用户名: 密码: 验证码:
煤矿动态通风网络分析系统及继发性灾害发生规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井灾害一直是我国开发煤炭资源所面临的严重难题。近些年来,继发性灾害发生频率增高,危害更严重,研究各种原发性灾害致继发性灾害发生规律对提出防治策略和指导人员逃生具有重要意义。本文开发了矿井动态通风网络分析系统及相关模型,并在其基础上研究了实际煤矿瓦斯异常涌出、瓦斯突出及火灾致继发性灾害发生规律,同时研究了掘进巷道火灾致瓦斯爆炸继发性灾害发生规律。
     建立了典型巷道、关键通风设施及典型井下原发性灾害的物理与数学模型,为整体通风网络分析系统建立奠定基础。采用集总参数和对流扩散方程建立典型巷道内气体输运模型,实现不同风流状态下气体输运模拟;建立了考虑挥发份燃烧的单-双膜固体燃烧单元模型,并基于离散化方法将其引入到类似皮带、电缆或木材等典型长条状物质的火灾蔓延过程模拟中,从而获得火灾释热量、烟气组分、火焰位置等的时间与空间动态演变过程,弥补了现有研究的不足;运用达西定律及气体动力学方程等描述瓦斯在“非破坏区”和“破坏区”流动特征,建立了适用于通风网络计算的煤与瓦斯突出模型;灾害情况下,风门可能被损坏或打开,通过分析风门或风窗开度与相对流通面积及通流能力的关系,建立了不同类型风门或风窗模型。
     结合流体网络分析方法与所开发模型,建立了可模拟井下通风状态、有害气体组分输运在典型灾害情况下随时间与空间变化过程的动态通风网络分析系统,并对其静态和动态计算准确性进行了实验验证。结果表明:所开发分析系统具有较高精度,与实验室实验结果相比,最大误差在5%左右。在此基础上,对实际煤矿继发性灾害发生规律进行了模拟研究。结果表明:工作面瓦斯异常涌出时,巷道内瓦斯最高浓度达到10%~15%时,危险浓度瓦斯存在时间最长;随着突出初始瓦斯压力提高,风流反向,与掘进巷道间接相连或距离较远区域诱发继发性灾害危险性最高。引入了含危险浓度瓦斯巷道平均体积,发现其与初始瓦斯压力呈良好二次函数关系;火灾下风流巷道易发生继发性灾害,与火灾同一巷道的区域,随着距火灾距离增加,诱发瓦斯爆炸或二次燃烧危险性及所持续时间增大。
     对火灾时期掘进巷道风流状态及瓦斯和温度分布规律进行了研究,获得了诱发瓦斯爆炸继发性灾害的影响规律。结果表明:火灾强度和位置并非诱发瓦斯爆炸关键因素;风筒断裂一定长度且巷道内存在危险浓度瓦斯时,低强度火灾诱发继发性灾害危险性较大。
Mine disasters have always been a serious problem in China. Recently, the secondary catastrophes happened frequently and caused more serious consequences, but few studies have investigated it and there is still a big gap to totally understand the secondary catastrophes. It is quite important and meaningful to study on the characteristics so as to develop prevention strategies and save people. The dynamic analytical ventilation system and other relative models were firstly developed. Then, a real coal mine ventilation system was used to investigate the impact of sudden gas emission, coal and gas outburst and fires on the secondary catastrophes. Meantime, Simulations were established to investigate the influence of fires on the secondary catastrophe which is gas explosion in tunnels.
     Lumped-capacity method and convection-diffusion equation were used to establish the gas flow and diffusion model and the gas diffusion process under different conditions has been described. The single element combustion model simultaneously considering volatile and carbon reaction was developed. Based on the discrete method, the model was then used to develop a new fire model of long stick materials such as belt, wood and cable. The dynamic propogation of flame and all parameters including heat releasing rate and gas concentrations can be described. It provided a new way to study the fire phenomenon. Darcy Law and aerodynamics theory were used to describe the gas flow patterns in the“non-broken”region and“broken”region. The coal and gas outburst model was then established and good connections to ventilation network were achieved. When developing air door model of different kind, the relations between valve position and the relative flow area were analyzed and together with flow dynamics equations, they were used to determine the relations between air flow rate and valve position.
     The dynamic analytical platform was developed by using the model developed in this study and fluid network calculation method. A small scale experimental system was established to validate the platform. The comparison results show that platform has sufficient accuracy with the biggest error of 5% in both static and dynamic simulation. The platform was then used to investigate the influence of sudden gas emission, gas outburst and fire on secondary catastrophes in real coal mine. The results indicate that when sudden gas emission occurs, the secondary catastrophes can only happen in the tailgate and the duration time in which the secondary catastrophes may happen would be the longest when the highest gas concentration is between 10% and 15%. When gas outburst occurs, the air flows reversely in some tunnels. As the initial pressure increasing, the probability of secondary catastrophes is highest in the regions which are indirectly connected with the gas outburst tunnel. The average volume of tunnel with the gas concentration of 5%~16% was introduced, and it was found to be a quadratic function of the initial pressure. When fires occur, secondary combustion and gas explosion probably happen in the downward tunnel. As to the positions sharing the same tunnel with fires, the risk and duration time of secondary catastrophes increase as the distance from the fire increasing. Additionally, fire positions have direct influence on the distribution of tunnel regions with a high possibility of secondary catastrophes.
