquid samples with spectrally resolved white-light interferometry, Meas. Sci. Technol., 1990, 1: 356~361
    [159] C. Sainz, P. Jourdain, R. Escalona, et al., Real time interferometric measurements of dispersion curves, Opt. Commun., 1994, 111: 632~641
    [160] D. N. Rao, V. N. Kumar, Experimental demonstration of spectral modification in a Mach–Zehnder interferometer, J. Mod. Opt., 1994 41(9): 1757~1763
    [161] D. F. V. James, E. Wolf, Determination of field correlations from spectral measurements with application to synthetic aperture imaging, Radio Sci., 1991, 26(5): 1239~1243
    [162] Matteo Galli, Franco Marabelli, Giorgio Guizzetti, Direct measurement of refractive-index dispersion of transparent media by white-light inteferometry, Appl. Opt., 2003, 42(19): 3910~3914
    [163] Ghim Young-Sik, Kim Seung-Woo, Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry, Opt. Express, 2006, 14(24): 11885~11891
    [164] Tae-Jung Ahn, Yongmin Jung, Kyunghwan Oh, et al,, Optical frequency-domain chromatic dispersion measurement method for higherorder modes in an optical fiber, Opt. Express, 2005, 13(25): 10040~10048
    [165] R. Chlebus, P. Hlubina, D. Ciprian, Spectral-domain tandem interferometry to measure the group dispersion of optical samples, Opt. and Lasers in Eng., 2009, 47: 173~179
    [166] Petr Hlubina, Dalibor Ciprian, Absolute phase birefringence dispersion in polarization-maintaining fiber or birefringent crystal retrieved from a channeled spectrum, Opt. Lett., 2010, 35(10): 1566~1568
    [167] Damiel X. Hammer, Ashley J. Welch, Spectrally resolved white-light interferometry for measurement of ocular dispersion, J. Opt. Soc. Am. A, 1999, 16(9): 2092~2012
    [168] Robert C. Youngquist, Stephen M. Simmons, Andrea M. Belanger, Spectrometer wavelength calibration using spectrally resolved white-ligth interferometry, Opt. Lett., 2010, 35(13): 2257~2259
    [169] V. Nirmal Kumar, D. Narayana Rao, Interferometric measurement of themodulation transfer function of a spectrometer by using spectral modulations, Appl. Opt., 1999, 38(4): 660~665
    [170] Kris M. Rosfjord, Ricardo A. Villalaz, Thomas K. Gaylord, Constant-bandwidth scanning of the Czerny-Turner monochromator, Appl. Opt., 2000, 39(4): 568~572
    [171] Boulet C, Hathaway M, Jackson DA, Fiber-optic-based absolute displacement sensors at 1500nm by means of a variant of channelled spectrum signal recovery, Opt. Lett., 2004, 29(14): 1602~1604
    [172] Lazo M.Manojlovic, A simple white-light fiber-optic interferometric sensing system for absolute position measurement, Optics and Lasers in Eng., 2010, 48: 486~490
    [173] Maruthi M. Brundavanam, Nirmal K. Viswanathan, Narayana Rao Desai1, Spectral anomalies due to temporal correlation in a white-light interferometer, Opt. Lett., 2007, 32(16): 2279~2281
    [174] L. Mandel, E. Wolf, Optical coherence and Quantum Optics, Cambridge: Cambridge University Press, 1995
    [175] Hlubina P, The mutual interference of modes of a few-mode fibre waveguide analysed in the frequency domain, J. Mod. Opt., 1995, 42(12): 2385~2399
    [176] Petr Hlubina, Dispersive white-light spectral two-beam interference under general measurement conditions, Optik, 2003, 114(4): 185~190
    [177] Wencai Jing, Yimo Zhang, Ge Zhou, et al., Analysis of the influence of opto-electro-mechanical devices on the measurement accuracy of a distributed polarization detection system, Mea. Sci. Tech., 2003, 14: 294~300
    [178]高晓峰,崔燕,相里斌,转镜式光谱仪端反射镜误差容限分析,光子学报,2006,35(4):614~617
