用户名: 密码: 验证码:
Cu-Ni-Sn-Ti活性钎料的研究及其与c-BN的连接
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立方氮化硼(Cubic Boron Nitride,简称c-BN)的硬度高,抗氧化性强,具有优越的物理、化学和热稳定性能,尤其是避免了金刚石制品加工铁基合金材料发生化学反应的局限性,被国际材料界作为金刚石的替代材料。c-BN制品非常适合加工黑色铁基合金材料、钛合金和高硅铝合金等硬度高韧性大的金属材料,广泛地应用在精密加工、石材加工、汽车制造、机械加工、建材、航空航天及新材料加工等领域。c-BN的延性与冲击韧度低,机械加工性能差,限制其二次开发应用。本文针对c-BN与金属基体连接困难,结合强度低,常在高温条件下工作等问题,开展了以Cu作为活性钎料的基础成分,添加Ni、Sn和Ti等元素的多元铜基活性钎料及其与c-BN连接技术的研究。采用二次回归混料试验设计方法,优化钎料成分;通过SEM、EDS和XRD等方法研究CuNi_5Sn_(5.1)Ti_(11.1)活性钎料钎焊c-BN的界面微观结构和组织,揭示了钎料与c-BN界面冶金结合形成机制;探讨了界面残余应力的分布。
     依据键参数理论计算及试验结果,选择Ti元素作为钎焊c-BN多元铜基活性钎料的活性元素。通过对In、Sn、Al、Ag、Pb、Bi和Ga等元素的筛选,并研究In和Sn元素对多元铜基活性钎料组织、性能及钎焊c-BN焊接性的影响,从而选择Sn元素作为多元铜基活性钎料的合金元素。试验研究确定多元铜基活性钎料的组元为Cu、Ni、Sn和Ti。活性元素Ti的含量对Cu-Ni-Sn-Ti系钎料与其钎焊c-BN的微观结构和性能有直接影响。Ti含量增加,钎料对c-BN的润湿性提高,钎料与c-BN间的相互作用加剧,相互作用产生的脆性化合物增多会降低钎料与c-BN界面结合强度,因此Ti含量需要进行优化设计。
     采用兼有上下界约束的极端顶点设计方法,对Cu-Ni-Sn-Ti活性钎料成分进行优化分析,建立二阶规范多项式回归模型,计算得到用于钎焊c-BN的Cu-Ni-Sn-Ti活性钎料的最佳成分,(wt%) Ti:11.1%;Sn:5.1%;Ni:5%,余量为Cu。采用DSC差热分析仪测得CuNi_5Sn_(5.1)Ti_(11.1)活性钎料的熔化温度区间为834.6-1000℃。粉状CuNi_5Sn_(5.1)Ti_(11.1)活性钎料对c-BN聚晶复合片的润湿角为28~(-3)0°,对c-BN颗粒的润湿性也很好。CuNi_5Sn_(5.1)Ti_(11.1)活性钎料钎焊c-BN颗粒,界面处Ti元素呈梯度分布,Ti与c-BN颗粒在界面处发生相互作用,实现化学冶金结合。
     研究工艺参数对CuNi_5Sn_(5.1)Ti_(11.1)活性钎料钎焊c-BN界面微观结构与性能的变化规律。结果表明,随着钎焊温度提高和保温时间延长,界面处钎料中的活性元素Ti与c-BN间的相互作用加剧,相互作用产生的新相增多,界面形成的反应层变宽,对CuNi_5Sn_(5.1)Ti_(11.1)钎料/c-BN界面结合强度有直接影响。当真空度高于9.0×10~(-3)Pa,钎焊温度T=1100℃,保温时间t=10min时,钎料/c-BN界面的结合强度较高。
     热力学和动力学分析表明,在钎焊过程中,钎料中的活性元素Ti与c-BN发生化学反应,生成具有一定金属性和陶瓷性的Ti-N和Ti-B化合物,对钎料与c-BN间的物理化学性质起到过渡作用,界面实现化学冶金结合,形成钎料/TiN/TiB/TiB2/c-BN的结构形式,有利于提高钎料与c-BN界面的结合强度,从而揭示了CuNi_5Sn_(5.1)Ti_(11.1)活性钎料钎焊c-BN界面的形成机制。
     采用有限元分析方法研究了CuNi_5Sn_(5.1)Ti_(11.1)活性钎料钎焊c-BN界面连接的大小和分布,残余应力较大值出现在钎料与c-BN接触的最高点处。c-BN的包埋深度会影响界面残余应力的大小和分布。在c-BN包埋35%-75%范围内,随着包埋深度的增加,界面残余应力增大。考虑减小钎焊c-BN所产生的残余应力,满足c-BN颗粒的强度要求,c-BN颗粒的最佳包埋深度为30%-40%。
The cubic boron nitride (c-BN) has some distinguished properties, such as extremely high hardness, good oxidation resistance ability and excellent physical, chemical properties and superior thermal stability. Especially the c-BN does not react with black iron-based alloys while the diamond will do. The c-BN is considered the alternative material of diamond by international materials community. c-BN products are very suitable for machining materials with high hardenss and great tenacity, such as iron-based alloys, titanium alloys and high-silicon aluminum alloys, and so on. c-BN is comprehensively applied to produce various tools or superabrasive against abrasion in the field of precision processing, stone materials processing, auto manufacture, mechanical processing, constructional materials, aviation, new materials processing, and so on. The range and field of application for c-BN is restricted due to the poor processing property of c-BN superhard material. In this paper, aimed at the difficult joining between c-BN and metal substrate, poor joining strength, working at high temperature and other issues, a new type of multi-component Cu-based active filler metal adding Ni, Sn and Ti elements is developed and the brazing mechanism of c-BN brazed with new Cu-based active filler metal is analyzed. The quadratic regression mixture experiment design method is adopted to optimize the composition of Cu-Ni-Sn-Ti active filler metal. The microstructure of the interface between c-BN and CuNi_5Sn_(5.1)Ti_(11.1) active filler metal is researched by means of SEM, EDS and XRD, which reveal the interfacial formation mechanism. The distribution of interfacial residual stress is studied.