     The air flow patterns and gas and temperature distributions were finally simulated in the tunnel during the fire and the factors which may induce to secondary catastrophes were obtained. The results indicate that fire intensity and position have no significant influence on the gas and temperature distribution and are not the critical factors to secondary catastrophes. When ventilation tube destroyed and gas concentration between 5% and 16% appeared, fires of lower intensity had a higher possibility to induce to the secondary catastrophe as gas explosion.
引文
[1]倪斌.中国的煤炭资源及其对优化能源结构的基础性作用.中国煤田地质, 2003, 15(6): 3~6
    [2]张先尘,钱鸣高编著.中国采煤学.北京:煤炭工业出版社, 2002.
    [3]国家安全生产监督管理总局统计资料. http://www.chinasafety.gov.cn:
    [4]国家煤矿安全监察局.中国煤炭工业年鉴2003.北京:煤炭工业出版社, 2004.
    [5]刘亮,刘毅,刘明举. 2002-2003年我国煤矿死亡事故统计分析: 2005: 33, 7~10
    [6]房耀洲,刘明举,魏建平,等.我国煤矿事故特征及对策研究.煤炭技术, 2007, 26(12): 3~5
    [7]国家安全生产监督管理总局.煤矿安全规程.北京:中国法制出版社, 2010.
    [8]耿继原.矿井火灾时期烟流动态过程的数值模拟: [硕士学位论文].辽宁:辽宁工程技术大学, 2006
    [9]王德明.矿井火灾救灾决策支持系统的研制: [博士学位论文].北京:中国矿业大学, 1993
    [10]蔡永乐.矿井内因火灾防治理论与实践.北京:煤炭工业出版社, 2001.
    [11]重庆煤科分院.巷道灾变时期通风技术和MTU通风程序移植的研究:技术鉴定资料. 1991
    [12] X. Chang, L. W. Laage, R. E. Greuer. A User's Manual for MFIRE, U.S.Bureau of Mines, 1989
    [13] W. Dziurzynski, J. Tracz, W. Trutwin. Simulation of Mine Fires. 4th International Mine Ventilation Congress. Brisbane, Queensland: 1988.
    [14]何学秋等编著.中国煤矿灾害防治理论与技术.北京:中国矿业大学出版社, 2006.
    [15] W. K. Chow. Simulation of Tunnel Fires Using a Zone Model. Tunneling and Underground Space Technology, 1996, 11(2): 221~236
    [16] S. Jain, S. Kumar, S. Kumar, T. P. Sharma. Numerical Simulation of Fire in a Tunnel:Comparative Study of CFAST and CFX Predictions. Tunneling and Underground Space Technology, 2008, 23(2): 160~170
    [17] J. Modic. Fire Simulation in Road Tunnels. Tunnelling and Underground Space Technology, 2003, 18(5): 525~530
    [18] P. J. Woodburn, R. E. Britter. CFD Simulations of a Tunnel Fire-PartⅠ. Fire Safety Journal, 1996, 26(1): 35~62
    [19] P. J. Woodburn, R. E. Britter. CFD Simulations of a Tunnel Fire-PartⅡ. Fire Safety Journal, 1996, 26(1): 63~90
    [20] H. Y. Wang. Prediction of Soot and Carbon Monoxide Production in a Ventilated Tunnel Fire by Using a Computer Simulation. Fire Safety Journal, 2009, 44(3): 394~406
    [21] A. A. F. Peters, R. Weber. Mathematical Modelling of a 2.25 MW Swirling Natural Gas Flame. Part 1: Eddy Break-up Concept for Turbulent Combustion: Probability Density Function Approach for Nitric Oxide Formation. Combustion Science and Technology, 1995, 110-111: 67~101
    [22] H. Xue, J. C. Ho, Y. M. Cheng. Comparison of Different Combustion Models in Enclosure Fire Simulation. Fire Safety Journal, 2001, 36(1): 37~54
    [23] A. R. Nilsen, T. Log. Results from Three Models Compared to Full-scale Tunnel Fires Tests. Fire Safety Journal, 2009, 44(1): 33~49
    [24] E. Migoya, A. Crespoa, J. Garcia, J. Hernandez. A Simplified Model of Fires in Road Tunnels:Comparison with Three-Dimensional Models and Full-Scale Measurements. Tunneling and Underground Space Technology, 2009, 24(1): 37~52
    [25]杨立中,郭再富,季经纬,等.基于区域模拟的火灾发展模型.科学通报, 2005, 50(12): 1272~1277
    [26]何晟,王厚华.非稳态火源热释放速率在火灾网络模型中的应用.四川建筑科学研究, 2007, 33(2): 73~76
    [27]程远平,陈亮,张孟君.火灾过程中火源热释放速率模型及其实验测试方法.火灾科学, 2002, 11(2): 70~74
    [28]钟委,霍然,史聪灵.热释放速率设定方式的几点讨论.自然灾害学报, 2004, 13(2): 64~69
