用户名: 密码: 验证码:
制备MgO晶体电弧炉的建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽宁省以其储量巨大、质量优良的天然菱镁矿资源在世界享有盛名。对天然菱镁矿的加热得到MgO,再将其加入到电弧炉中,加热到2800°C以上,会生长出MgO晶体。MgO单晶是非常重要的基片材料和光学材料,在很多领域有重要的应用。
     电弧炉内部的环境非常恶劣,直接通过传统测量方法对电弧等离子体和熔池进行诊断是不切实际的。冶炼MgO的工艺仍然存在资源利用率偏低、能耗大、控制精度差等问题。在现阶段,利用电弧炉冶炼MgO的生产虽然凭借资源成本低廉的优势得到广泛应用,但是,因为无法对熔池温度等参数进行监测,缺乏对冶炼过程中潜在规律的了解和把握,所以致使工程师需要依靠经验和半经验模型来完成整个控制过程。根据经验操作使冶炼工艺很难取得长足的进步,单纯的热电分析对炉况的描述也不够充分,现代控制理论又由于缺乏合理有效的仿真模型的支持而难以发挥作用。基于以上考虑,本文对电弧炉内部的主要过程建立了流体力学模型进行计算,以期深入理解其内部的物理规律,并为控制系统提供必要的决策支持。
     为了分析电弧等离子体的加热效果和等效参数,建立了基于有限元方法的直流电弧炉内的电弧等离子体射流的磁流体力学三维模型。在确定合适的边界条件后,选用SIMPLEF算法进行求解,得到了电弧等离子体的温度、流动的分布情况。在和文献报道的测量数据进行对比后发现,计算结果能够得到与之吻合的结果。接着针对双电极埋弧炉的实验情况,分析和讨论了电流和弧长的变化对电弧本身以及熔池的影响。计算结果表明,电弧对熔池的传热区域非常集中,电弧对熔池的冲击非常强烈,压强达到10Spa以上,足以在熔池表面形成弹坑一样的凹陷。对于电流大小不变的电弧等离子体,弧长越小,熔池表面的压力就越大,但是存在一个临界值。例如,电流为10kA的电弧,当弧长小于3cm,电弧对阳极表面压强便不再继续增大。模型还为弧功率、弧电压和弧效率等参数提供了一种计算方法,其计算结果是对直流电弧炉内熔池部分进行数值模拟的基础。
     通过实验证实,双电极直流埋弧炉也是一种生产MgO晶体的有效方法。为了能够描述晶体生长的环境和对一些重要参数进行判定,建立了电弧炉的三维磁流体力学模型,对熔池内部的传热与流动现象进行数值模拟分析。模型假设流体的流动是由洛仑兹力驱动的。根据计算结果发现熔池的形态受到电磁搅拌的影响发生了较大变化。在比较适宜晶体生长的电极底部和炉壁之间的区域,生长环境容易因电流的波动导致流场变化而受到影响。如,熔池在电流达到10kA时,熔池的形变明显,而当电流减小到6kA时,熔池体积明显变小。模型将得到的熔池大小和实验中测量的数据进行对比,发现结果比较吻合。模型还预测出了电弧功率、电弧效率、弧压降、熔池的电阻和焦耳热功率等参数,以改善电弧炉的运行策略。
     三相交流埋弧炉仍然是MgO冶炼工艺中应用较为常用的设备。针对这种方法,建立了基于有限元方法的三维磁流体力学模型。模型在假设交流埋弧炉三相平衡,并达到稳态的条件下,计算了电弧效率、弧压降、电弧功率和熔池产生的焦耳热功率等参数。由计算结果结合测量数据,推导出在电流逐渐减小的过程中,熔池焦耳热功率所占比重的变化,发现在冶炼中后期,熔池自身产生的焦耳热可能起到了延长晶体生长时间的效果。针对冶炼中后期电流的变化范围,采用12kA、10kA和8kA这三种情况进行分析,证实了熔池的形成受到电磁搅拌的影响,形态随电流变化而变化,而且计算得到的熔池形态和实验测量的数据比较吻合。一些例如电极底部与炉壁之间局部区域,受到电流扰动的影响较小,熔池边界的径向距离基本稳定在0.75m附近,稳定的温度场和较小的电磁搅拌影响使这些局部区域相对于直流埋弧炉更有利于大结晶的形成。
Liaoning Province is well known in the world for its enormous and superior quality of natural magnesite deposit. MgO is produced from the process of heating of natural magnesite. When calcined or dead-burned MgO is heated in excess of 2800℃in an electric arc furnace, MgO crystals are produced. MgO single crystal is used widely as substrate for high temperature superconductor (HTS) thin films and also a kind of an important optical material.