     According to the theoretical calculation of bond parameters and the experimental results, Ti elements are chosen as active elements of the Cu-based active filler metal for brazing c-BN. By the screen analysis of In, Sn, Al, Ag, Pb, Bi and Ga and other elements and the research on effects of In and Sn elements on the microstructures and properties of multi-component Cu-based active filler metal and the weldability of brazing c-BN, Sn elements are identified as alloy elements of the multi-component Cu-based active filler metal for brazing c-BN. Experimental results show that elements of new Cu-based active filler metal are Cu, Ni, Sn and Ti. Ti contents have effect on microstructures and properties of the Cu-Ni-Sn-Ti active filler metal and brazing c-BN. As Ti contents increase, the wettability of Cu-Ni-Sn-Ti active filler metal on c-BN is improved and the interaction between the filler metal and c-BN is intensified. The brittle compounds resulting from the interaction have an increase, which reduce the interfacial strength between the filler metal and c-BN. Therefore, the Ti contents in the filler metal need to optimize the design.
     By the method of extreme vertices design constrained by both upper and lower bounds, the composition of Cu-Ni-Sn-Ti active filler metal is optimized and the regression model of second order polynomial is established. The optimal composition of the Cu-Ni-Sn-Ti active filler metal is Ti:11.1wt.%, Sn:5.1wt.%, Ni:5wt.%, and margin is Cu. The melting temperature range of CuNi_5Sn_(5.1)Ti_(11.1) active filler metal is 834.6-1000℃measured by differential thermal analyzer. The wetting angle of c-BN polycrystalline wet powder CuNi_5Sn_(5.1)Ti_(11.1) active filler metal is 28-30°and the CuNi_5Sn_(5.1)Ti_(11.1) active filler metal exhibits a good wettability on c-BN grains. During the process of brazing, Ti elements in the active filler metals interact with c-BN grains to achieve chemical metallurgical joining at the interface.
     The microstructures and mechanical properties of CuNi_5Sn_(5.1)Ti_(11.1) active filler metal/ c-BN interface have been studied through changing processing parameters. The results show that, with the increase of the brazing temperature and the extension of the holding time, the interaction between Ti elements and c-BN enhances and new generating phases at interface increase, which have an important effect on the joining strength of CuNi_5Sn_(5.1)Ti_(11.1) filler metal/c-BN interface. When vacuum degree is above 9.0×10-3Pa, brazing temperature is T=1100℃and holding time is t=10min, the interfacial joining strength is higher.