    [29]王志刚,倪照鹏,王宗存,等.设计火灾时火灾热释放速率曲线的确定.安全与环境学报, 2004, 4(增刊): 50~54
    [30] W. W. Jones, G. P. Forney. A Technical Reference for CFAST: An Engineering Tool for Estimating Fire and Smoke Transport. National Insititute of Standard and Technology, Building and Fire Research Laboratory. Gaitherburg: 2000. 17~77
    [31] U. Schneider. Ingenieurmethoden im Baulichen Brandschutz. Renningen: Expert-Vertag, 2001
    [32] A. N. Beard, D. D. Drysdale, S. R. Bishop. A Non-linear Model of Major Fire Spread in a Tunnel. Fire Safety Journal, 1995, 24(4): 333~357
    [33] A. N. Beard, D. D. Drysdale, S. R. Bishop. Predicting the Effects of Design Parameter Variations on Major Fire Spread in a Tunnel. Int. Comm. Heat Mass Transfer, 1996, 23(4): 495~504
    [34] R. John. Rauclr und Waermeabzug bei Braenden in Grossen Raeumen. vfdb-Zeitsechung Forschung, Technik und Management im Brandschutz, 1988, 38(1): 21~25
    [35] D. Locroix. New French Recommendations for Fire Ventilation in Road Tunnels. 9th International Conference on Aerodynamics and Ventilation of Vehicle Tunnels. Italy: 1997.
    [36] H. Ingason. Design Fires in Tunnels. Conference Proceedings of Asiaflam 95. Hong Kong: 1995. 77~86
    [37] F. Numajiri, K. Furukawa. Short Communication: Mathematical Expression of Heat Release Rate Curve and Proposal of "Burning Index". Fire Master, 1998, 22: 39~42
    [38] H. Ingason. Fire Development in Large Tunnel Fires. 8th International Symposium in Fire Safety Science. Beijing: 2005. 1497~1508
    [39] H. Ingason. Modelling of Real World Fire Data. Second International Symposium on Tunnel Safety & Security. Spain: 2006. 7~13
    [40] H. Ingason. Design Fire Curves for Tunnels. Fire Safety Journal, 2009, 44(2): 259~265
    [41] J. N. Deris. Spread of Laminar Diffusion Flame. Twelfth Symposium (International) on Combustion. Pittsburgh,PA: 1988. 241
    [42] S. Bhattacharjee, J. West, R. A. Altenkirch. Determination of the Spread Rate in Opposed-Flow Flame Spread over Thick Solid Fuels in the Thermal Regime. Fuel and Energy Abstracts, 1998, 39(4): 292
    [43] H. Y. Shih, J. S. Tien. Modelling Concurrent Flame Spread over a Thin Solid in a Low-Speed Tunnel. Proceedings of the Combustion Institute, 2000, 28(2): 2777~2784
    [44] E. G. Brehob, C. I. Kim, A. K. Kulkami. Numerical Model of Upward Flame Spread on Pratical Wall Materials. Fire Safety Journal, 2001, 36(3): 225~240
    [45] M. A. Delichatsios. Creeping Flame Spread: Energy Balance and Application to Pratical Materials. Symposium (International) on Combustion, 1996, 26(1): 1495~1503
    [46] Y. G. Chen, V. Motevalli, M. A. Delichatsios, P. A. Tatem. Prediction of Horizontal Flame Spread Using a Theoretical and Experimental Approach. Symposium (International) on Combustion, 1998, 27(2): 2797~2805
    [47] M. A. Delichatsios. Relation of Opposed Flow (Creeping) Flame Spread with Extinction/Ignition. Combustion and Flame, 2003, 135(4): 441~447
    [48] F. J. Higuera. Flame Spread along Horizontal Solid Fuel Cylinder. Proceedings of the Combustion Institute, 2002, 29(1): 211~217
    [49]万维,孙金华,李杰.环境氧浓度对可碳化固体可燃物表面火蔓延的影响.火灾科学, 2008, 17(2): 73~76
    [50] L. Zhou, A. C. Fernandez-Pello. Concurrent Turbulent Flame Spread. Symposium (International) on Combustions, 1991, 23(1): 1709~1714