     Due to the hostile environment for observing the process occurring in the inner zone of the furnace, direct measurements on the arc plasma or the molten bath by conventional diagnostic method are impractical. The problems including low productivity of high qualified crystals, high power consumption and poor control strategy still exist in the arc fused method to grow MgO crystals. Nowadays, depending on the advangtages of the low-cost resources, the electric arc furnace for MgO production has been widely used in China. Howerver, because the impracticability of the measurements inside the furnace leads to the lack of the fundamental understanding of the underlying physical mechanisms in the furnace, the improvement of the control system has been mostly developed by the semi-empirical or empirical models. A dramatic technology improvement is not possible without automatic operations; the thermal-electric analysis could not describe the heat and mass transfer phenomena in the furnace; Modern control theory could not be successfully applied to the furnace control system without the efficient simulation support. So, based on the above considerations, the computational fluid dynamics models are used to better understand the physical mechanisms in the furnace and to give decision support for the control system.
     In order to estimate the heating effect of the arc plasma and obtain equivalent parameters, a three dimension magnetohydrodynamic model based on finite element method has been developed for the arc plasma in a DC electric arc furnace. Setting proper boundary conditions, the SIMPLEF algorithm is used to analyze the characteristics of the fluid flow and temperature field of the arc plasma. The calculated results show good agreements with the published measurements in a pilot-scale furnace. The behavior of arcs for different current levels and different arc lengths has been studied. Much of the energy from the arc is delivered to a localised area directly beneath the arc. The distribution of the arc pressure on the bath surface shows that the arc plasma impingement is large enough to cause a crater-like depression in the surface of the bath. It is also found that for a constant arc current the pressure on the bath surface increases with the decreasing arc length, but it does not keep growing. For example, for the arc plasma with 10kA current, the critical length is 3cm. The model can also be used to calculate the arc power, arc voltage, and arc efficiency, and the results are important for the boundary condition settings of the molten bath in the DC arc furnace.
     A twin-electrode DC submerged arc furnace has been designed for MgO production and this technique has been found to be another effective method to grow high quality MgO crystals. In order to describe the environment of crystal growth and estimate some important parameters, we present a three-dimensional magnetohydrodynamic model of the DC furnace to investigate the heat and fluid flow phenomena in the bath. It is assumed that the flow direction is dominated by the Lorentz Forces. The shape of the melt-solid interface is found to be significantly affected by the electromagnetic stirring. It is observed that the environment is more suitable for the crystal growth between each electrode bottom and the shell, and the stable environment may be affected by the variation of the flow field which is determined by the current. For example, the shape of the bath is significantly affected with a large current of 10kA, and the volume of the bath becomes much smaller when the current is 6kA. The predicted shape of the molten bath shows good agreement with the experiments. Other detailed information including the electric power of arc, the arc efficiency, the voltage drop of arcs, the resistance of the bath and the Joule heating power is also given approximately by the model to improve the operation strategy.
     AC submerged arc furnace designed for MgO production is still universally used nowadays. For this method, a three-dimensional finite element method based model of the furnace is presented. It is assumed that the furnace is three-phase balanced and is in a steady state. The arc efficiency, voltage drop of the arcs, arc heating power and the Joule heating power of the bath are calculated approximately. The results reveal that the temperature control of the furnace begins to more depend on the Joule heating power rather than arc heating power if the current becomes small. The Joule heating power may prolong the crystal growth time in the second and last stages. It is also found that the formation of the molten bath is significantly affected by the electromagnetic stirring which is determined by the current. The predicted bath shape agrees well with the measurements. In experiments the high quality MgO crystals were mainly around the bottom of the bath but the largest ones always appeared between each electrode bottom and the shell. Results calculated by the model are from three cases with currents of 12kA, 10kA and 6kA. It is found that the crystal growth environment will not significantly affected by the current fluctuation. The radial distance of the bath's boundary is about 0.75m. Comparing with the DC method, a stable temperature field and a small disturbance of the electromagnetic stirring allow larger crystals to be formed in these locations.
引文
[1]胡庆福.镁化合物生产与应用[M].北京:化学工业出版社2004.
    [2]王科.单晶MgO基片化学机械抛光机理与工艺研究[D].大连:大连理工大学,2010.