     The formation mechanism of the interface between CuNi_5Sn_(5.1)Ti_(11.1) active filler metal and c-BN is discovered after the thermodynamics and kinetics analysis. During the brazing process, the chemical reaction occurs between active element Ti and c-BN. The compounds with certain metal and ceramic characteristics of Ti-N and Ti-B are pruduced, which play good transitional roles in the chemical and physical performance between CuNi_5Sn_(5.1)Ti_(11.1) active filler metal and c-BN. The filler metal/c-BN interface realizes the chemical metallurgical combination. The structure of filler metal /TiN/TiB/TiB2/c-BN is formed at interface, helping to improve the interfacial joining strength.
     Residual stress and its distribution on CuNi_5Sn_(5.1)Ti_(11.1) filler metal/c-BN interface are studied with finite element analysis method. The results show that the larger residual stress value appears at the highest contact point between filler metal and c-BN. The embedding depth of c-BN will affect the value and distribution of interfacial residual stress. In c-BN embedded in 35%-75% range, the interfacial residual stress increases with the increase of the embedding depth. In order to reduce the residual stresses generated brazing c-BN, ensure the c-BN strength requirements, the embedding depth of c-BN in the filler metal is feasible to be controlled at 30%-40% of the whole c-BN grain.
引文
[1] MASATO O, AKIRA H, RYUTARO T, et al. Cutting performance of PVD-coated carbide and CBN tools in hardmilling [J]. International Journal of Machine Tools and Manufacture, 2011, 51(2): 127-132.
    [2] VITOR A A G, ANSELMO E D. Turning of interrupted and continuous hardened steel surfaces using ceramic and CBN cutting tools [J]. Journal of Materials Processing Technology, 2011, 211(6): 1014-1025.
    [3] UHLMANN E, FUENTES J A O, KEUNECKE M. Machining of high performance workpiece materials with CBN coated cutting tools [J]. Thin Solid Films, 2009, 518(5): 1451-1454.
    [4] SAHIN Y, MOTORCU A R. Surface roughness model in machining hardened steel with cubic boron nitride cutting tool [J]. International Journal of Refractory Metals & Hard Materials, 2008, 26(2): 84-90.
    [5] CHATTOPADHYAY A K, HINTERMANN H E. On brazing of cubic boron nitride abrasive crystals to steel substrate with alloys containing Cr or Ti [J]. Journal of Materials Science, 1993, 28(21): 5887-5893.
    [6]邹僖.钎焊[M].北京:机械工业出版社, 1989.
    [7] ZHANG Y, FENG D, HE Z Y, et al. Progress in joining ceramics to metals [J]. Journal of Iron and Steel Research, International, 2006, 13(2): 1-5.
    [8] PETEVES S D, CECCONE G, PAULASTO M, et al. Joining silicon nitride to itself and to metals [J]. JOM-Journal of the Minerals Metals & Materials Society, 1996, 48(48-52): 74-77.
    [9] NICHOLAS M G. Reactive metal brazing of ceramics [J]. Scandinavian Journal of Metallurgy, 1991, 20(2): 157-164.
    [10] LI J G. Wetting of ceramic materials by liquid silicon, aluminium and metallic melts containing titanium and other reactive elements: a review [J]. Ceramics International, 1994, 20(6): 391-412.
    [11] PETEVES S D. Joining nitride ceramics [J]. Ceramics International, 1996, 22(6): 527-533.
    [12]陈铮.陶瓷-金属活性金属钎焊研究的现状和进展[J].华东船舶工业学院学报(自然科学版), 2001, 15(2): 1-7.
    [13]胡军峰,杨建国,方洪渊,等.陶瓷高温活性钎焊研究综述[J].宇航材料工艺, 2003, 33(5): 1-7. 95
    [14]熊华平,毛唯,陈波,等.陶瓷及陶瓷基复合材料高温钎料的研究现状与进展[J].焊接, 2008, 11: 19-24.
    [15] LUGSCHEIDER E. Development and characterization of joining techniques for dispersion-strengthened alumina [J]. Welding Journal, 1997, 76(9): 349-355.
    [16]王金明,李明利.贵金属材料[J].贵金属, 1997, 18 (增刊): 70-74.
    [17]竹本正.活性ろうによる最近のャラミツヶスろう付[J].溶接技术, 1995, 43(4): 68-74.