    [51] C. D. Blasi. Influence of Sample Thickness on the Early Transient Stages of Concurrent Flame Spread and Solid Burning. Fire Safety Journal, 1995, 25(4): 287~304
    [52] J. G. Quintiere. the Effects of Angular Orientation on Flame Spread over Thin Materials. Fire Safety Journal, 2001, 36(3): 232~291
    [53] A. B. Oladipo, I. S. Wichman. Experimental Study of Opposed Flow Flame Spread over Wood Fiber/Thermoplastic Composite Materials. Combustion and Flame, 1999, 118(3): 317~326
    [54] C. T. Kuang. Width Effect on Upward Flame Spread. Fire Safety Journal, 2009, 44(7): 962~967
    [55]王海晖,王清安,黄强.空间方位对木材燃烧火焰传播的影响.工程热物理学报, 1991, 12(2): 220~224
    [56]王海晖,王清安,黄强.木材燃烧火焰传播的实验研究.中国科学技术大学学报, 1991,21(2): 254~259
    [57]陈鹏,孙金华.木材在不同放置角度下火蔓延特性的实验研究.安全与环境学报, 2006, 6(3): 27~31
    [58]纪杰,李杰,孙金华,等.不同宽度和角度下木材表面火蔓延特性的实验研究.工程热物理学报, 2010, 31(2): 351~354
    [59]杨春信,袁修平,徐向东.火灾现象的数值模拟及其应用.中国安全科学学报, 1994, 2(1): 17~22
    [60] N. C. Markatos, M. R. Malin, G. Cox. Mathematical Modelling of Buoyancy-induced Smoke Flow in Enclosures. International Journal of Heat & Mass Transfer, 1982, 125(1): 63~75
    [61]张鹏,张健,彭磊.建筑物通道内火灾烟气运动的数值模拟.安全与环境学报, 2007, 7(1): 137~140
    [62]张进华,杨高尚,彭立敏,等.隧道火灾烟气流动的数值模拟.中南公路工程, 2006, 31(1): 4~8
    [63]成剑林,邹声华.地铁火灾模拟研究.安全与环境工程, 2006, 13(1): 96~99
    [64]蒋军成,王省身.矿井火灾巷道烟气运动场模型.矿冶工程, 1997, 17(2): 6~10
    [65]苏传荣,王海燕,周心权.矿井掘进巷道火灾数值模拟研究:国际安全科学与技术学术研讨会.沈阳: 2006
    [66]褚燕燕,蒋仲安.矿井巷道火灾烟气运动模拟研究.矿业安全与环保, 2007, 34(5): 13~14
    [67] B. Merci. One-dimensional Analysis of the Global Chimney Effect in the Case of Fire in an Inclined Tunnel. Fire Safety Journal, 2008, 43(5): 376~389
    [68]周福宝,王德明.矿井火灾烟流滚退距离的数值模拟.中国矿业大学学报, 2004, 33(5): 499~503
    [69]王海燕,周心权.平巷烟流滚退火烟羽流模型及其特征参数研究.煤炭学报, 2004, 29(2): 190~194
    [70]周心权,王海燕,赵红泽.平巷烟流滚退逆行规律.北京科技大学学报, 2004, 26(2): 118~121
    [71]周延,王德明,周福宝.水平巷道火灾中烟流逆流层长度的实验研究.中国矿业大学学报, 2001, 30(5): 446~448
    [72]周福宝,王德明.巷(隧)道火灾烟流滚退距离的无因次关系式.中国矿业大学学报, 2003, 32(4): 407~410
    [73]周福宝,王德明.巷道火灾烟流滚退距离的理论研究.湘潭矿业学院学报, 2003, 18(4): 22~24
    [74] A. N. Beard, R. Carvel. The Handbook of Tunnel Fire Safety. Thomas Telford Ltd., 2005
    [75] L. H. Hu, R. Huo, W. K. Chow. Studies on Buoyancy-driven Back-Layering Flow in Tunnel Fires. Experimental Thermal and Fluid Science, 2008, 32(8): 1468~1483
    [76] C. C. Hwang, J. C. Edwards. The Critical Ventilation Velocity in Tunnel Fires-a Computer Simulation. Fire Safety Journal, 2005, 40(3): 213~244
    [77] Y. Wu, M. Z. A. Bakar. Control of Smoke Flow in Tunnel Fires Using Longitudinal Ventilation Systems-a Study of the Critical Velocity. Fire Safety Journal, 2000, 35(4): 363~390
    [78] M. H. Department. Boston,MA: Memorial Tunnel Fire Ventilation Test Program, Test Report, 1995
    [79] W. D. Kennedy, J. A. Gonzales, J. G. Sanchez. Derivation and Application of the SES Critical Velocity Equations. ASHRAE Trans: Research, 1996, 102(4): 40~44
    [80] G. T. Atkinson, Y. Wu. Smoke Control in Sloping Tunnels. Fire Safety Journal, 1996, 27(4): 335~341
    [81] J. P. Kunsch. Simple Model for COntrol of Fire Gases in a Ventilted Tunnel. Fire Safety Journal, 2002, (37): 67~81
    [82] P. J. Woodburn, R. E. Britter. CFD Simulations of a Tunnel Fire-Part I, Part II. Fire Safety Journal, 1996, 26(1): 35~62
    [83] O. Vauquelin, Y. Wu. Influence of Tunnel Width on Longitudinal Smoke Control. Fire Safety Journal, 2006, 41(6): 420