    [179] H. H. Zwick, G. G. Shepherd, Defocusing a wide-angle Michelson interferometer, Appl. Opt., 1971, 10(11): 2569~2571
    [180] Charles S. Williams, Mirror misalignment in Fourier spectroscopy using a michelson interferometer with circular aperture, Appl. Opt., 1966, 5(6): 1084~1085
    [181] Hongxia Zhang, Tianhua Xu, Dagong Jia et al., Effects of angular misalignment in interferometric detection of distributed polarization coupling, Meas. Sci. Technol., 2009, 20: 1~5
    [182] Jerome Genest, Pierre Tremblay, Instrument line shape of Fourier transform spectrometers: analytic solutions for nonuniformly illuminated off-axis detectors, Appl. Opt., 1999, 38(25): 5438~5446
    [183] Louis W. Kunz, David Goorvitch, Combined effects of converging beam of light and mirror misalignment in Michelson interferometry, Appl. Opt., 1974, 13(5): 1077~1079
    [184] R. Beer, D. Marjaniemi, Wavefronts and Construction Tolerances for a Cat's-Eye Retroreflector, Appl. Opt., 1966, 5(7): 1191~1197
    [185] D. E. Jennings, R. Hubbard, J. W. Brault, Double passing the Kitt Peak 1-m Fourier transform spectrometer, Appl. Opt., 1985, 24(21): 3438~3440
    [186] G. Durry, G. Guelachvili, High-information time-resolved step-scan Fourier interferometer, Appl. Opt., 1995, 34(12): 1971~1981
    [187] R. L. Richardson, P. R. Griffiths, Design and performance considerations of cat's-eye retroreflectrors for use in open-path Fourier-transform-infrared spectrometry, Appl. Opt., 2002, 41(30): 6332~6340
    [188] R. L. White, Performance of an FT-IR with a Cube-Corner Interferometer, Appl. Spectrosc., 1985, 39(2): 320~326
    [189] J. Kauppinen, V. M. Horneman, Large aperture cube corner interferometer with a resolution of 0.001 cm's, Appl. Opt., 1991, 30(18): 2575~2578
    [190] J. Kauppinen, P. Saarinen, Line-shape distortions in misaligned cube corner interferometers, Appl. Opt., 1992, 31(1): 69~74
    [191] P. Haschberger, V. Tank, Optimization of a Michelson interferometer with a rotating retroreflector in optical design, spectral resolution, and optical throughput, J. Opt. Soc. Am. A., 1993, 10(11): 2338~2345
    [192] Qinghua Yang, Renkui Zhou, Baochang Zhao, Principle of the moving-mirror-pair interferometer and the tilt tolerance of the double moving mirror, Appl. Opt., 2008, 47(13): 2486~2493
    [193] Qinghua Yang, Baochang Zhao, Renkui Zhou, Novel moving cat's-eye-pair interferometer, J. Mod Opt., 2009, 56(11): 1283~1287,
    [194] Qinghua Yang, Renkui Zhou, Baochang Zhao, Novel moving-corner-cube-pair interferometer, J. A: Pure Appl. Opt., 2009, 11(1), 015505
    [195] Pavel Pavlicek, Jan Soubusta, Measurement of the influence of dispersion on white-light interferometry, Appl. Opt., 2004, 43(4): 766~770
    [196] Feng Tang, Xiang-zhao Wang, Yimo Zhang, Influence of birefringence dispersion on distributed measurement of polarization coupling in birefringent fibers, Opt. Eng. 2007, 46(7): 075006
    [197]陈信伟,张红霞,贾大功等,分布式保偏光纤偏振耦合应力传感系统的实现,中国激光,2010,37(6):1467~1472
    [198]满小明,张以谟,周革等,光纤寄生偏振耦合测试仪偏振态的调整,光电子·激光,2002,13(10):1022~1025
    [199] Wencai Jing, Yimo Zhang, Ge Zhou et al., Rotation angle optimization of the polarization eigenmodes for detection of weak mode coupling in birefringent waveguides, Opt. Express, 2002, 10(18): 972~977
    [200]陈信伟,张红霞,贾大功等,偏振模耦合分布式光纤传感器的数值色散补偿,光学学报,2010,30(11):3159~3163
    [201] Kazumasa Takada, Noise in Optical Low-coherence Reflectometry, IEEE J. Quantum Electron., 1998, 34(7): 1098~1108
    [202] Xiaolu Li, Jae-Ho Han, Xuan Liu, et al., Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography, Appl. Opt., 2008, 47(27): 4833~4840