    [3]李俊丽.盐湖卤水制备硅钢级MgO的研究[D].长沙:中南大学,2008.
    [4]郝福忱.浅谈矿石烧结电熔镁砂[J].沈阳市:盖州市产品质量监督检验所,2008.
    [5]张宏娟.高纯MgO的清洁生产工艺[D].济南:山东大学,2006.
    [6]黄西平,张琦,郭淑元,王功伟.我国镁资源利用现状及开发前景[J].海湖盐与化工,2004,33(6):1-6.
    [7]http://www.surfacenet.de/html/arc_furnace_puller. html
    [8]http://samhwaem. co.kr/english/index.htm
    [9]董滨.电熔镁炉新型控制系统研究与开发[D].沈阳:东北大学,2008.
    [10]王富力.电熔镁炉控制半实物仿真实验系统设计与开发[D].沈阳:东北大学,2009.
    [11]http://www.azom.com/
    [12]李军,宋伟.电熔镁产业发展研究[J].冶金能源,2010,29(4):8-10.
    [13]尹丽文.国外镁砂生产能力变化及应用领域新动向.http://www.chinamining.com.cn.
    [14]EDGERLEY C J, SMITH L, WILFORD C F. Electric metal melting-a review[J]. Power Engineering Journal,1988,2(2):83-93.
    [15]http://en.wikipedia.org/wiki/Electric_arc_furnace.
    [16]KUNZE J, DEGEL R. New trends in submerged arc furnace technology [C]. In 10th int. ferroalloy congress. INFACON X, Cape Town, South Africa,2004:444-454.
    [17]TEOH L L. Electric arc furnace technology-recent development and future trends [J]. Ironmaking and Steelmaking,1989,16(5):303-313.
    [18]DEGEL R, SCHREITER T, SCHMIEDEN H. Rectangular furnace design and revolutionary DC-slag cleaning technology for the PGM industry [C]. International Platinum Conference'Platinum Surges Ahead',2006:237-245.
    [19]BOULOS M, FAUCHAIS P, PFENDER E. Diagnositic Techniques in Thermal Plasma Processing [C]. Part 1 and Part 2. Report DOE No. DOE/ER-0270,1986.
    [20]ETEMADI K. Investigation of High-current Arcs by Computer-controlled Plasma Spectroscopy [D]. Minneapolis:University of Minnesota,1982.
    [21]GREY J. Probe measurements in high temperature gases and dense plasma [M]//Eckert E R G, Goldstein R J. Measurement in Heat Transfer. New York:McGraw-Hill,1976: 337-374.
    [22]FINCKE J R, CRAWFORD D M, SNYDER S C, et al. Entrainment in high-velocity, high-temperature plasma jets. Part I. experimental results [J]. International Journal of Heat and Mass Transfer,2003,46:4201.
    [23]BOWMAN B, JORDAN G R, FITZGERALD F. The physics of high-current arcs [J]. Journal of the Iron and Steel Institute (June),1969,798-805.
    [24]BOWMAN B. Measurements of plasma velocity distributions in free-burning DC arcs up to 2160A [J]. Journal of Physics D:Applied Physics,1972,4(5):1422-1434.
    [25]BOWMAN B. Properties of arcs in DC furnaces [C]. In:Electric Furnace Conference Proceedings,1994,111-120.
    [26]BOWMAN B. Effects on furnace arcs of submerging by slag [J]. Ironmaking and Steelmaking,17(2):123-129.
    [27]REYNOLDS Q G, JONES R T. Semi-empirical modelling of the electrical behaviour of DC-arc smelting furnaces [J]. The Journal of The South African Institute of Mining and Metallurgy,2004,104(6):345-351.
    [28]JONES R T, REYNOLDS Q G, ALPORT M J. DC arc photography and modeling [J], Minerals Engineering,2002,15:985-991.
    [29]REYNOLDS Q G, JONES R T, REDDY B D. Mathematical and computational modelling of the dynamic behaviour of direct current plasma arcs [C]. The Twelfth International Ferroalloys Congress,2010:789-802.
    [30]REYNOLDS Q G, JONES R T. Twin-electrode DC smelting furnaces-theory and photographic testwork [J]. Minerals Engineering,2006,19(3):325-333.
    [31]RAMIREZ M, GONZALEZ C, TRAPAGA G. Mathematical Modeling of High Intensity Electric Arcs Burning in Different Atmospheres [J]. ISIJ International,2009,49 (6): 796-803.