    [84] Y. Z. Li, B. Lei, H. Ingason. Study of Critical Velocity and Backlayering Length in Longitudinally Ventilated Tunnel Fires. Fire Safety Journal, 2010, (In Press)
    [85]朱海刚,周心权,姜伟,等.矿井火灾对巷道瓦斯积聚影响的研究.矿业安全与环保, 2008, 35(3): 18~20
    [86]戚宜欣.矿井火灾烟流温度场及浓度场的数值模拟.西安矿业学院学报, 1994, (1): 26~33
    [87]贾进章,马恒,刘剑.矿井火灾时期温度分布数值模拟.辽宁工程技术大学学报, 2003, 22(4): 460~462
    [88]贾进章.矿井火灾仿真与避灾路线的数学模型.自然灾害学报, 2008, 17(1): 163~168
    [89]朱迎春,周心权,王海燕,等.封闭火区注惰气引发瓦斯爆炸的数值模拟.矿业安全与环保, 2009, 36(3): 1~6
    [90] B. Qin, L. Zhang, D. Wang, Q. Xu. The Characteristic of Explosion under Mine Gas and Spontaneous Combustion Coupling. Procedia Earth and Planetary Science, 2009, 1(1): 186~192
    [91]由长福,徐旭常.煤矿掘进巷道内火灾所致继发性灾害分析.工程热物理学报, 2008, 29(7): 1257~1259
    [92] K. Li, C. You, R. Yang, X. Xu. Analysis of Secondary Catastrophes from Mine Fires in Tunnels. 2008 International Symposium on Safety Science and Technology. Beijing: 2008. 1365~1368
    [93]李坤,全加,由长福,等.火灾位置对掘进巷道通风及继发性灾害的影响.清华大学学报(自然科学版), 2010, 50(2): 270~273
    [94]张兴凯,李华.一次实际模拟火灾实验结果及分析.煤矿安全, 1994, (10): 6~8
    [95] L. H. Hu, R. Huo, H. B. Wang, Y. Z. Li, R. X. Yang. Experimental Studies on Fire-InducedBuoyant Smoke Temperature Distribution along Tunnel Ceiling. Building and Environment, 2007, 42(11): 3905~3915
    [96] M. A. Delichatsios. The Flow of Fire Gases under a Beamed Ceiling. Combustion and Flame, 1981, (43): 1~10
    [97] Y. F. Wang, J. C. Jiang, D. Z. Zhu. Full-Scale Experiment Research and Theoretical Study for Fires in Tunnels with Roof Openings. Fire Safety Journal, 2009, 44(3): 339~348
    [98]蒋军成,王省身.矿井竖巷内火灾燃烧模拟实验研究.火灾科学, 1997, 6(2): 55~59
    [99]付建华,程远平.中国煤矿煤与瓦斯突出现状及防治对策.采矿与安全工程学报, 2007, 24(3): 253~259
    [100]付建华.煤矿瓦斯灾害防治理论研究与工程实践.徐州:中国矿业大学出版社, 2005.
    [101]王永祥,杜卫新.煤与瓦斯突出机理研究进展.煤炭技术, 2008, 27(8): 89~90
    [102]佩尔森L.,施兰厄H. P.,赵景馥.煤矿瓦斯突出的理论模型.矿业安全与环保, 1987, (2): 67~68
    [103]裴常心,姚建,田冬梅,等.煤与瓦斯突出气球模型理论探讨.煤矿安全, 2009, (6): 76~78
    [104] J. G. Singh. a Mechanism of Outbursts of Coal and Gas. Mining Science and Technology, 1984, 1(4): 269~273
    [105] J. Shepherd, L. K. Rixon, L. Griffiths. Outbursts and Geological Structures in Coal Mines: a Review. International Journal of Rock Mechanical and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 267~283
    [106] S. G. Li, T. J. Zhang. Catastrophic Mechanism of Coal and Gas Outbursts and Their Prevention and Control. Mining Science and Technology, 2010, 20(2): 209~214
    [107]俞善炳.煤与瓦斯突出的一维流动模型和启动判据.力学学报, 1992, 24(4): 418~431
    [108]丁晓良,俞善炳,丁雁生,等.煤在瓦斯渗流作用下持续破坏的机制.中国科学(A辑), 1989, (6): 600~607
    [109]方健之,俞善炳,谈庆明.煤与瓦斯突出的层裂-粉碎模型.煤炭学报, 1995, 20(2): 149~153
    [110] J. Litwiniszyn. A Model for the Initiation of Coal-Gas Outbursts. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(1): 39~46
    [111] K. Barron, D. Kullmann. Modelling of outbursts at #26 Colliery, Glace Bay, Nova Scotia. Part2: Proposed Outburst Mechanism and Model. Mining Science and Technology, 1990, 11(3): 261~268
    [112] D. Kullmann, K. Barron. Modelling of Outbursts at #26 Colliery, Glace Bay, Nova Scotia. Part3: Comparison of Models Results and Field Data. Mining Science and Technology, 1990, 11(2): 269~280
    [113]尹光志,王登科,张东明,等.含瓦斯煤岩固气耦合动态模型与数值模拟研究.岩土工程学报, 2008, 30(10): 1430~1436
    [114]徐涛,郝天轩,唐春安,等.含瓦斯煤岩突出过程数值模拟.中国安全科学学报, 2005,15(1): 108~110
    [115]徐涛,杨天鸿,唐春安,等.含瓦斯煤岩破裂过程固气耦合数值模拟.东北大学学报(自然科学版), 2006, 26(3): 293~296
    [116]赵阳升.煤体-瓦斯耦合数学模型及数值解法.岩石力学与工程学报, 1994, 13(3): 229~239