    [18]佐藤佳男.最近の真空ろう付[J].溶接技术, 1999, 47(4): 98-102.
    [19] ISEKI T, YANO T. Brazing of SiC ceramics with active metal [J]. Materials Science Forum, 1991, 34-36: 421-425.
    [20] TILLMANN E, LUGSCHEIDER E, SCHLIMBACHK, et al. Heat-resistant active brazing of silicon nitride [J]. Welding Journal, 1997, 76(8): 300-304.
    [21] KIM J H, YOO Y C. Bonding of alumina to metals with Ag-Cu-Zr brazing alloy [J], Journal of Materials Science Letters, 1997, 16(14): 1212-1215.
    [22] HAO H Q, WANG Y L, JIN Z H, et al. Joining of zirconia to zirconia using Ag-Cu-Ti fillr metal [J]. Journal of Materials Processing Technology, 1995, 52(2-4): 238-247.
    [23] PAULASTO M, KIVILAHTI J K. Formation of interfacial microstructure in brazing of Si3N4 with Ti-activated Ag-Cu filler alloys [J]. Scripta Metallurgics et Materialia, 1995, 32(8): 1209-1214.
    [24] NAKANURA M, SHIGEMATSU I. Joining of Si-Ti-C-O fiber-assembled ceramic composites with 72Ag-26Cu-2Ti filler metal [J]. Journal of Material Science, 1996, 31(22): 6099-6104.
    [25] ELSAWY A H, FAHMY M F. Brazing of Si3N4 ceramic to copper [J]. Journal of Materials Processing Technology, 1998, 77(1-3): 266-272.
    [26] HANSON W B, IRONSIDE K I, FERNIE J A. Active metal brazing of zirconia [J]. Acta Materialia, 2000, 48(18-19): 4673-4676.
    [27] SCITI D, BELLOSI A, ESPOSITO L. Bonding of zirconia to super alloy with the active brazing technique [J]. Journal of the European Ceramic Society, 2001, 21(1): 45-52.
    [28] SMORYGO O, KIM J S, KIM M D, et al. Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu-Ag-Ti filler/Ti active brazing joints [J]. Materials Letters, 2007, 61(2): 613-616.
    [29] NING H L, GENG Z T, MA J S, et al. Joining of sapphire and hot pressed Al2O3 using Ag70.5Cu27.5Ti2 brazing filler metal [J]. Ceramics International, 2003, 29(6): 689-694.
    [30] MANDAL S, RAY K A, RAY K A. Correlation between the mechanical propertiesand the microstructural behaviour of Al2O3-(Ag-Cu-Ti) brazed joints [J]. Materials Science and Engineering A, 2004, 383(2): 235-244.
    [31] KAR A, MANDAL S, VENKATESWARLU K, et al. Characterization of interface of Al2O3-304 stainless steel braze joint [J]. Materials Characterization, 2007, 58(6): 555-562.
    [32] NASCIMENTO R M, MARTINELLI A E, BUSCHINELLI A J A, et al. Interface microstructure of alumina mechanically metallized with Ti brazed to Fe-Ni-Co using different fillers [J]. Materials Science and Engineering A, 2007, 466(1-2): 195-200.
    [33] LIU G W, QIAO G J, WANG H J, et al. Pressureless brazing of zirconia to stainless steel with Ag-Cu filler metal and TiH2 powder [J]. Journal of the European Ceramic Society, 2008, 28(14): 2701-2708.
    [34] LIU G W, LI W, QIAO G J, et al. Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing [J]. Journal of Alloy and Compounds, 2009, 470(1-2): 163-167.
    [35] ZHANG J, HE Y M, SUN Y, et al. Microstructure evolution of Si3N4/Si3N4 joint brazed with Ag-Cu-Ti+SiCp composite filler [J]. Ceramics International, 2010, 36(4), 1397-1404.
    [36] HE Y M, ZHANG J, LIU C F, et al. Microstructure and mechanical properties of Si3N4/Si3N4 joint brazed with Ag-Cu-Ti+SiCp composite filler [J]. Materials Science and Engineering A, 2010, 527(12): 2819-2825.
    [37] CHATTOPADHYAY A K, HINTERMANN H E. New generation superabrasive tool with monolayer configuration, Diamond and Related Materials, 1992, 1(12): 1131-1143.