    [32]ZHAO P, MENG Y D, YU X Y, et al. Energy Balance in DC Arc Plasma Melting Furnace [J]. Plasma Science and Technology,2009,11(2):206-210.
    [33]SMIRNOV S A, KALAEV V V, HEKHAMIN S M, et al. Mathematical simulation of electromagnetic stirring of liquid steel in a DC arc furnace [J]. High Temperature, 2010,48(1):68-76.
    [34]GU L P, IRONS G A. Physical modeling of fluid flow in electric arc furnaces [C]. Proceedings of the 55th electric furnace conference, Chicago, U.S.A,1997: 651-659.
    [35]GU L P, IRONS G A. Physical and mathematical modeling of fluid flow in electric arc furnaces [C]. Proceedings of the 56th electric furnace conference, New Orleans, U.S. A,1998:413-420
    [36]GU L P, IRONS G A. Physical and mathematical modeling of oxygen lancing and arc jetting in electric arc furnaces [C]. Proceedings of the 57th electric furnace conference, Pittsburgh, U. S.A,1999:269-278.
    [37]USHIO M, SZEKELY J, CHANG C W. Mathematical modelling of flow field and heat transfer in high-current arc discharge [J]. Ironmaking and Steelmaking,1981, 6:279-286.
    [38]SZEKELY J, MCKELLIGET J, CHOUDHARY M. Heat-transfer fluid flow and bath circulation in electricarc furnaces and dc plasma furnaces [J]. Ironmaking and Steelmaking,1983,10(4):169-179.
    [39]MCKELLIGET J W, SZEKELY J. A mathematical model of the cathode region of a high intensity carbon arc [J]. Journal of Physical D:Applied Physics,1983,16: 1007-1022.
    [40]QIAN F, FAROUK B, MUTHARASAN R. Modeling of fluid flow and heat transfer in the plasma region of the dc electric arc furnace [J]. Metallurgical and Materials Transactions B,1995,26B:1057-1067.
    [41]ALEXIS J, RAMIREZ M, TRAPAGA G, et al. Modeling of heat transfer from an electric arc-a simulation of heating-Part Ⅰ [C]. Electric Furnace Conference Proceedings,1999:279-287.
    [42]RAMIREZ M, TRAPAGA G, ALEXIS J, et al. Effects of the Arc, Slag and Bottom bubbling of argon on the fluid flow and heat transfer of a DC EAF Bath-Part Ⅱ [C]. Electric Furnace Conference Proceedings,1999:751-761.
    [43]ALEXIS J, RAMIREZ M, TRAPAGA G, et al. Modeling of a DC Electric Arc Furnace-Heat Transfer from the Arc [J]. ISIJ International,2000,40(11):1089-1097.
    [44]RAMIREZ M, TRAPAGA, MCKELLIGET J. Fluid flow and heat transfer in steel or steel/slag baths of a DC electric arc furnace under the influence of the arc and gas injection [C]. The Brimacombe Memorial Symposium, Vancouver, British Columbia, Canada,2000.
    [45]RAMIREZ M, TRAPAGA G. Mathematical modeling of a DC electric arc-Dimensionless representation of a DC arc [J]. ISIJ International,2003,43(8):1167-1176.
    [46]GUO D, IRONS G. Modeling of radiation intensity in an EAF [C]. Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia,2003.
    [47]BERMUDEZ A, BULLON J, PENA F. A finite element method for the thermoelectrical modelling of electrodes [J]. Communications in Numerical Methods in Engineering, 1998,14:581-593.
    [48]BERMUDEZ A, BULL6N J, MUNIZ M, et al. Numerical computation of the electromagnetic field in the electrodes of a three-phase arc furnace [J]. International Journal for Numerical Methods in Engineering,1999,46:649-658.
    [49]BERMUDEZ A, BULLON J, PENA F, et al. A numerical method for transient simulation of metallurgical compound electrodes [J]. Finite Elements in Analysis and Design, 2003,39:283-299.
    [50]DAVID F, TUDORACHE T, FIRTEAN V. Numerical evaluation of electromagnetic field effects in electric arc furnaces [J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2001,20:619-635.
    [51]MC DOUGALL I. Finite element modelling of electric currents in ac submerged arc furnaces [C]. Proceedings of INFACON XI, Macmillan India, Delhi,2007,2:630-637.