    [203] Toshihiko Yoshino, Mohammad R. Ali, Bikash C. Sarker, Performance analysis of low-coherence interferometry, taking into consideration optical beat noise, J. Opt. Soc. Am. B, 2005, 22(2): 328~335
    [204] Robert C. Gauthier, Analysis of a birefringent sensor’s dependence on the blocking properties of linear polarizers and the input laser beam’s polarization state, Appl. Opt., 1996, 35(31): 6271~6277
    [205] M. Imai, Y. Terasawa, Y. Ohtsuka, Polarization fluctuation characteristics of a highly birefringent fiber system under forced vibration, J. Lightwave Technol., 1988, 6(5): 720~727
    [206] R. C. Gauthier, Polarization-maintaining distributed fiber-optic sensor: software elimination of second-order (ghost) coupling points, Appl. Opt., 1995, 34(10): 1744~1748
    [207] S. Chen, I. P. Giles, M. Fahadiroushan, Quasi-distributed pressure sensor using intensity-type optical coherence domain polarimetry, Opt. lett., 1991, 16(5): 342~344
    [208] Kazumasa Takada, Kazunori Chida, Juichi Noda, Precise method for angular alignment of birefringent fibers based on an interferometric technique with a broadband source, Appl. Opt., 1987, 26(15): 2979~2987
    [209]唐锋,井文才,张以谟等,白光干涉法偏振耦合测试及数据采样分析,光电工程,2003,30(5):28~30
    [210]井文才,李强,任莉等,小波变换在白光干涉数据处理中的应用,2002,光电子·激光,2005,16(2):195~198
    [211] H. Kantz, T. Schreiber, Nonlinear time series analysis, Cambridge: Cambridge Univ. Press, 1997
    [212] N. E. Huang, Z. Shen, S. R. Long, The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proceedings of the Royal Society of London A, 1998, 454: 903~995
    [213] N. E. Huang, M. C. Wu, S. R. Long, A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, Mathematical, Physical&Engineering Sciences Proceedings, 2001, 459: 2317~2345
    [214] N. E. Huang, A new method for nonlinear and nonstationary time series analysis: empirical mode decomposition and Hilbert spectral analysis, Proc. SPIE Int. Soc. Opt.Eng, 2000, 4056~4069
    [215] Xiang Zhou, Hong Zhao, Tao Jiang, Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm, Opt. Lett., 2009, 34(13): 2033~2035
    [216] E. A. Swanson, D. Huang, M. R. Hee, et al., High-speed optical coherence domain reflectometry, Opt. Lett. 1992, 17(2): 151~153
    [217] Ourmazd, Malcolm P. Varnham, R. D. Birch, et al., Thermal properties of highly birefringent optical fibers and performs, Appl. Opt., 1983, 22(15): 2374~2379
    [218] Daniel Schlapfer, Michael Schaepman, Modeling the noise equivalent radiance requirements of imaging spectrometers based on scientific applications, Appl. Opt., 2002, 41(27): 5691~5701
    [219] Roland Harig, Passive remote sensing of pollutant clouds by FTIR spectrometry: Signal-to-noise ratio as a function of spectral resolution, Appl. Opt., 2004, 43(23): 4603~4610
    [220] T. Fukano, I. Yamaguchi, Separation of measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope, Appl. Opt., 1999, 38(19):4065~4073
    [221] T. Fukano, I. Yamaguchi, Simultaneous measurement of thickness and refractive indices of multiple layers by a low-coherence confocal interference microscope, Opt. Lett., 1996, 21(23): 1942~1944
    [222] B. L. Danielson, C. D. Whittenberg, Guided-wave reflectometry with micrometer resolution, Appl. Opt., 1987, 26(14): 2836~2842
    [223] K. Takada, I. Yokohama, K. Cid, et al., New measurement system for fault location in optical waveguide devices based on an interferometric technique, Appl. Opt., 1987, 26(9): 1603~1606