    [38] CHATTOPADHYAY A K, CHOLLET L, HINTERMANN H E. Improved monolayer CBN wheel for load free grinding, Journal of Machine Tools & Manufacturing, 1992, 32(4): 571-588.
    [39] SECHI Y, TSUMURA T, NAKATA K. Dissimilar laser brazing of boron nitride and tungsten carbide [J]. Materials and Design, 2010, 31(4): 2071-2077.
    [40] VIANCO P T, STEPHENS J J, HLAVA P F, et al. A barrier layer approach to limit Ti scavenging in FeNiCo/Ag-Cu-Ti/Al2O3 active braze joints [J]. Welding Journal, 2003, 82(9): 252-262.
    [41] YANG C Y, XU J H, DING W F, et al. Effect of cerium on microstructure, wetting and mechanical properties of Ag-Cu-Ti filler alloy [J]. Journal of Rare Earths, 2009, 27(6): 1051-1055.
    [42]高陇桥.陶瓷-金属材料实用封接技术[M].北京:化学工业出版社, 2005.
    [43] LEE D B, WOO J H, PARK S W. Oxidation behavior of Ag-Cu-Ti brazing alloys [J]. Materials Science and Engineering A, 1999, 268(1-2), 202-207.
    [44] RIJNDERS M R, PETEVES S D. Joining of alumina using a V-active filler metal [J]. Scripta Materialia, 1999, 41(10):1137-1146.
    [45]庄鸿寿, E.罗格夏特.高温钎焊[M].北京:国防工业出版社, 1989.
    [46] LUGSCHEIDER E, RUIZ L M. International conference on advance in joining and cutting [C]. UK: Abington Publishing, 1989.
    [47] HADIAN M A, DREW A L R. Strength and microstructure of silicon nitride ceramics brazed with nickel-chromium-silicon alloys [J]. Journal of the American Ceramic Society, 1996, 79(3): 659-665.
    [48]张弈奇.工程陶瓷/金属的高温钎焊[J].焊接, 1998, 11: 12-14.
    [49] DUROV A V, KOSTJUK B D, SHEVCHENKO A V, et al. Joining of zirconia to metal with Cu-Ga-Ti and Cu-Sn-Pb-Ti fillers [J]. Materials Science and Engineering A, 2000, 290(1-2): 186-189.
    [50] YU Z S, WU M F, LIANG C, et al. Interfacial morphology and strength of Al2O3/ Nb joints brazed with Cu-Ti-Zr filler metal [J]. Materials Science and Technology, 2002, 18 (1): 99-102.
    [51] WAN C G, XIONG H P, ZHOU Z F. Joining of Si3N4/Si3N4 with CuNiTiB paste brazing filler metals and interfacial reactions of joints [J]. Materials Science, 1999, 4 (12): 3013-3019.
    [52] TILLMANN W, LUGSCHEIDER E, SCHLIMBACH K, et al. Heat-resistant active brazing of silicon nitride, partⅡ: mechanical evaluation of braze joints [J]. Welding Journal, 1998, 77(3): 103-109.
    [53] ASTHANA R, SINGH M. Joining of ZrB2-based ultra-high-temperature ceramic composites using Pd-based braze alloys [J]. Scripta Materialia, 2009, 61(3): 257-260.
    [54] HOSKING F M, CADDEN C H, YANG N Y C, et al. Microstructural and mechanical characterizations of actively brazed alumina tensile specimens [J]. Welding Journal, 2000, 78 (6): 222-230.
    [55] PAULASTO M, CECCONE G, PETEVES S D, et al. Brazing of Si3N4 with Au-Ni-V-Mo filler alloy [J]. Ceramic Transactions, 1997, 77: 91-98.
    [56] XIONG H P, MAO W, XIE Y H, et al. Control of interfacial reactions and strength of the SiC/SiC joints brazed with newly-developed Co-based brazing alloy[J]. Journal of Materials Research, 2007, 22(10): 2727-2736.
    [57] XIONG H P, MAO W, XIE Y H, et al. Brazing of SiC to a wrought nickel-based superalloy using CoFeNi(Si,B)CrTi filler metal[J]. Materials Letters, 2007, 61(25):4662-4665.