    [117]徐涛.煤岩破裂过程固气耦合数值试验.岩土力学与工程学报, 2005, 24(9)
    [118]颜爱华,徐涛.煤与瓦斯突出的物理模拟和数值模拟研究.中国安全科学学报, 2008, 18(9): 37~42
    [119] T. Xu, C. A. Tang, T. H. Yang, W. C. Zhu, J. Liu. Numerical Investigation of Coal and Gas Outbursts in Underground Collieries. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 905~919
    [120]李利萍,潘一山.煤与瓦斯突出瓦斯射流数值模拟.辽宁工程技术大学学报, 2007, 26(增刊): 98~100
    [121]李海臣,周心权.对煤矿瓦斯突出导致瓦斯爆炸事故的哲学思考及预防.中国煤炭, 2008, 34(10): 87~89
    [122]张强,孙玉荣,王晓勇,等.煤与瓦斯突出冲击波传播规律的研究.矿业安全与环保, 2007, 34(5): 21~23
    [123]程五一,陈国新.煤与瓦斯突出冲击波的形成及模型建立.煤矿安全, 2000, (9): 23~25
    [124]程五一,刘晓宇,王魁军,等.煤与瓦斯突出冲击波阵面传播规律的研究.煤炭学报, 2004, 29(1): 57~60
    [125]郝宇.煤与瓦斯突出沿井巷传播规律研究.煤炭技术, 2009, 28(11): 74~76
    [126]程会芳.瓦斯异常涌出与井下火灾所引起的继发性灾害分析: [学士学位论文].北京:清华大学, 2007
    [127] S. Q. Yang, Y. Sun, Z. Y. Chen, B. H. Yu, Q. Xu. Establishment of Grey-Neural Network Forecasting Model of Coal and Gas Outburst. Procedia Earth and Planetary Science, 2009, 1(1): 148~153
    [128] Y. Min, Y. J. Wang, Y. P. Cheng. An Incorporate Genetic Algorithm Based Back Proporgation Neural Network Model for Coal and Gas Outburst Intensity Prediction. Procedia Earth and Planetary Science, 2009, 1(1): 1285~1292
    [129] T. J. Zhang, S. X. Ren, S. G. Li, T. C. Zhang, H. J. Xu. Application of the Catastrophe Progression Method in Predicting Coal and Gas Outburst. Mining Science and Technology(China), 2009, 19(4): 430~434
    [130] W. H. Song, H. W. Zhang. Regional Prediction of Coal and Gas Outburst Hazard Based on Muti-Factor Pattern Recognition. Procedia Earth and Planetary Science, 2009, 1(1): 347~353
    [131] Y. J. Wang, H. L. Hartman. Computer Solution of Three-Dimensional Mine Ventilation Networks with Multiple Fans and Natural Ventilation. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1967, 4(2): 129~154
    [132] Y. J. Wang. A Coding Scheme for a Graphical Solution to Mine Ventilation Networks. MiningScience and Technology, 1988, 7(1): 31~43
    [133] Y. J. Wang. A Non-Linear Programming Formulation for Mine Ventilation Networks with Natural Splitting. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1984, 21(1): 43~45
    [134]刘志刚.应用四种类型风道法解算矿井通风网络.广西大学学报(自然科学版), 1992, 17(4): 50~58
    [135] Y. J. Wang. Solving Mine Ventilation Networks With Fixed and Non-Fixed Branches. Mining Engineering, 1990,
    [136]陈晓青,高彦.流体网络理论在地下矿压风系统中的实践.中国矿业, 2005, 14(5): 49~51
    [137] Y. N. Hu, O. I. Koraleva, M. Krstic. Nonlinear Control of Mine Ventilation Networks. System & Control Letter, 2003, 49: 239~254
    [138]吴靖,孙国基,曾建潮.化工过程流体网络的建模与仿真.系统仿真学报, 1997, 9(3): 39~43
    [139]吴靖,曾建潮,孙国基.单相可压缩流体网络的动态实时仿真.太原重型机械学院学报, 1998, 19(2): 137~143
    [140]陈梅芳,丁德鑫,莫勇刚,等.基于MATLAB的两种通风网络解算方法编程及实现.矿业研究与开发, 2008, 28(2): 65~67
    [141]陆秋琴,黄光球,姚玉霞.存在风阻未知分支的大规模复杂通风网络解算方法.湖南科技大学学报(自然科学版), 2008, 23(3): 90~93
    [142]陈开岩,张小平,刘雨忠,等.基于井巷标准通风阻力系数的矿井通风系统状态数值模拟.煤矿安全, 1996, (7): 10~13
    [143]郭年琴,黄国平,王海宁.矿井通风网络三维仿真系统的开发.中国钨业, 2005, 20(5): 42~45
    [144]郭年琴,胡明振.矿井通风网络三维仿真模型.矿冶, 2009, 18(3): 79~83
    [145]陈海林,罗乐平,匡永江.矿井通风网络三维仿真与优化系统的开发.北京联合大学学报(自然科学版), 2009, 23(3): 48~52
    [146]李成,谭海樵.基于GIS的矿井通风网络可视化仿真模拟研究.金属矿山, 2009, (12): 103~106
    [147] J. Z. Jia, G. W. Zang, Q. Zhou, X. Feng. A New Algorithm for Calculating Ventilation Network Reliability on Truncation Error Theory and Network Simplification. Procedia Earth and Planetary Science, 2009, 1(1): 169~172