    [224] W. V. Sorin, D. F. Gray, Simultaneous thickness and group index measurement using optical lowcoherence reflectometry, IEEE Photon. Technol. Lett., 1992, 4(1): 105~107
    [225] R. C. Youngquist, S. Carr, D. E. N. Davies, Optical coherence domain reflectometry: a new optical evaluation technique, Opt. Lett., 1987, 12(3): 158~160
    [226] Gorachand Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, Opt. commun., 1999, 163: 95~102
    [227] Andreas Kohlhaas, Carsten Fromchen, Ernst Brinkmeyer, High-resolution OCDR for testing integrated-optical waveguides: dispersion-corrupted experimental data corrected by a numerical algorithm, J. Lightwave Technol., 1991, 9(11): 1493~1502
    [228] T. M. Kardas, C. Radzewicz, Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry, Opt. Commun., 2009, 282:4361~4365
    [229] Michael A. Galle, Waleed Mohammed, Li Qian, et al., Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber, Opt. Express, 2007, 15(25): 16896~16908
    [230]张学敏,基于白光迈克尓逊干涉法的色度色散实验研究:[硕士学位论文],天津:天津大学,2009
    [231] L. E. Helseth, Spectral density of polychromatic electromagnetic waves, Phy. Rev. E, 2006, 73(2): 026602
    [232] J. Pu, H. Zhang, S. Nemoto, Spectral shifts and spectral switches of partially coherent light passing through an aperture, Opt. Commun., 1999, 162: 57~63
    [233] J. Pu, S. Nemoto, Spectral shifts and switches in diffraction of partially coherent light by a circular aperture, IEEE J. Quantum Electron., 2000, 36(12): 1407~1411
    [234] J. T. Foley, E. Wolf, Phenomenon of spectral switches as a new effect in singular optics with polychromatic light, J. Opt. Soc. Am. A, 2002, 19(12): 2510~2516
    [235] G. Gbur, T. D. Visser, E. Wolf, Anomalous behavior of spectra near phase singularities of focused waves, Phys. Rev. Lett., 2002, 88(1): 013901
    [236] G. Gbur, T. D. Visser, E. Wolf, Singular behavior of the spectrum in the neighborhood of focus, J. Opt. Soc. Am. A, 2002, 19(8): 1694~1700
    [237] G. Popescu, A. Dogariu, Spectral anomalies at wavefront dislocations, Phys. Rev. Lett., 2002, 88(18): 183902
    [238] J. F. Nye, M. V. Berry, Dislocation in wavetrains, Proc. R. Soc. London Ser. A, 1974, 336: 165~190
    [239] M. V. Berry, Expolring the colors of dark light, New J. Phys, 2002, 4: 74
    [240] M. V. Berry, Colored phase singularities, New J. Phys. 2002, 4: 66
    [241] M. S. Soskin, M. V. Vasnetsov, Singular optics, Prog. in Optics, ed. E. Wolf(Amsterdam: Elsevier), 2001, 42: 219~276
    [242] Jixiong Pu, Chao Cai, Spectral anomalies in Young’s double-silt interference experiment, Opt. Express, 2004, 12(21): 5131~5139
    [243] Nandan S. Bish, B. K. Yadav, Bhaskar Kanseri, et al., Numerical calculation based study of spectral anomalies and their applications in modified Mach-Zehnder interferometer, Optik, 2010, 121: 581~587
    [244] Piort Kurzynowski, Wladyslaw A. Wozniak, Ewa Fraczek, Optical vortices generation using the Wollaston prism, Appl. Opt., 2006, 45(30): 7898~7903
    [245] Mohammad Amiri, Mohammad Taghi Tavassoly, Spectral anomalies near phase singularities in reflection at Brewster’s angle and colored castastrophes, Opt. Lett., 2008, 33(16): 1863~1865
    [246] J. Masajada, B. Dubik, Optical vortex generation by three plane wave interference,Opt. Commun., 2001, 198: 21~26
    [247] B. K. Yadav, S. A. M. Rizvi, S. Rama, et al., Information encoding by spectral anamolies of spatially coherent light diffracted by an annular aperture, Opt. Commun., 2007, 269: 253~260