    [58] RICCARDI B, NANNETTI C A, WOLTERSDORF J, et al. Brazing of SiC and SiCf/ SiC composites performed with 84Si-16Ti eutectic alloy: microstructure and strength [J]. Journal of Materials Science, 2002, 37(23): 5029-5033.
    [59] RICCARDI B, NANNETTI C A, WOLTERSDORF J, et al. Joining of SiC based ceramics and composites with Si-16Ti and Si-18Cr eutectic alloys [J]. International Journal of Materials and Product Technology, 2004, 20(5-6): 440-451.
    [60] SALVO M, LEMOINE P, FERRARIS M, et al. Joining of carbon-carbon composites for thermonuclear fusion applications [J]. Journal of the American Ceramic Society, 1997, 80(1): 206-212.
    [61] DADRAS P, NGAI T T, MEHROTRA M G. Joining of carbon-carbon composites using boron and titanium disilicide interlayers [J]. Journal of the American Ceramic Society, 1997, 80(1): 125-132.
    [62] EI-SAYED M H. Structure and strength of AlN/V bonding interfaces [J]. Journal of Materials Science, 1998, 33(11): 2869-2874.
    [63] NAKA M, TANAKA T, OKMATO I. Application of amorphous Cu-Ti filler metal to joining of silicon nitride [J]. Transaction of JWRI, 1985, 14(2): 85.
    [64] NAKA M, TANIGUCHI H, OKAMOTO I. Heat-resistant brazing of ceramics (reportⅠ) [J]. Transactions of JWRI, 1990, 19(1): 25-29.
    [65]日本特殊陶业株式会社.日本公开特许公报.平2-124779, 1990.
    [66]邹家生,刘日,王磊.合金元素对Ti-Ni-Cu系钎料性能的影响[J].稀有金属材料与工程, 2010, 39(6): 1023-1026.
    [67] SINGH M, ASTHANA R, VARELA F M, et al. Microstructural and mechanical evaluation of a Cu-based active braze alloy to join silicon nitride ceramics [J]. Journal of the European Ceramic Society, 2011, 31(7), 1309-1316.
    [68] LOEHMAN R E. Recent process in ceramic joining [J]. Key Engineering Materials, 1999, 6(163): 659.
    [69] ZHANG J, GUO Y L, NAKA M, et al. Microstructure and reaction phases in Si3N4/Si3N4 joint brazed with Cu-Pd-Ti filler alloy [J]. Ceramics International, 2008, 34(5): 1159-1164.
    [70] PAULASTO M, CECCONE G, PETEVES S D. Joining of silicon nitride with V-active filler metals [J]. N. Eustathopoulos and N. Sobczak Process, 1997, 2(29): 290-299.
    [71] PETEVES S D, PAULASTO M. The reactive route to ceramic joining: fabrication, interfacial chemistry and joint properties [J]. Acta Materials, 1998, 7(l46): 2407-2414.
    [72] OKAMURA H. Brazing ceramics to metals [J]. Welding International, 1993, 7(3): 236-242.
    [73] KANG S, KIM H J. Design of high-temperature brazing alloys for ceramic-metal joints [J]. Welding Journal, 1995, 74(9): 289-295.
    [74] WENTORF R H, JR. Cubic form of boron nitride [J]. Journal of Chemical Physics, 1957, 26: 956.
    [75] TIAN J Z, ZHANG Q, XIA L F, et al. A study of interface and adhesion of c-BN film on Si(1 0 0) modified by nitrogen plasma based ion implantation technique [J]. Materials Research Bulletin, 2004, 39(7-8): 917-922.
    [76] ZHANG X W, BOYEN H G, ZIEMANN P, et al. Growth mechanism for epitaxial cubic boron nitride films on diamond substrates by ion beam assisted deposition [J]. Diamond and Related Materials, 2004, 13(4-8):1144-1148.
    [77]冯贞健.高质量立方氮化硼薄膜的制备及其光电特性研究[D].北京:北京工业大学, 2004.
    [78] ABENDROTH B, GAGO R, KOLITSCH A, et al. Stress measurement and stress relaxation during magnetron sputterdeposition of cubic boron nitride thin films [J]. Thin Solid Films, 2004, 447-448: 131-135.
    [79]方虎啸.超硬材料科学与技术[M].北京:中国建材工业出版社, 1998.
    [80] DEVRIES R C. Cubic Boron Nitride [M]. New York: Handbook of Properties General Electric Company, Schenectady, 1972.