    [52]CAFFERY G, WARNICA D, MOLLOY N, et al. Temperature Homogenisation in an electric arc furnace steelmaking bath [C]. Proceedings of the International Conference on CFD in Mineral and Metal Processing and Power Generation. CSIRO,1997:87-99.
    [53]YANG Y, XIAO Y, REUTER M A. Analysis of transport phenomena in submerged arc furnace for ferrochrome production [C]. Tenth International Ferroalloys Congress, Cape Town, South Africa,2004:15-25.
    [54]KIYOUMARSI A, NAZARI A, ATAEI M, et al. Three dimensional analysis of an AC electric arc furnace [C]. IECON Proceedings (Industrial Electronics Conference), Proceedings - IECON 2009,35th Annual Conference of the IEEE Industrial Electronics Society,2009:3697-3702.
    [55]KIYOUMARSI A, NAZARI A, ATAEI M, et al. Electromagnetic analysis of an AC electric arc furnace including the modeling of an AC arc [J]. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2010,29(3):667-685.
    [56]SCHEEPERS E, YANG Y, REUTER M A, et al. A dynamic-CFD hybrid model of a submerged arc furnace for phosphorus production [J]. Minerals Engineering,2006,19: 309-317.
    [57]SCHEEPERS E, ADEMA A T, Y YANG, et al. The development of a CFD model of a submerged arc furnace for phosphorus production [J]. Minerals Engineering,2006,19: 1115-1125.
    [58]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004.
    [59]JIN J M. The Finit Element Method in Electromagnetics (2nd ed) [M]. NewYork:John Wiley and Sons, Inc.,2002.
    [60]李珣.基于磁感应磁声成像的生物电阻抗成像技术研究[D].杭州:浙江大学,2009.
    [61]程志光.电气工程涡流问题的分析与验证[M].北京:高等教育出版社,2001.
    [62]美国ANSYS公司北京办事处.ANSYS电磁学分析指南[R],1998.
    [63]BIRO 0, PREIS K. On the Use of the Magnetic Vector Potential in the Finite Element Analysis of 3D Eddy Currents [J]. IEEE Transactions on Magnetics,1989,25(4): 3145-3159.
    [64]BIRO 0, PREIS K. Finite Element Analysis of Three-Dimensional Eddy Currents, IEEE Transactions on Magnetics,1990,26(2):418-23.
    [65]Nedelec J C. Mixed Finite Elements in R3 [J]. Numerical Methods.1980,35:315-341.
    [66]VAN WELIJ J S. Calculation of Eddy Currents in Terms of H on Hexahedra [J]. IEEE Transactions on Magnetics.1982,18:431-435.
    [67]KAMEARI A. "Calculation of Transient 3D Eddy Current Using Edge Elements", IEEE Transactions on Magnetics,1990,26:466-469.
    [68]JIN J. The Finite Element Method in Electromagnetics [M]. John Wiley and Sons, Inc., New York,1993.
    [69]GYIMESI M, OSTERGAARD D. Non-Conforming Hexahedral Edge Elements for Magnetic Analysis [R]. ANSYS, Inc. internal development, submitted to COMPUMAG. Rio.1997.
    [70]OSTERGAARD D, GYIMESI M. Analysis of Benchmark Problem TEAM20 with Various Formulations [C]. Proceedings of the TEAM Workshop, COMPUMAG Rio.1997:18-20.
    [71]OSTERGAARD D, GYIMESI M. Magnetic Corner:Accurate Force Computations [J]. Analysis Solutions.1997-98,1(2):10-11.
    [72]GYIMESI M, OSTERGAARD D. Mixed Shape Non-Conforming Edge Elements [J]. IEEE Transactions on Magnetics,1999,35(3):1406-1409.
    [73]周克定.工程电磁场数值计算的理论方法及应用[M].北京:高等教育出版社,1994.
    [74]PATANKAR S V, SPALDING D B. A calculation procedure for heat, mass and momentum transfer in 3-D parabolic flows [J]. International Journal of Heat and Mass Transfer,1972,15:1787-1806.
    [75]SCHNIPKE R J, RICE J G. Application of a new finite element method to convection heat transfer [C]. Fourth International Conference on Numerical Methods in Thermal Problems, Swansea, U.K., July 1985.
    [76]VAN DOORMAAL J P, RAITHBY G D. Enhancements of the SIMPLE method for predicting incompressible fluid flows [J]. Numerical Heat Transfer,1984,7:147-163.