    [148] S. Kalogirou, M. Eftekhari, L. Marjanovic. Predicting the Pressure Coefficients in a Naturally Ventilated Test Room Using Artificial Neural Networks. Building and Environment, 2003, 38(3): 399~407
    [149] L. J. Wei. Topology Theory of Mine Ventilation Network. Procedia Earth and Planetary Science, 2009, 1(1): 354~360
    [150] C. O. Karacan. Development and Application of Reservior Models and Artificial NeuralNetworks for Optimizing Ventilation Air Requirements in Development Mining of Coal Seams. International Journal of Coal Geology, 2007, 72(3-4): 221~239
    [151] C. O. Karacan. Modelling and Prediction of Ventilation Methane Emission of U.S.longwall Mines Using Supervised Artificial Neural Networks. International Journal of Coal Geology, 2008, 73(3-4): 371~387
    [152] Q. Wu, S. Y. Ye, J. Yu. The Prediction of Size-Limited Structures in a Coal Mine Using Artificial Neural Networks. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 999~1006
    [153] F. Colella, G. Rein, R. Borchiellini, R. Carvel, J. L. Torero, V. Verda. Calculation and Design of Tunnel Ventilation Systems Using a Two-scale Modelling Approach. Building and Environment, 2009, 44(12): 2357~2367
    [154] F. Colella, G. Rein, R. Carvel, P. Reszka, J. L. Torero. Analysis of the Ventilation Systems in the Dartford Tunnels Using a Multi-scale Modelling Approach. Tunnelling and Underground Space Technology, 2010, 25(4): 423~432
    [155] M. T. Parra, J. M. Villafruela, F. Castro, C. Mendez. Numerical and Experimental Analysis of Different Ventilation Systems in Deep Mines. Building and Environment, 2006, 41(2): 87~93
    [156]杨世铭,陶文铨.传热学.北京:高等教育出版社, 2006.
    [157]柯斯乐E. L.扩散流体系统中的传质.北京:化学工业出版社, 2002.
    [158] R. H. Essenhigh, M. K. Misra, D. W. Shaw. Ignition of Coal Particle: A Review. Combustion and Flame, 1989, 77(1): 3~30
    [159] K. Annamalai, P. Durbetaki. a Thoery on Transient of Ignition Phase of Coal Particles. Combustion and Flame, 1977, 29: 193~208
    [160] P. J. Brooks, R. H. Essenhigh. Variation of Ignition Temperatures of Fuel Particles in Vitiated Oxygen Atmosphere: Determination of Reaction Mechanism. Symposium (International) on Combustion, 1988, 21(1): 293~302
    [161] R. P. Gupta, V. S. Gururajan, J. A. Lucas, T. F. Wall. Ignition Temperature of Pulverized Coal Particles: Experimental Techniques and Coal-Related Influence. Combustion and Flame, 1990, 79(3-4): 333~339
    [162] V. S. Gururajan, T. F. Wall, R. P. Gupta, J. S. Truelove. Mechanisms for the Ignition of Pulverized Coal Particles. Combustion and Flame, 1990, 81(2): 119~132
    [163] X. Y. Du, K. Annamalai. the Transient Ignition of Isolated Coal Particle. Combustion and Flame, 1994, 97(3-4): 339~354
    [164] M. M. Zhu, H. Zhang, G. T. Tang, Q. Liu, J. F. Lu, G. X. Yue, S. F. Wang, S. X. Wan. Ignition of Single Coal Particle in a Hot Furnace under Normal- and Micro-gravity Condition. Proceedings of the Combustion Institute, 2009, 32(2): 2029~2035
    [165] R. Zajdlik, L. Jelemensky, B. Remiarova, J. Markos. Experimental and Modelling Investigation of Single Coal Particle Combustion. Chemical Engineering Science, 2001, 56(4): 1355~1361
    [166] W. B. Fu, T. F. Zeng. a General Method for Determining Chemical Kinetic Parameters During Ignition of Coal Char Particles. Combustion and Flame, 1992, 88(3-4): 413~424