    [81]冯士光.新型超硬材料——立方氮化硼聚晶及其刀具的应用[M].成都:四川科学技术出版社, 1984.
    [82] BOCQUILLON G, LORIERS-SUSSE C, LORIERS J. Synthesis of cubic boron nitride using Mg and pure or M’-doped Li3N, Ca3N2 and Mg3N2 with M’=Al, B, Si, Ti [J]. Journal of Materials Science, 1993, 28(13): 3547-3556.
    [83] GLADKAYA I S, KREMKOVA G N, BENDELIANI N A, et al. The binary system of BN-Mg3N2 under high pressures and temperatures [J]. Journal of Materials Science, 1994, 29(24): 6616-6619.
    [84] LORENZ H, ORGZALL I. Formation of cubic boron nitride in the system Mg3N2-BN: a new contribution to the phase diagram [J]. Diamond and Related Materials, 1995, 4(8): 1046-1049.
    [85] TURKEVICH V, KULIK O, ITSENKO P, et al. Mechanism of cubic boron nitride formation and phase equilibria in the Mg-BN and AlN-BN systems [M]. Innovative Superhard Materials and Sustainable Coating for Advanced Manufacturing, 2005: 309-318.
    [86] SOLOZHENKO V L, TURKEVICH V Z. High pressure phase equilibria in the Li3N-BN system: in situ studies [J]. Materials Letters, 1997, 32(2-3): 179-184.
    [87] SUSA K, KOBAYASHI T, TANIGUCHI S. Catalytic effect of water on the synthesis of cubic BN [J]. Materials Research Bulletin, 1974, 9(11): 1443-1446.
    [88] SOLOZHENKO V L. Thermoanalytical study of the polymorphic transformations of wurtzitic boron nitride modification into graphite-like ones [J]. Journal of Thermal Analysis, 1995, 44(1): 97-103.
    [89] SOLOZHENKO V L, TURKEVICH V Z. hBN-cBN equilibrium line calculated from experimental data on the cBN-to-hBN transformation to 1.4 GPa [J]. High Pressure Research, 1999, 16(3):179-185.
    [90] LORENZ H, PEUN T, ORGZALL L. Kinetic and thermodynamic investigation of cBN formation in the system BN-Mg3N2 [J]. Applied Physics A: Materials Science and Processing ,1997, 65(4-5): 487-495.
    [91] SINGH B P, SOLOZHENKO V L, WILL G. On the low-pressure synthesis of cubic boron nitride [J]. Diamond and Related Materials, 1995, 4(10): 1193-1195.
    [92] TANIGUCHI T, YAMSOKA S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure [J]. Crystal Growth, 2001, 222: 549-557.
    [93]于美燕,崔得良,李凯,等.水热法合成立方氮化硼微晶[J].化学学报, 2005, 63(10): 909-912.
    [94] BENKO E. Chemical reactions occurring at a BN-AgTi interface [J]. Ceramics International, 1996, 22(3): 219-222.
    [95] BENKO E, BIELANSKA E, PEREVERTEILO V M, et al. Formation peculiarites of the interfacial structure during cBN wetting with Ag-Ti, Ag-Zr and Ag-Hf alloys [J]. Diamond and Related Materials, 1997, 6(8): 931-934.
    [96] POBOL I L, SHIPKO A A, NESTERUK I G. Investigation of contact phenomena at cubic boron nitride-filler metal interface during electron beam brazing [J]. Diamond and Related Materials, 1997, 6(8): 1067-1070.
    [97] JAN F, KAZIMIERZ P, FRIEDEL, et al. Electron beam activated brazing of cubic boron nitride to tungsten carbide cutting tools [J]. Vacuum, 2001, 62(2-3):171-180.
    [98] BURKHARD G, REHSTEINER F, SCHUMACHER B. High efficiency abrasive tool for honing [J]. CIRP Annals-Manufacturing Technology, 2002, 51(1): 271-274.
    [99] ELSENER H R, KLOTZ U E, KHALID F A, et al. The role of binder content on microstructure and properties of a Cu-base active brazing filler metal for diamond and cBN [J]. Advanced Engineering Materials, 2005, 7(5): 375-380.
    [100] GHOSH A, CHATTOPADHYAY A K. Experimental investigation on performance of touch-dressed single-layer brazed c-BN wheels [J]. International Journal of Machine Tools & Manufacture, 2007, 47 (7-8): 1206-1213.