    [248] B. K.Yadav, B. S. Bish, R. Mehrotra, et al., Diffraction-induced spectral anomalies for information encoding and information hiding-possibilities and limitations, Opt. Commun., 2007, 277: 24~32
    [249] T. Yatagai, S. Kawai, H. Huang, Optical computing and interconnects, Proc. IEEE, 1996, 84: 828~852
    [250] Wei Wang, Tomoaki Yokozeki, Reika Ishijima, et al., Optical vortex metrology for nanometric speckle displacement measurement, Opt. Express, 2006, 14(1): 120~127
    [251] Maruthi M. Brundavanam, Nirmal K. Viswanathan, D. Narayana Rao, Nanodisplacement measurement using spectral shifts in a white-light interferometer, Appl. Opt., 2008, 47(34): 6334~6338
    [252] Maruthi M. Brundavanam, Nirmal K. Viswanathan, D. Narayana Rao, Effect of input spectrum on the spectral switch characteristics in a white-light Michelson interferometer, J. Opt. Soc. Am. A, 2009, 26(12): 2592~2599
    [253] Petr Hlubina, Measuring a spectral bandpass of a fibre-optic spectrometer using time-domain and spectral-domain two-beam interference, J. Mod. Opt., 2001, 48(8): 1413~1420
    [254] Petr Hlubina, Dispersive spectral-domain two-beam interference analysed by a fibre-optic spectrometer, J. Mod. Optics., 2004, 51(4): 537~547
    [255] P. Merritt, R. P. Tatam, D. A. Jackson, Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber, J. Lightwave Technol., 1989, 7(4): 703~716
    [256] Yuqiang Deng, Weijian Yang, Chun Zhou, et al., Direct measurement of group delay with joint time-frequency analysis of a white-light spectral interferogram, Opt. Lett., 2008, 33(23): 2855~2857
    [257] Qian Kemao, Two-dimensional windowed Fourier transform for fringe pattern analysis: Priciples, applications and implementations, Optics and Lasers in Eng., 2007, 45: 304~317
    [258] S. V. Miridonov, M. G. Shlyagin, A. V. Khomenko, et al., Distributed polarimetric fiber-optic sensors using wavelength-scanning technique, SPIE, 1997, 3094: 194~203
    [259]吴頔,白光干涉法保偏光纤偏振耦合测试频域分析的研究:[硕士学位论文],天津;天津大学,2009
    [260] C. Dorrer, N. Belabas, J. P. Lilforman et al. Spectral resolution and sampling issues in Fourier-transform spectral interferometry, J. Opt. Soc. Am. B, 2000, 17(10):1795~1802
    [261] Petr Hlubina, Dalibor Ciprian, Spectral-domain measurement of phase modal birefringence in polarization-maintaining fiber, Opt. Express, 2007, 15(25): 17019~17024
    [262] X.W. Chen, H.X. Zhang, D.G. Jia, et al.,. Spectral-domain measurement of chromatic dispersion difference of polarization modes in polarization-maintaining fibers, J. Mod. Opt., 2011, 58(1): 26-31
    [263] Makoto Tsubokawa, Nori Shilbata, Tsunehito Higashi, et al., Loss of longitudinal coherence as a result of the birefringence effect, J. Opt. Soc. Am. A, 1987, 10: 1895~1901
    [264] J.Y. Lee, D. Y. Kim, Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry, Opt. Express, 2006, 14(24): 11608~11615
    [265] X.W. Chen, W.T. Ye, H.X. Zhang, et al., Spectral domain demodulation of fibre optics position and displacement sensors by Fourier-transform spectral interferogram, 9th Internation Conference on Optical Communications and Networks (ICOCN), 2010, 65-69
    [266]杜艳丽,基于白光干涉的金属极薄带测厚理论与系统研究:[博士学位论文],浙江;浙江大学,2006
    [267] G. S. Bhatnagar, K. N. Chopra, K. Singh, Performance of a Michelson interferometer with asymmetric surface defects distribution, Appl. Opt., 1974, 13(7): 1553~1554
    [268] W. F. Koehler, W. C. White, Multiple-beam fringes of equal chromatic order. Part VI. Method of measuring roughness, J. Opt. Soc. Am., 1955, 45(12): 1011~1014

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700