    [167] W. B. Fu, E. Z. Zhang. a Universal Correction between the Heterogeneous Ignition Temperature of Coal Char Particles and Coals. Combustion and Flame, 1992, 90(2): 103~113
    [168] I. W. Smith. The Combustion rates of Coal Chars: A Review. Symposium (International) on Combustion, 1982, 19(1): 1045~1065
    [169] A. Makino, C. K. Law. Quasi-Steady and Transient Combustion of a Carbon Particle: Thoery and Experimental Comparisons. Symposium (International) on Combustion, 1987, 21(1): 183~191
    [170] L. D. Smoot, D. T. Pratt. Pulverized Coal Combustion and Gasification. New York: Plenum Press, 1979
    [171] L. Tognotti, J. P. Longwell, A. F. Sarofim. The Products of the High Temperature Oxidation of a Single Char Particle in an Electrodynamic Balance. Symposium (International) on Combustion, 1991, 23(1): 1207~1213
    [172] A. Makino. An Approximate Explicit Expression for the Combustion Rate of a Small Carbon Particle. Combustion and Flame, 1992, 90(2): 143~154
    [173]于娟,章明川,周月桂,等.挥发份火焰对碳粒燃烧的影响.燃烧科学与技术, 2006, 12(2): 121~125
    [174] J. Yu, M. C. Zhang, J. Zhang. Experimental and Numerical Investigations on the Interactions of Volatile Flame and Char Combustion of a Coal Particle. Proceedings of the Combustion Institute, 2009, 32(2): 2037~2042
    [175] J. Zhang, M. C. Zhang, J. Yu. Extended Application of the Moving Flame Front Model for Combustion of a Carbon Particle with a Finite-Rate Homogenous Reaction. Energy & Fuels, 2009, 24: 871~879
    [176] J. Yu, M. C. Zhang. Experimental and Modelling Study on Char Combustion. Energy & Fuels, 2009, 23(2874-2885)
    [177] H. S. Caram, N. R. Amunson. Diffusion and Reaction in a Stagnant Boundary-Layer about a Carbon Particle. Industrial & Engineering Chemistry Fundamentals, 1977, 16(2): 171~181
    [178]周力行.燃烧理论与化学流体力学.北京:科学出版社, 1986.
    [179] C. A. G. Veras, J. Saastamoimen, J. J. A. Carvalho, M. Aho. Overlapping of the Devolatilization and Char Combustion Stages in the Burning of Coal Particles. Combustion and Flame, 1999, 116(4): 567~569
    [180] S. P. Musarra, T. H. Fletcher, S. Niksa. Heat and Mass Transfer in the Vicinity of a Devolatilizing coal particle. Combustion Science and Technology, 1986, 45(5-6): 289~307
    [181] M. C. Zhang, J. Yu, X. C. Xu. A New Flame Sheet Model to Reflect the Influence of the Oxidation of CO on the Combustion of a Carbon Particle. Combustion and Flame, 2005, 143(3): 150~158
    [182] R. H. Essenhigh. Chemistry of Coal Utilization (Second Supplementary Volume). New York:Wiley-Interscience, 1981
    [183] K. M. Bryden, K. W. Ragland, C. J. Rutland. Modelling Thermally Thick Pyrolysis of Wood. Biomass and Bioenergy, 2002, 22(1): 41~53
    [184]陈鹏.典型木材表面火蔓延行为及传热机理研究: [硕士学位学位论文].合肥:中国科学技术大学, 2006
    [185]杨庆贤.木材比热的理论表达式.应用科学学报, 1993, 11(4): 345~352
    [186]张兆顺,崔桂香.流体力学.北京:清华大学出版社, 1998.
    [187]周世宁.煤层瓦斯赋存与流动理论.北京:煤炭工业出版社, 1999.
    [188]程明俊.煤渗透性能及煤与瓦斯突出过程模拟实验研究: [硕士学位论文].重庆:重庆大学, 2008
    [189]王海宁.矿井风流流动与控制.北京:冶金工业出版社, 2007.
    [190]陆培文.实用阀门设计手册.北京:机械工业出版社, 2002.
    [191]吕崇德,任挺进,姜学智,等.大型火电机组系统仿真与建模.北京:清华大学出版社, 2002.
    [192]周茂增.矿井通风.北京:煤炭工业出版社, 1993.
    [193] G. Heskestad. The SFPE Handbook of Fire Protection Engineering (Third Edition). Quincy, MA: Society of Fire Protection Engineers, 2002
    [194]徐超,刘辉辉,王伟杰.瓦斯爆炸极限的理论计算及影响因素探析.山东煤炭科技, 2009, (4): 154~155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700