    [101]肖冰,徐鸿钧,武志斌,等. AgCuTi合金钎焊单层c-BN砂轮[J].焊接学报, 2002, 23(2): 29-32.
    [102]王乾,薛茂权,董笑瑜.立方氮化硼钎焊制备磨粒砂轮的工艺及性能研究[J].硬质合金, 2005, 22(4): 216-220.
    [103]丁文锋.镍基高温合金高效磨削用单层钎焊立方氮化硼砂轮的研制[D].江苏:南京航空航天大学, 2006.
    [104]丁文锋,徐九华,沈敏,等.活性元素Ti在CBN与钎料结合界面的特征[J].稀有金属材料与工程, 2006, 35(8): 1215-1218.
    [105] DING W F, XU J H, SHEN M, et al. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy [J]. Materials Science and Engineering A, 2006, 430(1-2): 301-306.
    [106] DING W F, XU J H, SHEN M, et al. Behavior of titanium in the interfacial region between cubic BN and active brazing alloy [J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(6): 432-436.
    [107]徐九华,杨长勇,傅玉灿.添加稀土La的高温钎焊CBN砂轮用金属结合剂层材料[P].中国专利: 200710190937, 2007.
    [108]任露泉,卢广林,邱小明,等.制备立方氮化硼复合材料的方法[P].中国专利: ZL200610016981.4, 2009.
    [109]粟枯.真空钎焊[M].北京:国防工业出版社, 1984.
    [110]陈念贻.键参数函数及其应用[M].北京:科学出版社, 1976.
    [111]张学军.航空钎焊技术[M].北京:航空工业出版社, 2008.
    [112]任露泉.试验优化设计与分析[M].北京:高等教育出版社, 2003.
    [113] MCLEAN R A, ANDERSON V L. Extreme vertices design of mixture experiments [J]. Technometrics, 1966, 8(3): 447-454.
    [114] ELFVING G. Optimum allocation in linear regression theory [J]. Ann. Math. Stat., 1952, 23(2): 255-262.
    [115]关颖男.混料试验设计[M].上海:上海科学技术出版社, 1990.
    [116] YOUNG T. An essay on the cohesion of fluids [J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87.
    [117]魏庆成.冶金热力学[M].重庆:重庆大学出版社, 1996: 194.
    [118]梁英教,车荫昌,刘晓霞,等.无机物热力学数据手册[M].沈阳:东北大学出版社, 1993: 16-486.
    [119] ZHU Y M, LI Z H, WU X W. Behavior of Ti coating in cBN/Ti/vitrified bond gradient materials [J]. Materials Science Forum, 2003, 423-425: 539-542.
    [120] JOST W. Diffusion in solids, liquids, gases [M]. New York, Academic Press Inc., 1960.
    [121] FRAGE N, FROUMIN N, DARIEL M P. Wetting of TiC by non-reactive liquid metals [J]. Acta Materialia, 2002, 50(2): 237~245.
    [122]王玉成. TiB2-BN复相陶瓷的制备及性能研究[D].武汉,武汉理工大学, 2002.
    [123]张虎,张二林,高文理,等. Ti-40Al-2B合金微观组织和初生TiB2生长特征[J].复合材料学报, 2001, 18(4): 16-19.
    [124]吕维杰,张小农,张荻,等.原位合成TiB/Ti基复合材料增强体的生长机制[J],金属学报, 2000, 36(1): 104-108.
    [125]王艳辉,王明智,温熙宇,等.镀Ti立方氮化硼(cBN)与玻化SiO2-Na2O-B2O3结合剂的作用[J],无机材料学报, 1995, 10(3): 351-355.
    [126]徐国良.工程传热学[M].北京:中国电力出版社, 2005.
    [127] TOKUOKA T. Yield conditions and flow rules derived from hypo-elasticity [J]. Archive for Rational Mechanics and Analysis, 1971, 42(4): 239-252.
    [128]丁文锋,徐九华,周来水,等.立方氮化硼超硬磨料与45钢钎焊接头残余应力有限元分析[J].机械工程学报, 2007, 43(5): 133-137.
    [129]师昌绪,李恒德,周廉.材料科学与工程手册(上卷) [M].北京:化学工业出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700