    [77]WANG G. A fast and robust variant of the SIMPLE algorithm for finite-element simulations of incompressible flows [J]. Computational Fluid and Solid Mechanics, 2001, (2):1014-1016.
    [78]LAUNDER B E, SPALDING D B. The Numerical Computation of Turbulent Flows [J]. Computer Methods In Applied Mechanics and Engineering,1974,3:269-289.
    [79]陈熙.热等离子体传热与流动[M].北京:科学出版社,2009.
    [80]LU F G, TANG X H, YU H L, et al. Numerical simulation on interaction between TIG welding arc and weld pool [J]. Computational Materials Science,2006,35:458-465.
    [81]周前红.直流电弧等离子体炬的数值模拟[D].上海:复旦大学,2009.
    [82]JOHANSEN S T. Mathematical modeling of metallurgical processes [C]//Third International Conference on CFD in the Minerals and Process Industries, Melbourne: CSIRO,2003:5-12.
    [83]秦勤,岳强,顾根华,等.双电极直流电熔镁埋弧电弧炉[J].东北大学学报(自然科学版),2003,24(7):685-688.
    [84]SHAMSI M R R I. Two-dimensional turbulent heat and fluid flow model to study effect of working gas and other process parameters on heat transfer in plasma furnace [J]. Ironmaking and Steelmaking,2009,36(2):97-104.
    [85]WANG F H, JIN Z J, ZHU Z S. Fluid Flow Modeling of Arc Plasma and Bath Circulation in DC Electric Arc Furnace [J]. Journal of iron and steel research, international, 2006,13(5):07-13.
    [86]王丰华,金之俭,朱子述.直流电弧炉电弧等离子体射流的数值模拟.高压电器,2005,41(4):241-244.
    [87]LOWKE J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes[J]. Journal of Physics D:Applied Physics,1997,30:2033-2042.
    [88]王丰华.电弧炉建模研究及其应用[D].上海:上海交通大学,2006.
    [89]RAMIREZ M. Mathematical Modeling of DC electric arc furnace operations [D]. U. S. A, Massachusetts Institute of technology,2000.
    [90]CAPITELLI M, COLONNA G, GORSE C, et al. Transport Propertied of High Temperature Air in Local Thermodynamic Equilibrium [J]. The European Physical Journal D,2000, 11:279-289.
    [91]SLIFKA A J, FILLA B J, PHELPS J M. Thermal Conductivity of Magnesium Oxide From Absolute, Steady-State Measurements [J]. Journal of Research of the National Institute of Standards and Technology,1998,103:357-363.
    [92]YE D L, HU J H. Practical Thermodynamic Data Handbook of Inorganic Substances [M]. Snd ed. Beijing:Metallurgical Industry Press,2002.
    [93]LEU A, MA S, EYRING H. Properties of Molten Magnesium Oxide [J]. Proceedings of the National Academy of Sciences, USA,1975,72:1026-1030.
    [94]WANG F, JIN Z, ZHU Z. Numerical study of DC arc plasma with the molten bath in DC electric arc furnace [J]. Ironmaking Steelmaking,2006,33(1):39-44.
    [95]BAKKEN J A, GU L, LARSEN H L, et al. Simple model for AC arcs in electro-metallurgical furnaces [J], Journal of Engineering Physics and Thermophysics,1997,70:2339-2344.
    [96]ZHANG X, XUE D F, XUA D L, et al. Growth of large MgO single crystals by an arc-fusion method [J]. Journal of Crystal Growth,2005,280:234-238.
    [97]SOEVARSDOTTIR G A, BAKKEN J A, SEVASTYANENKO V G, et al. Modelling of AC arcs in submerged-arc furnaces for production of silicon and ferrosilicon [J]. Iron Steelmaker,2001,28(10):51-57.
    [98]ORTIZ U, AGUILAR J, ESPARZA C, et al. Production of MgO in an electric arc furnace thermal analysis [J], Modelling and Simulation in Materials Science and Engineering, 1997,5:347-356.
    [99]佟玉鹏,张雄,张化光.交流三相电熔镁炉的最佳运行分析[J].控制工程,2007,14(2):205-211.
    [100]LARSEN H L, HILDAL A, SEVASTYANENKO V G, et al. Numerical Modelling of AC Electric Arcs [C], ISPC-12, Minneapolis, USA,1995.
    [101]OKADA I, UTSUNOMIYA Y, UCHIDA H, et al. MD simulation of crystal growth MgO melt [J]. Journal of Molecular Liquids,2002,98-99:191-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700